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Abstract: In this paper, we consider the third order nonlinear delay dynamic equations

(a(t){[r(t)x∆(t)]∆}γ)∆ + f(t, x(τ(t))) = 0,

on a time scale T, where γ > 0 is a quotient of odd positive integers, a and r are positive

rd-continuous functions on T, and the so-called delay function τ : T → T satisfies τ(t) ≤ t,

and τ(t) → ∞ as t → ∞, f ∈ C(T × R,R) is assumed to satisfy uf(t, u) > 0, for u 6= 0

and there exists a positive rd-continuous function p on T such that f(t, u)/uγ ≥ p(t), for

u 6= 0. Our results are different and complement the results established by Hassan in Math.

Comput. Model., 2009. Some examples are considered to illustrate the main results.
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1 Introduction

A time scale T is an arbitrary closed subset of the reals, and the cases when this time scale is
equal to the reals or to the integers represent the classical theories of differential and of difference
equations. Many other interesting time scales exist, and they give rise to plenty of applications,
among them the study of population dynamic models which are discrete in season (and may follow
a difference scheme with variable step-size or often modeled by continuous dynamic systems), die
out, say in winter, while their eggs are incubating or dormant, and then in season again, hatching
gives rise to a nonoverlapping population. Not only does the new theory of the so-called ” dynamic
equations ” unify the theories of differential equations and difference equations, but also extends
these classical cases to cases ” in between ”, e.g., to the so-called q−difference equations when
T = qN0 = {qt : t ∈ N0 for q > 1} (which has important applications in quantum theory) and
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Natural Science Foundation of China (60774004, 60904024), China Postdoctoral Science Foundation funded
project (20080441126, 200902564), Shandong Postdoctoral funded project (200802018) and supported by
the Natural Science Foundation of Shandong (Y2008A28, ZR2009AL003), also supported by University of
Jinan Research Funds for Doctors (B0621, XBS0843).
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can be applied on different types of time scales like T = hN,T = N2 and T = Tn the space of the
harmonic numbers.

The theory of time scales, which has recently received a lot of attention, was introduced by
Hilger in his Ph.D. Thesis in 1988 in order to unify continuous and discrete analysis (see Hilger
[1]). Several authors have expounded on various aspects of this new theory; see the survey paper
by Agarwal et al. [2] and references cited therein. A book on the subject of time scales, by Bohner
and Peterson [3] summarizes and organizes much of the time scale calculus. We refer also to the
last book by Bohner and Peterson [4] for advances in dynamic equation on time scales. For the
notations used below we refer to the next section that provides some basic facts on time scales
extracted from Bohner and Peterson [3].

In recent years, there has been much research activity concerning the oscillation and nonoscil-
lation of solutions of various second order dynamic equations on time scales (we refer the reader
to the articles[5–19]).

To the best of our knowledge, there is very little known about the oscillatory behavior of third
order dynamic equations. Erbe et al. [20–22] considered the third order dynamic equations

(a(t)[r(t)x∆(t)]∆)∆ + p(t)f(x(t)) = 0,

x∆∆∆(t) + p(t)x(t) = 0,

and
(a(t){[r(t)x∆(t)]∆}γ)∆ + f(t, x(t)) = 0,

respectively and established some sufficient conditions for oscillation.
Recently, Hassan [23] considered the third order delay dynamic equations

(a(t){[r(t)x∆(t)]∆}γ)∆ + f(t, x(τ(t))) = 0, (1.1)

on a time scale T, where γ ≥ 1 is a quotient of odd positive integers, a and r are positive rd-
continuous functions on T, and the so-called delay function τ : T→ T satisfies τ(t) ≤ t, τ∆(t) ≥ 0,
for t ∈ T and τ(t) → ∞ as t → ∞, f ∈ C(T × R,R) is assumed to satisfy uf(t, u) > 0, for
u 6= 0 and there exists a positive rd-continuous function p on T such that f(t, u)/uγ ≥ p(t), for
u 6= 0. The author established some sufficient conditions for oscillation of (1.1), when the condition
τ(σ(t)) = σ(τ(t)) holds.

The restriction τ(σ(t)) = σ(τ(t)) depends on time scale, so by suitable choosing for τ(t), we
can find that, for example, in general, we can choose τ = ρk, k ∈ Z+, where ρ is the backward
jump operator, for any isolated time scale.

