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Abstract. In this paper, we define the sequence spaces A7 (/o.), A (¢) and A (c,), (m € N),

and give some topological properties, inclusion relations of these sequence spaces, compute their
continuous and Kéthe-Toeplitz duals. The results of this paper, in a particular case, include the
corresponding results of Kizmaz [5] , Colak [1], [2], Et-Colak [4], and Colak et al. [3].

1. Introduction

Let ¢, c,and c, be the linear spaces of bounded, convergent, and null sequences

x =(x, ) with complex terms, respectively, normed by

[ x1.. = supilxi]

where k€ N ={1,2,---}, the set of positive integers.
Kizmaz [5] defined the sequence spaces

fw(A):{x:(xk):Axefw},
c(A)z{ x:(xk):Axec},
co(A)={x=(x):Axecy}

where Ax = (Ax;)=(x;, —x;,,), and showed that these are Banach spaces with norm
<l =[x+ ax],.

Then Colak [1] defined the sequence space A, (X)= { x=(x;):Ax; € X}, where

(A,x,) =Xy —VviaXey) and X is any sequence space, and investigated some
topological properties of this space.
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Recently Et and Colak [4] generalized the above sequence spaces to the following
sequence spaces.

ﬁoo(Am):{ x:('xk):Amxeﬁoo}D
c(A")={x=(x;):A"xec},
co(A")={x=(x;):A"xecy}

where me N, A’x=(x;), Ax=(x; —x;,), A"x=(A"x,)=(A""x _A""x;,,), and
m < 4 m
v=0 4

These are Banach spaces with norm
m
— m
el =2 15l + |am] .
i=1

It is trivial that c,(A”)C co(A™), c(A™)c c(A™), 0 (A™)c ¢, (A™"), and
co(A™) < e(A™) < £, (A™) are satisfied and strict [4]. For convenience we denote

these spaces A" (£,) = £, (A™),A"(c) = c(A™), and A" (cy) =cy(A™).

Throughout the paper we write Zk for Z and lim, for lim,_,, .

Let v =(v, ) be any fixed sequence of nonzero complex numbers. Now we define

A'f(éw):{x:(xk):A’f xefoo}
A’f(c):{x:(xk):A':’xec} (1.1)
N(cg)={x=(x,): A7 xecy )

where
0 m m—1 m—1
meN, Ay x=(vpxp), Axp =X = Vi X)), Ay xp =(AF xp =AY X)),
and so that

m o i m
Ay Xy :Z(_l) ( .Jvk+i Xk+i

i=0 !
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It is trivial that A" (¢,), A7 (c)and A’ (¢,) are linear spaces. If we take
vy)=(1,1,---) and m=11in (1.1), then we obtain A(/_),A(c)and A(c,). Also if we
take m=1 and (v;)=(1,1,---)in (1.1), then we obtain A,(¢,), A,(c) and A (cy),
and A"((,), A"(c) and A" (c,), respectively.

2. Main results

Theorem 2.1. The sequence spaces N, ({ ), A" (c) and A’ (c¢,) are Banach spaces
normed by

Il = [sw] + a2 <] - e

0

Proof.  Omitted.

Let X'stand for ¢, cand c¢, and let us define the operator

D:A"(X)— A" (X)

by Dx=(0,0,, X, 1,X2,"), Where x=(x, x5, X3,---). Itistrivial that D is a

bounded linear operator on A" (X). Furthermore the set
D[A'C'(X)]:DA'L’(X):{x:(xk): xeA)(X),x; =x, =" =x, :0}

is a subspace of A7 (X) and ||x||v :H AT x“ in DA (X). DA(X) and X are

equivalent as topological space since
AT DA (X) > X ,definedby A x=y=(A] x;) (2.2)
is a linear homeomorphism [7].

Let X' and [DA}(X)] denote the continuous duals of X and DA (X),
respectively. It can be shown that

T:DA} (X)]' > X', fa—> [ =71

is a linear isometry. So [DA" (X)] isequivalent to X' [7].
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Corollary 2.2.

