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1 Introduction

For a convenient definition of trees we are going to work with, let us first define

U = {∅} ∪
⋃

n≥1

{0, 1}n

the set of finite words on the alphabet {0, 1} (with ∅ for the empty word). For u and v in U, denote
by uv the concatenation of the word u with the word v (by convention we set, for any u ∈ U,
∅u = u). If v 6= ∅, we say that uv is a descendant of u and u is an ancestor of uv. Moreover u0
(resp. u1) is called left (resp. right) child of u.

A complete binary tree T is a finite subset of U such that







∅ ∈ T
if uv ∈ T then u ∈ T ,
u1 ∈ T ⇔ u0 ∈ T .

The elements of T are called nodes, and ∅ is called the root ; |u|, the number of letters in u, is the
depth of u (with |∅| = 0). Write BinTree for the set of complete binary trees.

A tree T ∈ BinTree can be described by giving the set ∂T of its leaves, that is, the nodes that
are in T but with no descendant in T . The nodes of T\∂T are called internal nodes.

Models

This paper deals with two classical models of binary tree processes: the binary search tree
process and the Yule tree process.

¤ A binary search tree (BST) is a structure used in computer science to store totally ordered data
(the monograph of Mahmoud [22] gives an overview of the state of the art). Each unit of time, an
item is inserted in the tree, inducing a sequence of labeled binary trees. Under suitable assumptions
on the data (the so-called random permutation model), the process of constructed unlabeled binary
trees (Tn)n≥0 is a Markov chain on BinTree that has the following representation:
• T0 = {∅}
• Tn+1 = Tn ∪ {Dn0, Dn1} where Dn, the random node where the n+ 1-st key is inserted, has the
following distribution

P (Dn = u | Tn) = (n+ 1)−1, u ∈ ∂Tn .

In other words, each unit of time, a leaf is chosen equally likely among the leaves of the current
tree, and it is replaced by an internal node with two children.

¤ The Yule tree process (TTt)t≥0 is a continuous time binary tree process in which each leaf behaves
independently from the other ones.
• At time 0, one individual is alive and the tree TT0 is reduced to a leaf: TT0 = {∅}.
• Each individual has an Exp(1) distributed lifetime (independent of the other ones). At his death,
he disappears and is replaced by two children. The set of individuals alive at time t is ∂TTt. We
call Yule tree process, the BinTree-valued random process (TTt)t≥0. The process (TTt)t≥0 is a pure
jump Markov process.
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Embedding

The counting process (Nt)t≥0 giving the number of leaves in TTt,

Nt := #∂TTt, (1)

is the classical Yule (or binary fission) process (Athreya-Ney [2]).
Let 0 = τ0 < τ1 < τ2 < ... be the successive jump times of TT.,

τn = inf{t : Nt = n+ 1} . (2)

The jump time intervals (τn−τn−1)n≥1 are independent and satisfy1 τn−τn−1 ∼ Exp(n) for any n ≥
1. Moreover, the processes (τn)n≥1 and

(

TTτn

)

n≥1
are independent, since the jump chain and jump

times are independent.
Due to the lack of memory of the exponential distribution, in the Yule tree process, each leaf

is equally likely the first one to produce children. Hence, the two processes (TTτn)n≥0 and (Tn)n≥0

have the same law. From now, we consider the Yule tree process and the BST process on the same
probability space on which

(

TTτn

)

n≥0
=
(

Tn
)

n≥0
. (3)

We say that the BST process is embedded in the Yule tree process. This observation was also made
in Aldous-Shields [1] section 1, see also Kingman [17] p.237 and Tavaré [30] p.164 in other contexts.
Various embeddings are also mentioned in Devroye [10], in particular those due to Pittel [25], and
Biggins [6, 7].

We define (Ft)t≥0 by Ft = σ(TTs, s ≤ t) and F(n) by σ(T1, . . . , Tn), the natural filtrations of
(TTt)t≥0 and of (Tn)n≥0.