This paper considers Eq.(1.1) where γ > 0 is a quotient of odd positive integers, a and r are
positive rd-continuous functions on T, and the so-called delay function τ : T→ T satisfies τ(t) ≤ t,
and τ(t) →∞ as t →∞, f ∈ C(T× R,R) is assumed to satisfy uf(t, u) > 0, for u 6= 0 and there
exists a positive rd-continuous function p on T such that f(t, u)/uγ ≥ p(t), for u 6= 0.

As we are interested in oscillatory behavior, we assume throughout this paper that the given
time scale T is unbounded above. We assume t0 ∈ T and it is convenient to assume t0 > 0. We
define the time scale interval of the form [t0,∞)T by [t0,∞)T = [t0,∞)∩T. A solution x(t) is said
to be oscillatory if it is neither eventually positive nor eventually negative, otherwise it is called
nonoscillatory.

We establish new oscillation criteria that can be applied on any time scale T and we complement
the results in [23].

2 Main Results

In this section we give some new oscillation criteria for (1.1). Throughout this paper, we let

d+(t) := max{0, d(t)}, d−(t) := max{0,−d(t)},
and

β(t) := b(t), 0 < γ ≤ 1; β(t) := bγ(t), γ > 1, b(t) =
t

σ(t)
, δ(t, T1) :=

∫ t

T1

∆s

a
1
γ (s)

.
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In order to prove our main results, we will use the formula

((x(t))γ)∆ = γ

∫ 1

0

[hxσ + (1− h)x]γ−1
x∆(t)dh, (2.1)

where x(t) is delta differentiable and eventually positive or eventually negative, which is a simple
consequence of Keller’s chain rule (see Bohner and Peterson [3, Theorem 1.90 ]). Also, we need
the following lemmas which will play an important role in the proof of main results.

Lemma 2.1 [23, Lemma 2.1] Assume that
∫ ∞

t0

∆t

a
1
γ (t)

= ∞,

∫ ∞

t0

∆t

r(t)
= ∞, (2.2)

and ∫ ∞

t0

1
r(t)

∫ ∞

t

[
1

a(s)

∫ ∞

s

p(u)∆u

] 1
γ

∆s∆t = ∞. (2.3)

Furthermore, suppose that (1.1) has a positive solution x on [t0,∞)T. Then there exists a T ∈
[t0,∞)T, sufficiently large, so that

(a(t){[r(t)x∆(t)]∆}γ)∆ < 0, (r(t)x∆(t))∆ > 0, t ∈ [T,∞)T,

and either x∆(t) > 0 on [T,∞)T or limt→∞ x(t) = 0.

Lemma 2.2 [23, Lemma 2.2] Assume that x is a positive solution of Eq. (1.1) such that

(r(t)x∆(t))∆ > 0, x∆(t) > 0,

on [t∗,∞)T, t∗ ≥ t0. Then

x∆(t) ≥ δ(t, t∗)
r(t)

a
1
γ (t)(r(t)x∆(t))∆.

Lemma 2.3 Assume that x is a positive solution of Eq. (1.1) such that

(r(t)x∆(t))∆ > 0, x∆(t) > 0,

on [t∗,∞)T, t∗ ≥ t0. Furthermore, r∆(t) ≤ 0,

∫ ∞

t0

p(t)τγ(t)∆t = ∞. (2.4)

Then there exists a T ∈ [t∗,∞)T, sufficiently large, so that

x(t) > tx∆(t),

x(t)/t is strictly decreasing, t ∈ [T,∞)T.

Proof. In view of

(r(t)x∆(t))∆ = r∆(t)x∆(t) + rσ(t)x∆∆(t) > 0,

so we have x∆∆(t) > 0, t ∈ [t∗,∞)T. Let

U(t) := x(t)− tx∆(t).