(i) A7 (¢) and A (¢) are closed subspaces of N, (),

(ii) A7 (c) and A7 (c,) are separable spaces,

Giii) A (L,), N, (c) and A (c,) are BK-spaces with the same norm as in (2.1),

(iv) A" (0,), A" (c) and A" (cy) are not sequence algebras.

3. Dual spaces

In this section we give Kothe-Toeplitz duals of A% (¢,), A7 (c)and A’ (¢y). Now we
give the following lemmas.

Lemma3.1. x e A7 () ifand only if

(i) sup, k' ‘A'f_] xk‘ < oo,

< 0.

(i) supy | A7 x, — ke + D)7 AT

Proof: Omitted.
Lemma3.2. sup, k™' |A x| < o implies sup, k™™ |v,x, | <o forall ieN.
Proof. Omitted.

Lemma 3.3. sup, &k ‘A’;H X ‘ <o implies sup, kY ‘A’C”(”l) X ‘ <o for all

i, meN and 1<i<m.
Proof. If A,x, isreplaced with A" x, in Lemma.3.2, the result is immediate.

Lemma 3.4. sup, k' ‘A’:’_l Xg ‘ < oo implies sup, k™" |vk X | < .

Proof. For i=1 in Lemma3.3, we obtain sup, k' ‘A’f‘l xk‘ < o implies
sup k2 ‘ A’f’z xk‘ <. Again, for i=2 in Lemma 3.3, we obtain
sup k2 ‘ A’f"z xk‘ <oo implies sup, k3 ‘ A'f_3 xk‘ <oo . Continuing this procedure,

for i =m—1, we arrive sup, k""" | Avxk| <oo implies sup, k™™ | vvxk| <0,
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Lemma 3.5. xeA” () implies sup, k™" | vkxk| < 0.

Proof.  Proof follows from Lemma.3.1 and Lemma.3.4.

Definition 3.6. [6] Let X be a sequence space and define

X% = {a:(ak):2k|akxk| < oo, forall xeX},

then X% is called Kothe-Toeplitz dual of X. If X Y, then Y* < X%. It is clear that
Xc(XH? =X, If X=X then X is called an a-space. In particular, an

a-space is a Kothe space or a perfect sequence space.
Theorem 3.7. Let U, ={a=(a,): X, k™ |a, v;'| < o} and
U, = {az(ak):supk k™ |akvk| <o }, then
i) (AT () =(A7 () =(AY (co)* =U,
i) (A7) = (AT () = (AT (ce)™ =U,
Proof. Omitted.
Corollary 3.8. A" (¢,),A," (c) and A" (c,) are not perfect.

Corollary 3.9. Ifwetake (v,)=(1,1,---yand m =1, in Theorem 3.7, then we obtain for
X=10,o0rc

() X ={a=(a): T k" a] < o),

(i) (A"0) = {a=(ap)sup, k" |ay| < o0 ),

(iii) (A, (X)" ={a=(ak):zk k|| < oo}-

Corollary 3.10. [fwe take v=(k™) in Theorem 3.7, then we obtain

(i) (AT ()" = (AT () = (AT (c, )" =1,

(i) (AT (L))" = (AT ()™ = (AT (c,)™ =1,.
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4. Inclusions theorems

In this section we give inclusion relation of these spaces. Firstly, we note that A" (X)
and A"(X) overlap but neither one contains the other, for X =/¢_,c and ¢,. For
example, we choose, x=(k") and v=(k), then xeA"({,), but x ¢A’ ({,),
conversely if we choose x=(k""') and v=(k"') then x ¢A™(/,), but

x eA)(l,).

Theorem 4.1.

(i) A" (X) © A™Y(X) and the inclusion is strict, for X = (¢ and ¢,
(i) Al(cy) < A} (c) © A} (L) and the inclusion is strict.

Proof.

(i)  We give the proof for X =7 only. Let x €A” (¢,). Since

m+1 m m
‘A X Vi ‘ < ‘A X Vi = AT X Vi

m m
< ‘A xkvk‘“L‘A X1Vl

we obtain xeA’;”1 (¢,). This inclusion is strict since the sequence x= (k")

belongs to A™*! (7)), but does not belong to A” (¢,,), where v = (k).
(i)  Proofis trivial.