This embedding allows to use independence properties between subtrees in the Yule tree process
(it is a kind of Poissonization).

Contents

Many functionals of the BST can be derived using known results on the Yule tree. An interesting
quantity is the profile of Tn: it is the sequence (Uk(n))k≥0 where Uk(n) is the number of leaves of
Tn at level k. Here, in (17), the martingale family (Mn(z),F(n))n≥0 which encodes the profile of
(Tn)n≥0 is shown to be strongly related to the martingale family (M(t, z),Ft)t≥0 that encodes the
profile of (TTt)t≥0. We call the martingale (Mn(z),F(n))n≥0, introduced by Jabbour-Hattab [16],
the BST martingale.

It turns out that M(τn, z) = Mn(z)Cn(z) where (Cn(z), σ(τ1, · · · , τn))n≥0 is a martingale in-
dependent of (Tn)n≥0 (Proposition 2.1). This allows to revisit the study of (Mn(z))n≥0 using the
embedding. In Section 2.4, we study the convergence, as n → ∞, of the BST martingale Mn(z).
For z > 0, we recover very quickly the behavior of the limit M∞(z): positive when z ∈ (z−c , z+

c ),
zero when z /∈ [z−c , z+

c ]. In the critical cases z = z±c the behavior was unknown. We prove that
M∞(z±c ) = 0 a.s (Theorem 2.5). Moreover we study in Theorem 2.6 the convergence of the family
of martingales M′

n(z) =
d
dzMn(z). The limits M′

∞(z) and M∞(z) satisfy a splitting formula (35)

1Exp(λ) is the exponential distribution of parameter λ. We recall that the minimum of n independent random
variables Exp(1)-distributed is Exp(n)-distributed
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which, for z = 1 gives the Quicksort equation (Corollary 2.7). See the companion paper [9] for
complements.

In Section 3 we describe the asymptotic behavior of the profile Uk(n) when k ' 2z log n in the
whole range z ∈ (z−c , z+

c ). Previously, the result was known only on a sub-domain where the L2

method works [8].

2 Martingales

2.1 The BST martingale

Among the known results about the evolution of BST, the saturation level hn and the height
Hn,

hn = min{|u| : u ∈ ∂Tn} , Hn = max{|u| : u ∈ ∂Tn} (4)

grow logarithmically (see for instance Devroye [10])

a.s. lim
n→∞

hn

log n
= c′ = 0.3733... lim

n→∞
Hn

log n
= c = 4.31107... ; (5)

the constants c′ and c are the two solutions of the equation η2(x) = 1 where

ηλ(x) := x log
x

λ
− x+ λ, x ≥ 0 , (6)

is the Cramer transform of the Poisson distribution of parameter λ. Function η2 reaches its minimum

at x = 2. It corresponds to the rate of propagation of the depth of insertion: dn
2 logn

P−→ 1. More
precise asymptotics for Hn can be found in [12, 26, 27, 20].

To get asymptotic results on the profile, we encode it by the so-called polynomial level
∑

k Uk(n)z
k,

whose degree is Hn. Jabbour-Hattab [8, 16] proved a martingale property for these random poly-
nomials. More precisely, for z /∈ 1

2ZZ
− = {0,−1/2,−1,−3/2, · · · } and n ≥ 0, let

Mn(z) :=
1

Cn(z)

∑

k≥0

Uk(n)z
k =

1

Cn(z)

∑

u∈∂Tn
z|u| , (7)

where C0(z) = 1 and for n ≥ 1,

Cn(z) :=
n−1
∏

k=0

k + 2z

k + 1
= (−1)n

(

−2z
n

)

. (8)

Then (Mn(z),F(n))n≥0 is a martingale, the BST martingale. If z > 0, this positive martingale is
a.s. convergent; the limit M∞(z) is positive a.s. if z ∈ (z−c , z+

c ), with

z−c = c′/2 = 0.186..., z+
c = c/2 = 2.155... (9)

and M∞(z) = 0 for z /∈ [z−c , z+
c ] (Jabbour-Hattab [16]). This martingale is also the main tool to

prove that, properly rescaled around 2 logn, the profile has a Gaussian limiting shape (see Theorem
1 in [8]).