Hence, U∆(t) = −σ(t)x∆∆(t) < 0. We claim there exists a t1 ∈ [t∗,∞)T such that U(t) >
0, x(τ(t)) > 0 on [t1,∞)T. Assume not. Then U(t) < 0 on [t1,∞)T. Therefore,

(
x(t)

t
)∆ =

tx∆(t)− x(t)
tσ(t)

= − U(t)
tσ(t)

> 0, t ∈ [t1,∞)T, (2.5)
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which implies that x(t)/t is strictly increasing on [t1,∞)T. Pick t2 ∈ [t1,∞)T so that τ(t) ≥ τ(t1),
for t ≥ t2. Then

x(τ(t))
τ(t)

≥ x(τ(t1))
τ(t1)

:= d > 0,

so that x(τ(t)) ≥ dτ(t), for t ≥ t2. By (1.1) we have

(a(t){[r(t)x∆(t)]∆}γ)∆ ≤ −p(t)xγ(τ(t)) < 0, t ≥ t2. (2.6)

Now by integrating both sides of (2.6) from t2 to t, we have

a(t){[r(t)x∆(t)]∆}γ − a(t2){[r(t2)x∆(t2)]∆}γ +
∫ t

t2

p(s)xγ(τ(s))∆s ≤ 0.

This implies that

a(t2){[r(t2)x∆(t2)]∆}γ ≥
∫ t

t2

p(s)xγ(τ(s))∆s ≥ dγ

∫ t

t2

p(s)τγ(s)∆s,

which contradicts (2.4). So U(t) > 0 on t ∈ [t1,∞)T and consequently,

(
x(t)

t
)∆ =

tx∆(t)− x(t)
tσ(t)

= − U(t)
tσ(t)

< 0, t ∈ [t1,∞)T, (2.7)

and we have that x(t)/t is strictly decreasing on t ∈ [t1,∞)T. The proof is complete.

Theorem 2.1 Assume that (2.2), (2.3) and (2.4) hold. r∆(t) ≤ 0. Furthermore, assume that
there exists a positive function α ∈ C1

rd([t0,∞)T,R), for all sufficiently large T1 ∈ [t0,∞)T, there
is a T > T1 such that

lim sup
t→∞

∫ t

T

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s = ∞. (2.8)

Then every solution of Eq. (1.1) is either oscillatory or tends to zero.

Proof. Assume (1.1) has a nonoscillatory solution x on [t0,∞)T. We may assume without loss
of generality that x(t) > 0 and x(τ(t)) > 0 for all t ∈ [t1,∞)T, t1 ∈ [t0,∞)T. We shall consider
only this case, since the proof when x(t) is eventually negative is similar. Therefore from Lemma
2.1, we get

(a(t){[r(t)x∆(t)]∆}γ)∆ < 0, (r(t)x∆(t))∆ > 0, t ∈ [t1,∞)T,

and either x∆(t) > 0 for t ≥ t2 ≥ t1 or limt→∞ x(t) = 0. Let x∆(t) > 0 on [t2,∞)T. Consider the
generalized Riccati substitution

ω(t) = α(t)
a(t){[r(t)x∆(t)]∆}γ

xγ(t)
. (2.9)

By the product rule and then the quotient rule

ω∆(t) = α∆(t)
a(t){[r(t)x∆(t)]∆}γ

xγ(t)
+ ασ(t)[

a(t){[r(t)x∆(t)]∆}γ

xγ(t)
]∆

= α∆(t)
a(t){[r(t)x∆(t)]∆}γ

xγ(t)
+ ασ(t)

(a(t){[r(t)x∆(t)]∆}γ)∆

xγσ(t)
− ασ(t)

a(t){[r(t)x∆(t)]∆}γ(xγ(t))∆

xγ(t)xγσ(t)
.

From (1.1) and the definition of ω(t) and using the fact x(t)/t is strictly decreasing, t ∈ [t3,∞)T, t3 ≥
t2, we have that

ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− ασ(t)
a(t){[r(t)x∆(t)]∆}γ(xγ(t))∆

xγ(t)xγσ(t)
. (2.10)
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If 0 < γ ≤ 1, by (2.1), we have

(xγ(t))∆ ≥ γ(xσ(t))γ−1x∆(t),

in view of (2.10), Lemma 2.2 and Lemma 2.3, we have

ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− γασ(t)
a(t){[r(t)x∆(t)]∆}γx(t)x∆(t)

xγ+1(t)xσ(t)

≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− γασ(t)
t

σ(t)
δ(t, t∗)
r(t)

w
γ+1

γ (t)

α
γ+1

γ (t)
. (2.11)