Theorem 4.2. Let u = (u;,) and v=(v;) be any fixed sequences of nonzero complex
numbers, then

G I supkk""v,;1 uk‘<oo, then A"(0,)c A" (0,),
(i) If k”"v,:l uk‘ — ((k > ®), for some l, then A} (c) < A (c),

(iii) If k™

vi! uk‘—>0(k—>00), then A" (cy) < A" (co).

Proof.

(i)  sup, k" ‘ v uk‘ < oo and assume that x € A7 (). Since
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a7 o] =A@, ()] =

S (’"i_ l] INCTRTN
i=0

im—-1
= Z( ; j H(k"‘i)m“’/ji”kﬂ'
=0

i=

A

e+ Ve |

(k +i+ 1)7’" | Viewirl Xk+i+l | ]

- m | —1
+ (k+i+1) ‘ Vietil Uesivl

we obtain xe A’ (/). Ifwetake v=(1,1,---)and v=(1,1,---) in Theorem
4.2, then we have the corollaries, respectively.

Corollary 4 3.

(i) If sup k| vy | < o, then A" (1) < AT (L),
(i) If km|vk| — (k> ®), forsome (, then A"(c) c A} (¢),
(iii) If k" |vi| > 0 (k—>w), then A" (cy) = A" (cy).

Corollary 4 4.

() If sup, k" ‘v,;l‘ < oo, then A" (£,) c A"((,),
(ii) Ifkm‘v,zl‘ — (k> ®), for some {, then A} (c¢) = A" (c),

(i) If k" ‘ v,;l‘ 50 (k> ), then A" (c;) < A"(cy).
If we take x = (k™) in [3], then we obtain the following sequence spaces.

i) Ve = {v=(v)sup, k" v, | <o},

i) vo=A{v=W,): k" |v,| > (k—>o}, for some ¢},
i)  vo={v=): k" [v | >0(k—>o0)},

i i ={v=(y)sup, k7 v | < o},

iy v'={v=():k™|v;'| > ¢ (k- ), forsome ¢},

iy vl ={v=) k" |v;'| >0k >0)}.

It is trivial that the sequence spaces v, v, and v,are BK-spaces with the norm
|| v || =sup; k" |v, |. The n-duals of these sequence spaces are also readily obtained by

[3], where n=ca, fand y.
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Theorem 4.5. Let X stand for v, v, and vy, then XNnX ' =0.

Proof.  We give the proof for X =v_only. Let vev, N v, and v, # 0 for all £,
then there are constants M,, M, >0 such that k™ |v, | < M, and k™ |v;'| < M, for

all ke N. This implies k*" < M, M, for all k, a contradiction, since m >1.

Theorem 4.6. ¢ N A" (c)

ly A (co)-

Proof. Let xel, nA"(c). Then xe/, and A" x,v, — A" x, vy

> ((k—>o), A" 'xv, =A%, v =+ &, (6, >0,k —>o0). This implies that

n
_ 1l am-1 —1 Am—1 -1
l=n"A"xv,—n A" x,,v,q +1n zgk.
k=1

Thisyields # =0 and x e ¢, N A7 (c).

References

1. R. Colak, On Some Generalized Sequence Spaces, Commun. Fac. Sci. Univ. Ank. Series A,
38 (1989), 35-46.

2. R. Colak, On Invariant Sequence Spaces, Erciyes Univ. Journal of Sci. 5 (1989), 881-887.

3. R. Colak, P.D. Srivastava and S. Nanda, On Certain Sequence Spaces and Their Kothe
Toeplitz Duals, Rendiconti di Mat. 13 (1993), 27-39.

4. M. Et and R. Colak, On Some Generalized Difference Sequence Spaces, Soochow Journal of
Mathematics 21 (1995), 377-386.

5. H. Kizmaz, On Certain Sequence Spaces, Canad. Math. Bull. 24 (1981), 169-176.

6. P.K. Kampthan and M. Gupta, Sequence Spaces and Series, Marcel Dekker Inc. New York,
1981.

7. LJ. Maddox, Elements of Functional Analysis, Cambridge Univ. Press, 1970.

Keywords and phrases: difference sequence spaces, Kothe-Toeplitz dual.

1991 Mathematics Subject Classification: 40A05, 40C05, 46A45.