423



2.2 Martingales and connection

The measure valued process (ρt)t≥0 defined by

ρt =
∑

u∈∂TTt

δ|u| , (10)

can be seen as a continuous time branching random walk. The set of positions is IN0 = {0, 1, 2, · · · }.
At time 0, an ancestor is at position 0. Each individual lives during an Exp(1) distributed time and
does not move. At his death, he disappears and is replaced by two children, whose both positions
are their parent’s position shifted by 1. The set of individuals alive at time t is ∂TTt and the position
of individual u is simply |u|.

In classical continuous time branching random walks, the position of the particule u is Xu, the
parameter of exponential lifetime is β, and the offspring point process is Z. The classical family of
“additive” martingales parameterized by θ in IR (sometimes in C



) and indexed by t ≥ 0, is given by

m(t, θ) :=
∑

u∈∂TTt

exp(θXu − tL(θ)),

where L(θ) = β(E
∫

eθxZ(dx)− 1) (see [5, 21, 31]).
Here, Xu = |u|, β = 1 and Z = 2δ1. Then

L(θ) = 2eθ − 1. (11)

For easier use, we set z = eθ and then consider the family of (Ft, t ≥ 0)-martingales

M(t, z) := m(t, log z) =
∑

u∈∂TTt

z|u|et(1−2z). (12)

In particular M(t, 1/2) = 1 and M(t, 1) = e−tNt.
A classical result (see Athreya-Ney [2] or Devroye [10] 5.4) is that, a.s., e−tNt converges when

t→ +∞, and
ξ := lim

t→∞
e−tNt ∼ Exp(1) . (13)

Since limn τn =∞ a.s. we get from (2) and (13),

a.s. lim
n

ne−τn = ξ . (14)

The embedding formula (3) allows to connect the family of BST martingales (Mn(z),F(n))n≥0

to the family of Yule martingales (M(t, z),Ft)t≥0. If we observe the martingale (M(., z)) at the
stopping times (τn)n≥1, we can “extract” (Proposition 2.1 below) the space componentMn(z) and
the time component. Let, for n ≥ 0,

Cn(z) := eτn(1−2z)Cn(z) . (15)

Proposition 2.1 (martingale connection) Let us assume z ∈ C
 \ 1

2ZZ
−.
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1) The family
(

Cn(z), σ(τ1, . . . , τn)
)

n≥0
is a martingale with mean 1, and

a.s. lim
n

Cn(z) =
ξ2z−1

Γ(2z)
. (16)

Moreover, if <z, the real part of z, is positive, the convergence is in L1.

2) The two martingales (Cn(z))n≥0 and (Mn(z))n≥0 are independent and

M(τn, z) = Cn(z)Mn(z) . (17)

Proof: 1) The martingale property comes from the properties of the sequence (τn)n≥1. The Stirling
formula gives the very useful estimate:

Cn(z) ∼
n

n2z−1

Γ(2z)
, (18)

which yields (16) owing to (14).
2) The second claim comes from (3) and (12); the independence comes from the independence

between the jump chain and the jump times.

Proposition 2.1 allows us to transfer known results about the Yule martingales to BST martin-
gales, thus giving very simple proofs of known results about the BST martingale and also getting
much more. In particular, in Theorem 2.4 2), we give the answer to the question asked in [16],
about critical values of z, with a straightforward argument.

2.3 Limiting proportions of nodes in a subtree

Let us study some meaningful random variables arising as a.s limits and playing an important
role in the results of Section 2.4. These variables describe the evolution of relative sizes of subtrees
in Yule trees (and in BST).