If γ > 1, also by (2.1), we have

(xγ(t))∆ ≥ γ(x(t))γ−1x∆(t),

in view of (2.10), Lemma 2.2 and Lemma 2.3, we have

ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− γασ(t)
a(t){[r(t)x∆(t)]∆}γxγ(t)x∆(t)

xγ+1(t)xγσ(t)

≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
α∆(t)
α(t)

ω(t)− γασ(t)(
t

σ(t)
)γ δ(t, t∗)

r(t)
w

γ+1
γ (t)

α
γ+1

γ (t)
. (2.12)

By (2.11), (2.12) and the definition of b and β, we have, for γ > 0,

ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
(α∆(t))+

α(t)
ω(t)− γασ(t)β(t)

δ(t, t∗)
r(t)

wλ(t)
αλ(t)

, (2.13)

where λ := (γ + 1)/γ. Define A ≥ 0 and B ≥ 0 by

Aλ := γασ(t)β(t)
δ(t, t∗)
r(t)

wλ(t)
αλ(t)

, Bλ−1 :=
(α∆(t))+r

1
λ (t)

λ(γβ(t)ασ(t)δ(t, t∗))
1
λ

.

Then using the inequality [24]
λABλ−1 −Aλ ≤ (λ− 1)Bλ, (2.14)

which yields

(α∆(t))+
α(t)

ω(t)− γασ(t)β(t)
δ(t, t∗)
r(t)

wλ(t)
αλ(t)

≤ rγ(t)((α∆(t))+)γ+1

(γ + 1)γ+1(β(t)ασ(t)δ(s, t∗))γ
.

From this last inequality and (2.13), we find

ω∆(t) ≤ −ασ(t)p(t)(
τ(t)
σ(t)

)γ +
rγ(t)((α∆(t))+)γ+1

(γ + 1)γ+1(β(t)ασ(t)δ(s, t∗))γ
.

Integrating both sides from t3 to t, we get
∫ t

t3

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, t∗))γ

]
∆s ≤ ω(t3)− ω(t) ≤ ω(t3),

which contradicts assumption (2.8). This contradiction completes the proof.

Remark 2.1 From Theorem 2.1, we can obtain different conditions for oscillation of Eq. (1.1)
with different choices of α(t).

Remark 2.2 The conclusion of Theorem 2.1 remains intact if assumption (2.8) is replaced by
the two conditions

lim sup
t→∞

∫ t

T

ασ(s)p(s)(
τ(s)
σ(s)

)γ∆s = ∞,

lim inf
t→∞

∫ t

T

rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ
∆s < ∞.
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Corollary 2.1 Assume that (2.2), (2.3) and (2.4) hold. r∆(t) ≤ 0. Furthermore, suppose that
there exist functions H, h ∈ Crd(D,R), where D ≡ {(t, s) : t ≥ s ≥ t0} such that

H(t, t) = 0, t ≥ t0, H(t, s) > 0, t > s ≥ t0,

and H has a nonpositive continuous ∆−partial derivative H∆s(t, s) with respect to the second
variable and satisfies

H∆s(σ(t), s) + H(σ(t), σ(s))
α∆(s)
α(s)

= −h(t, s)
α(s)

H(σ(t), σ(s))
γ

γ+1 ,

and for all sufficiently large T1 ∈ [t0,∞)T, there is a T > T1 such that

lim sup
t→∞

1
H(σ(t), T )

∫ σ(t)

T

K(t, s)∆s = ∞, (2.15)

where α is a positive ∆−differentiable function and

K(t, s) = H(σ(t), σ(s))ασ(s)p(s)(
τ(s)
σ(s)

)γ − rγ(s)(h−(t, s))γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ
.

Then every solution of Eq. (1.1) is either oscillatory or tends to zero.

Remark 2.3 The conclusion of Corollary 2.1 remains intact if assumption (2.15) is replaced
by the two conditions

lim sup
t→∞

1
H(σ(t), T )

∫ σ(t)

T

H(σ(t), σ(s))ασ(s)p(s)(
τ(s)
σ(s)

)γ∆s = ∞,

lim inf
t→∞

1
H(σ(t), T )

∫ σ(t)

T

rγ(s)(h−(t, s))γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ
∆s < ∞.