For every u ∈ U, let τ (u) = inf{t : u ∈ TTt} be the time (a.s. finite) when u appears in the Yule
tree, and for t > 0, let

TT
(u)
t = {v ∈ U : uv ∈ TTt+τ (u)}

be the tree process growing from u. In particular, set

N
(u)
t = #∂TT

(u)
t .

For t > τ (u), the number of leaves at time t in the subtree issued from node u is n
(u)
t := N

(u)

t−τ (u) .

The branching property and (13) give that a.s. for every u ∈ U

lim
t→∞

e−tN
(u)
t = ξu , lim

t→∞
e−tn

(u)
t = ξu e−τ (u)

, (19)

where ξu is distributed as ξ i.e. Exp(1). Moreover, if u and v are not in the same line of descent,
the r.v. ξu and ξv are independent. Since, for t > τ (u0),

n
(u)
t = n

(u0)
t + n

(u1)
t and τ (u0) = τ (u1), (20)
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a small computation yields2

n
(u0)
t

n
(u)
t

a.s.−−−→ U (u0) :=
ξu0

ξu0 + ξu1
,

n
(u1)
t

n
(u)
t

a.s.−−−→ U (u1) := 1− U (u0) =
ξu1

ξu0 + ξu1
, (21)

which allows to attach a U([0, 1]) r.v. to each node of U. In particular we set

U := U (0) =
ξ0

ξ0 + ξ1
(22)

so that

ξ := ξ∅ = e−τ1(ξ0 + ξ1) , ξ0 = Uξeτ1 , ξ1 = (1− U)ξeτ1 . (23)

It is straightforward to see that, by embedding, the property of the above subsection holds true
for limiting proportions of nodes in the BST, as n→∞.

2.4 Convergence of martingales

In this section are given the main results about the asymptotic behaviors of the Yule and BST
martingales. The martingale connection (Proposition 2.1) allows to express the links between the
limits.

Theorem 2.2 gives an answer to a natural question asked in [8] about the domain in the complex
plane where the BST martingale is L1−convergent and uniformly convergent. Theorem 2.5 gives
the optimal L1 domain on R.

Theorem 2.2 For 1 < q < 2, let Vq := {z : supt E|M(t, z)|q < ∞}. Then Vq = {z : f(z, q) > 0}
with

f(z, q) := 1 + q(2<z − 1)− 2|z|q . (24)

If we denote V := ∪1<q<2Vq, we have:

a) As t→∞, {M(t, z)} converges, a.s. and in L1, uniformly on every compact C of V.

b) As n→∞, {Mn(z)} converges, a.s. and in L1, uniformly on every compact C of V.

Proof: a) is proved in [5] Theorem 6 (see also [4]).
b) We prove

lim
N

sup
n≥N

E sup
z∈C

|Mn(z)−MN (z)| = 0 , (25)

which implies the uniform L1 convergence and, since (supz∈C |Mn(z) − MN (z)|)n≥N is a sub-
martingale, this will imply also the a.s. uniform convergence3. From the martingale connection
(Proposition 2.1), we have

Mn(z)−MN (z) = E[M(τn, z)−M(τN , z)|F(n)]

2If ξa and ξb are two independent, Exp(1)-distributed random variables then ξa/(ξa + ξb) ∼ U [0, 1], the uniform
distribution on [0,1].

3For the uniform a.s. convergence, it is possible to give a proof directly from [5]
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so that taking supremum and expectation we get

E sup
z∈C

|Mn(z)−MN (z)| ≤ E
(

sup
z∈C

|M(τn, z)−M(τN , z)|
)

.

Taking again the supremum in n we get

sup
n≥N

E sup
z∈C

|Mn(z)−MN (z)| ≤ E sup
n≥N

(

sup
z∈C

|M(τn, z)−M(τN , z)|
)

≤ E∆n , (26)

where we have set ∆n := supT≥τn (supz∈C |M(T, z)−M(τn, z)|). Since M(t, z) converges a.s. uni-
formly, we have a.s. limn ∆n = 0. Moreover, by the triangle inequality ∆n ≤ 2∆0, and by the proof
of Proposition 1 in [4], ∆0 is integrable. The dominated convergence theorem gives limn E∆n = 0
and (25) holds, which ends the proof of Theorem 2.2.

Remark 2.3 As usual the L1 convergence in a) of the above theorem comes from a Lq bound (for
some 1 < q ≤ 2); more precisely, following the steps in [3] section 2.4, the quantity

βt(λ) := (M(t, z)− 1) et(2z−1)

satisfies

E|βt(z)|q ≤ etq(2<z−1)

∫ t

0
exp (−sf(z, q)) ds for 1 < q ≤ 2. (27)

Theorem 2.4 Let us assume z ∈ (z−c , z+
c ).

1) We have the limit martingale connection:

a.s. M(∞, z) =
ξ2z−1

Γ(2z)
M∞(z) , (28)

where the exponential variable ξ is defined in (13).

2) We have the following two splitting formulas:

a) for the Yule process,

M(∞, z) = ze(1−2z)τ1 (M0(∞, z) +M1(∞, z)) a.s. (29)

where M0(∞, z) and M1(∞, z) are independent, distributed as M(∞, z) and independent
of τ1.

b) for the BST,

M∞(z) = z
(

U2z−1M∞,(0)(z) + (1− U)2z−1M∞,(1)(z)
)

(30)

where U ∼ U([0, 1]) is defined in (22), M∞,(0)(z),M∞,(1)(z) are independent (and inde-
pendent of U) and distributed as M∞(z).
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Proof: 1) is a consequence of (16) and the martingale connection (17).
2) a) For t > τ1 we have the decomposition

M(t, z) = ze(1−2z)τ1
[

M (0)(t− τ1, z) +M (1)(t− τ1, z)
]

(31)

where for i = 0, 1

M (i)(s, z) =
∑

u∈∂TT
(i)
s

z|u|es(1−2z) ,

and TT(i) is defined in Section 2.3.
b) Take t = τn in (31), condition on the first splitting time τ1, apply the branching property, let

n→∞ and apply the limit martingale connection (28) to get

ξ2z−1

Γ(2z)
M∞(z) = ze(1−2z)τ1

(

ξ2z−1
0

Γ(2z)
M∞,(0)(z) +

ξ2z−1
1

Γ(2z)
M∞,(1)(z)

)

(32)

where ξ0 and ξ1 come from section 2.3, which yields b) with the help of (23).

The following theorem gives the behavior in the remaining cases

Theorem 2.5 For z ∈ (0,∞) \ (z−c , z+
c ), then a.s. limt M(t, z) = 0 and limnMn(z) = 0.

Proof: The continuous time result is in [5] (see also [4]); it remains to use again the martingale
connection (17).

2.5 Derivative martingales

From the above section, we deduce that the derivatives

M ′(t, z) :=
d

dz
M(t, z), M′

n(z) :=
d

dz
Mn(z) (33)

are martingales which are no longer positive. They are called the derivative martingales. Their
behaviors are ruled by the following theorem.

Theorem 2.6 1) For z ∈ (z−c , z+
c ), the martingales (M ′(t, z))t≥0 and (M′

n(z))n≥0 are conver-
gent a.s.. Let us call M ′(∞, z) and M′

∞(z) their limits.

a) We have the (derivative martingale) connection:

M ′(∞, z) =
ξ2z−1

Γ(2z)

(

M′
∞(z) + 2

(

log ξ − Γ′(2z)
Γ(2z)

)

M∞(z)

)

a.s. (34)

where ξ ∼ Exp(1) is defined in (13) and is independent of M∞(z) and M′
∞(z).
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b) We have the splitting formula:

M′
∞(z) = zU2z−1M′

∞,(0)(z) + z(1− U)2z−1M′
∞,(1)(z)

+ 2z
(

U2z−1 logU
)

M∞,(0)(z) + 2z
(

(1− U)2z−1 log(1− U)
)

M∞,(1)(z)

+ z−1M∞(z) (35)

where U ∼ U([0, 1]) is defined in (22), and the r.v. M′
∞,(0)(z) and M′

∞,(1)(z) are inde-

pendent (and independent of U) and distributed as M′
∞(z).