Remark 2.4 Define ω as (2.9), we also get

ω∆(t) = (
α(t)
xγ(t)

)∆(a(t){[r(t)x∆(t)]∆}γ)σ +
α(t)
xγ(t)

(a(t){[r(t)x∆(t)]∆}γ)∆,

similar to the proofs of Theorem 2.1, we can obtain different results. We leave the details to the
reader.

3 Applications and Examples

In this section, we give some examples to illustrate our main results.
Example 3.1 Consider the third order delay dynamic equation

x∆∆∆(t) +
β

tτ(t)
x(τ(t)) = 0, t ∈ [t0,∞)T, (3.1)

where β is a positive constant. We have

a(t) = r(t) = 1, p(t) =
β

tτ(t)
, t ∈ [t0,∞)T.

It is clear that condition (2.2), (2.3) and (2.4) hold. Therefore, by Theorem 2.1, pick α(t) = t, we
have

lim sup
t→∞

∫ t

T

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s

= lim sup
t→∞

∫ t

T

[
β

s
− 1

(γ + 1)γ+1(s(s− T1))

]
∆s = ∞.
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Hence, every solution of Eq. (3.1) is oscillatory or tends to zero if β > 0.

Example 3.2 Consider the third order delay dynamic equation

(
tγ(x∆∆(t))γ

)∆
+

β

tτγ(t)
xγ(τ(t)) = 0, t ∈ [t0,∞)T, (3.2)

where β is a positive constant, γ > 0. We have

a(t) = tγ , r(t) = 1, p(t) =
β

tτγ(t)
, t ∈ [t0,∞)T.

The condition (2.2), (2.3) and (2.4) hold (similar to [23, Example 2.1]). Thus, we assume T is a
time scale satisfying σ(t) ≤ kt, for some k > 0, t ≥ Tk > t∗.

When γ ≥ 1, by Theorem 2.1, pick α(t) = tγ , by (2.1), we have that α∆(t)(tγ)∆ ≤ γσγ−1(t).
Therefore

lim sup
t→∞

∫ t

Tk

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s

≥ lim sup
t→∞

∫ t

Tk

[
β

s
− (

γ

γ + 1
)γ+1 kγ2−1

s

]
∆s

≥
(

β − (
γ

γ + 1
)γ+1kγ2−1

)
lim sup

t→∞

∫ t

Tk

∆s

s
= ∞,

if β > (γ/(γ + 1))γ+1kγ2−1.

When 0 < γ < 1, pick α(t) = t, by Theorem 2.1, we have that

lim sup
t→∞

∫ t

Tk

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s

≥ lim sup
t→∞

∫ t

Tk

[
β

kγ−1sγ
− 1

(γ + 1)γ+1sγ

]
∆s

≥
(

β

kγ−1
− 1

(γ + 1)γ+1

)
lim sup

t→∞

∫ t

Tk

∆s

sγ
= ∞,

if β > kγ−1/(γ + 1)γ+1.

Hence, every solution of Eq. (3.2) is oscillatory or tends to zero if

β > (
γ

γ + 1
)γ+1kγ2−1, γ ≥ 1; β >

kγ−1

(γ + 1)γ+1
, 0 < γ < 1.

Example 3.3 Consider the third order delay dynamic equation

(
((

1
t
x∆(t))∆)γ

)∆

+
βσγ(t)
tτγ(t)

xγ(τ(t)) = 0, t ∈ [t0,∞)T, (3.3)

where β is a positive constant, γ > 0. We have

a(t) = 1, r(t) =
1
t
, p(t) =

βσγ(t)
tτγ(t)

, t ∈ [t0,∞)T.

It is clear that condition (2.2), (2.3) and (2.4) hold. Therefore, by Theorem 2.1, pick α(t) = 1, we
have

lim sup
t→∞

∫ t

T

[
ασ(s)p(s)(

τ(s)
σ(s)

)γ − rγ(s)((α∆(s))+)γ+1

(γ + 1)γ+1(β(s)ασ(s)δ(s, T1))γ

]
∆s

= lim sup
t→∞

∫ t

T

β

s
∆s = ∞.

Hence, every solution of Eq. (3.3) is oscillatory or tends to zero if β > 0.
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Remark 3.1 In the Eqs. (3.1), (3.2) and (3.3), we don’t need the condition τ(σ(t)) = σ(τ(t)).
Therefore, our results complement and improve the results in [23].
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