2) a) The martingales (M ′(t, z−c ))t≥0 and (M′
n(z

−
c ))n≥0 (resp. (M ′(t, z+

c ))t≥0 and (M′
n(z

+
c ))n≥0)

are convergent a.s.. Their limits denoted by M ′(∞, z−c ) and M′
∞(z−c ) (resp. M ′(∞, z+

c ) and
M′
∞(z+

c )) are positive (resp. negative) and satisfy

E
(

M ′(∞, z−c )
)

= E(M∞(z−c )) = +∞, (36)

E
(

M ′(∞, z+
c )

)

= E(M∞(z+
c )) = −∞. (37)

b) M ′(∞, z±c ) and M′
∞(z±c ) satisfy equations similar to (28), (29) and (30):

M ′(∞, z±c ) =
ξ2z±c −1

Γ(2z±c )
M′
∞(z±c ) (38)

M ′(∞, z±c ) = z±c e(1−2z±c )τ1
(

M ′
0(∞, z±c ) +M ′

1(∞, z±c )
)

(39)

M′
∞(z±c ) = z±c

(

U2z±c −1M′
∞,(0)(z

±
c ) + (1− U)2z

±
c −1M′

∞,(1)(z
±
c )

)

a.s. . (40)

Proof: 1) For z ∈ (z−c , z+
c ) the a.s. convergence of M ′(t, z) is a consequence of the uniform

convergence of M(t, z) (by Theorem 2.2) and of analyticity. Taking derivatives in the martingale
connection (17) gives

M ′(τn, z) =

[

C ′n(z)
Cn(z)

− 2τn

]

Cn(z)Mn(z) + Cn(z)M′
n(z) . (41)

Using (14) again and

C ′n(z)
Cn(z)

=

n−1
∑

j=0

2

j + 2z
,

Γ′(x)
Γ(x)

= lim
n

(

log n−
n−1
∑

j=0

1

x+ j

)

,

we get

a.s. lim
n

[

C ′n(z)
Cn(z)

− 2τn

]

= 2

[

−Γ′(2z)
Γ(2z)

+ log ξ

]

. (42)

We conclude that M′
n(z) converges and that M′

∞(z) satisfies (34) which proves a).
To prove b), we differentiate (31) with respect to z

M ′(t, z) = (z−1 − 2τ1)M(t, z) + ze(1−2z)τ1
[

M (0)′(t− τ1, z) +M (1)′(t− τ1, z)
]

,
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and we use the same technique as above: take t = τn, let n → ∞, apply (34) and its analogs with
(M ′(i),M(i),M′(i), ξi)i=0,1 instead of (M ′,M,M′, ξ), and use (23).

2) For z = z±c , the a.s. convergence of the martingales M ′(t, z) and the signs of the limits are proved
in [4], and so is the relation

EM ′(∞, z−c ) = −EM ′(∞, z+
c ) =∞ .

Relation (38) is a consequence of (41) and (42), since M∞(z±c ) = 0.
Formula (40) of 2) is straightforward from (35) since M∞(z±c ) = 0. Formula (38) is (34) for

z = z±c .

An easy but interesting consequence of (35) is obtained in the following corollary, just taking
z = 1 in (34) and (35) (remember that Mn(1) ≡ 1). The distributional (weaker) version of (44)
below is the subject of a broad literature (see for instance Fill, Janson, Devroye, Neininger, Rösler,
Rüschendorf [13, 14, 11, 23, 29, 28]) and some properties of the distribution of M′

∞(1) remain
unknown.

Corollary 2.7 We have

M ′(∞, 1) = ξ
(

M′
∞(1) + 2 (log ξ + γ − 1)

)

a.s. , (43)

where γ is the Euler constant, and M′
∞(1) satisfies the a.s. version of the Quicksort equation:

M′
∞(1) = UM′

∞,(0)(1) + (1− U)M′
∞,(1)(1) + 2U logU + 2(1− U) log(1− U) + 1 , (44)

where as above, M′
∞,(0)(1) and M′

∞,(1)(1) are independent (and independent of U), distributed as

M′
∞(1) and U ∼ U([0, 1]).

3 Convergence of profiles

3.1 Results

According to (5), for every ε > 0, there exists a.s. n0 such that for n ≥ n0,

Uk(n) = 0 for k /∈ [(c′ − ε) log n, (c+ ε) log n] .

It implies that the convenient scaling for k is (log n)−1. We are interested in the asymptotic behavior

of Uk(n) for k ∼= x logn and x fixed in (c′, c). The mean profile is known E
(

Uk(n)
)

= 2kS
(k)
n /n!

where S
(k)
n is the Stirling number of the first kind. Hwang ([15]) got an asymptotic estimate; for

any ` > 0 as n→∞ and k →∞ such that r = k/ log n ≤ ` :

EUk(n) =
(2 log n)k

k!nΓ(r)
(1 + o(1)) , (45)

from which we deduce that for any ` > 0 :

EUk(n) =
n

1−η2( k
logn

)

Γ( k
logn)

√
2πk

(1 + o(1)) , (46)
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where o(1) is uniform for k/ log n ≤ ` and η2 was defined in (6). For related results, see Kolchin
([18], [19] chap.4).

The convergence of the profile is given by the following theorem.

Theorem 3.1 Almost surely, for any compact subset K of (c′, c) = (0.373... , 4.311...)

lim
n

sup
k:(k/ log n)∈K

( Uk(n)

E
(

Uk(n)
) −M∞

( k

2 log n

)

)

= 0 . (47)

This theorem improves the result of Jabbour-Hattab & al. [8] where the convergence was shown in
[1.2 , 2.8].

This theorem gives precise information on the profile. In particular, taking k = 2 log n+λ
√
log n

and using M∞(k/(2 log n))→M∞(1) = 1, one can prove that the normalized profile

λ→
U2 logn+2λ

√
log n (n)

n/
√
4π logn

converges p.s., uniformly on all compacts, to the function λ→ e−λ2
(see also [8]).

3.2 Proof

The aim of this section is to prove Theorem 3.1.
Jabbour-Hattab in [16] introduced the random measure counting the levels of leaves in Tn

rn :=
∑

k

Uk(n)δk =
∑

u∈∂Tn
δ|u| .

He proved that for x ∈ (2, c)

a.s. lim
n→∞

1

log n
log rn((x log n,∞)) = 1− η2(x) (48)

and that the same result holds for x ∈ (c′, 2), replacing (x log n,∞) by (0, x log n) .
The random measure counting the levels of leaves in the Yule tree is

ρt =
∑

u∈∂TTt

δ|u| .

With the notations of [31], the exponential rate of growing is ruled by the function

x 7→ L?(x) := sup
θ

θx− L(θ) = η2(x)− 1 ,

where the function L is defined in (11) and η2 in (6).
For x ∈ (c′, c), η2(x) < 1, so there are in mean about e(1−η2(x))t leaves at level ' xt. More

precisely (Theorem 1’ p. 909 [31]), for x ∈ (c′, c),

lim
t→∞

√
t etL

?(x)ρt([xt]) =

√

(L?)′′(x)
2π

M(∞, x/2) a.s. . (49)

It is now tempting to replace t by τn and ρt([xt]) by ρτn([x logn]) = rn([x log n]). To validate
this, we need some uniformity in x in (49). In [5], Biggins obtained such a result. However, it was
in the non-lattice case, so we give in the next subsection a complete proof.
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Proof of Theorem 3.1

In order to prove Theorem 3.1, we need the following lemma whose proof is postponed; it yields
an asymptotic uniform behavior for ρt(k), as t→∞.

Lemma 3.2 Almost surely, for any compact C of (z−c , z+
c ),

lim
t→∞

sup
k≥1,z∈C

zk
√
tet(1−2z)

[

ρt(k)−M(∞, z)e−t (2t)
k

k!

]

= 0 . (50)

Let C be a compact subset of (z−c , z+
c ). From Lemma 3.2, we know that

ρt(k) = M(∞, z)e−t (2t)
k

k!
+ o(1)z−kt−1/2e−t(1−2z) .

Recall that o(1) is uniform in k and in z ∈ C. If P (λ) stands for the Poisson law with parameter λ,
notice that a P(2t) appears in the previous expression. Using a change of probability from P (2t) to
P(2tz), we get

ρt(k) = z−kt−1/2e−t(1−2z)
[

t1/2M(∞, z)P(2tz)(k) + o(1)
]

.

Using the local limit theorem [24], we have

lim
λ→∞

sup
k

∣

∣

∣

√
2πλ P(λ)(k)− exp

(

− (k − λ)2

2λ

)∣

∣

∣
= 0 .

Now, we set λ = 2tz with z ∈ C which yields

lim
t→∞

sup
z∈C

sup
k

∣

∣

∣

√
4πtz P(2tz)(k)− exp

(

− (k − 2tz)2

4tz

)∣

∣

∣
= 0.

Hence,

ρt(k) = At(k, z)
[

exp
(

− (k − 2tz)2

4tz

)

M(∞, z) +
(

(4πz)1/2 +M(∞, z)
)

o(1)
]

, (51)

with

At(k, z) :=
e−t(1−2z)

zk(4πtz)1/2
.

Remembering that Uk(n) = ρτn(k), we take t = τn and z =
k

2 log n
in (51). Using (14) again and

the estimate (46), we get

Aτn(k, z)

[EUk(n)] ξ1−2zΓ(2z)
= 1 + o(1) , exp

(

− (k − 2τnz)
2

4τnz

)

= 1 + o(1) .

Now we apply the limit martingale connection (28) and notice that

sup
z∈C

(

(4πz)1/2 +M(∞, z)
)

<∞

and we conclude
Uk(n) = [EUk(n)]M∞(z)(1 + o(1)) ,

with z = k/(2 log n) and o(1) uniform in z ∈ C.
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Proof of Lemma 3.2

We use the following lemma, which is the continuous time version of Lemma 5 in [5]. Its proof
can be managed with the same arguments, replacing Lemma 6 there, by Remark 2.3. We omit the
details.

Lemma 3.3 For any z0 ∈ (z−c , z+
c ) there exists r > 0 for which z−c < z0 − r < z0 + r < z+

c and
such that a.s.

lim
t→∞

sup
z∈[z0−r,z0+r]

∫ π

−π

√
t |M(t, zeiη)−M(∞, z) | e−2tz(1−cos η)dη = 0 . (52)

Write
M(t, z) = et(1−2z)

∑

k

ρt(k)z
k ,

and the Fourier inversion formula yields

ρt(k) =
e−t(1−2z)z−k

2π

∫ π

−π
M(t, zeiη)e−2tz(1−eiη)e−ikηdη

and, owing to Lemma 3.3

2πρt(k)e
t(1−2z)zk

√
t = M(∞, z)

√
t

∫ π

−π
e−2zt(1−eiη)e−ikηdη + o(1)

with o(1) uniform in k and in z in any compact subset of (z−c , z+
c ). Now, from the Cauchy formula

we get that
∫ π

−π
e−2zt(1−eiη)e−ikηdη = 2πe−2zt (2zt)

k

k!
,

yielding (50), which ends the proof.
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