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Introduction
First of all, the groups featuring in this paper are finite, no one excepted. We

remind that Φ(G) stands for the Frattini subgroup of the group G, i.e. Φ(G) is
the intersection of all the maximal subgroups of G.

Consider the following problem.

Problem 1.Given a group G. Does there exist a group H containing a normal

subgroup Ḡ isomorphic to G with Ḡ ≤ Φ(H)?

A remarkable step forward concerning Problem 1 was made by
R.B.J.T. Allenby ([1]) who showed that if Problem 1 admits an affirmative answer
for G, then there exists also a group K with G ∼= Φ(K). Therefore it is maybe of
an advantage that one focusses the attention to the eventually equivalent Problem

1’.

Problem 1’. Given a group G. Does there exist a group H with G ∼= Φ(H)?

Due to Allenby’s result the following notation-definition seems appropriate.

G ∈ Φ ⇔ there exists a group U for which G ∼= Φ(U);

G 6∈ Φ ⇔ there does not exist a group U satisfying G ∼= Φ(U).

Problem 1 has a long history; among others the papers [4] and [8] deal with it. In
the last paper it was finally established which of the groups P of order p4, p any

prime, satisfy P ∈ Φ and which of them do satisfy P 6∈ Φ.

This paper is written in the same spirit as in [8]. Up to the groups numbered
16 and 40 in Hall’s list of all the groups of order 32 (see [2] or equivalently [7]), we
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give a conclusive answer to the question as posed in Problem 1, for each one of the
groups of order 32. In order to do so some construction principles around 2-groups

had to be invented; see for instance Theorem 1.4 and Corollary 1.5.

Each of the exceptional groups 32/16 and 32/40 mentioned above satisfies the

following two statements:
(1) it does not occur as isomorphy type of a Frattini subgroup of some 2-group;

and
(2) its inner automorphism group is contained in the Frattini subgroup of its full

automorphism group.

Due to this result it is quite clear that at least one of the following folklore conjectures
must be false in general.

Conjecture 2. A p-group P occurs as Frattini subgroup of some group if and
only if P occurs as Frattini subgroup of some p-group.

Conjecture 3. The converse to Gaschütz’s theorem ([5],III.3.13) holds, i.e. if
Inn(N) ≤ Φ(Aut(N)) for some group N , then there exists a group G with

N ∼= Φ(G).

A word on notations et all. is in order. It will be standard as in [5] or otherwise

self-explanatory. A symbol like 32/17 stands for the group with number 17 in Hall’s
list of all the groups of order 32; see [2] and [7]. Results extracted from the lists
[2] and [7] will be used or quoted freely. The symbol NEG means that N is a
normal subgroup of the group G.

1 Groups of order 32 as Frattini subgroups.

There exist precisely fifty-one isomorphism types of groups of order 32, see [2] and

[7]. For each representative of them, it will be studied whether it will occur as
Frattini subgroup of some group or not. We start with the following easy observation.

Theorem 1.1 Each abelian group A of prime power order satisfies A ∈ Φ.

Proof Suppose A is abelian of order pa, p prime, a ≥ 1. Then
A ∼= Cpi1 × . . .× Cpin for suitable ij ≥ 1. By ([5],III.3.14.a)) it holds that Φ(A) =

{gp | g ∈ A}. Thus from
Φ(Cpi1+1 × . . .× Cpin+1) ∼= Cpi1 × . . .× Cpin the Theorem immediately follows.

By Theorem 1.1 each of the abelian groups of order 32 occurs as Frattini subgroup
of some group. The abelian groups are numbered 32/1, . . . , 32/7; see [2].

Our next theorem has to do with direct products of groups.

Theorem 1.2 Suppose G ∈ Φ. Then G × Cpa ∈ Φ for any prime p and

nonnegative integer a.

Proof. Suppose G ∼= Φ(K) for some group K. Then
Φ(K × Cpa+1) ∼= Φ(K)× Φ(Cpa+1) ∼= G× Cpa proves the assertion.

Corollary 1.3 32/8 ∈ Φ and 32/9 ∈ Φ.
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Proof It is mentioned in [3] and repeated in [8] that D4 × C2 ∈ Φ and that
Q4 × C2 ∈ Φ; here D4 and Q4 stand for the dihedral group and quaternion

group respectively, each of order eight. Since 32/8 ∼= D4 × C2 × C2 and 32/9 ∼=
Q4 ×C2 × C2, the corollary follows from Theorem 1.2.

It may happen that G 6∈ Φ whereas G × C2n ∈ Φ for a suitable n ≥ 1

(G = D4 for instance, with n = 1). This phenomenon can be elucidated by means
of Theorem 1.4 and its Corollary 1.5.

Theorem 1.4 Let K = G oCt be the regular wreath product of a 2-group G with
a cyclic group Ct = 〈δ〉 of order t ≥ 2. Put

B = GGδGδ2
. . . Gδt−1

< K, where [Gδi, Gδj ] = 1 whenever
0 ≤ i < j ≤ t− 1. Now assume t is a power of 2. Put
X = 〈(ggδ . . . gδt−2

gδ
t−1

) | g ∈ G〉. Then XB ′ ∈ Φ.

Proof Let α ∈ K. Then (ggδ . . . gδ
t−2
gδ

t−1
)α ∈ (ggδ . . . gδ

t−2
gδ

t−1
)B ′ ≤ XB ′. So

XB ′ is a normal subgroup of K; note that XB ′ is already a normal subgroup
of B. Furthermore, as t is a power of 2 at least equal to 2, K turns out to be a
2-group satisfying ggδ . . . gδ

t−2
gδ

t−1 ∈ K ′〈k2 | k ∈ K〉 = Φ(K) for g ∈ G. Hence
XB ′ ∈ Φ.

Corollary 1.5 Adopt the hypotheses of Theorem 1.4. Let t = 2. Then X ∼= G and
XB ′ = XG′ with X ∩ G′ = {1}. In particular, if in addition G is nilpotent of
class 2, it follows that XG′ ∼= G×G′ whence that G×G′ ∈ Φ.

As a consequence each of

32/10 : 〈a, b, c | a4 = b2 = c2 = 1, ab = ac = a, bc = a2b〉 × C2

32/11 : 〈a, b, c | a4 = b2 = c2 = 1, ba = bc = b, ac = a3b〉 × C2

32/12 : 〈a, b | a4 = b4 = 1, ab = a−1〉 ×C2

32/13 : 〈a, b | a8 = b2 = 1, ab = a5〉 × C2

is embeddable as Frattini subgroup in a group, since

32/10 ∼= (16/8) × C2, (16/8)′ ∼= C2,
32/11 ∼= (16/9) × C2, (16/9)′ ∼= C2,

32/12 ∼= (16/10) ×C2, (16/10)′ ∼= C2,
32/13 ∼= (16/11) ×C2, (16/11)′ ∼= C2,

We proceed with the following“positive” result.

Theorem 1.6 32/i ∈ Φ for i ∈ {19, 34, 35, 39}.
Proof The proof to Theorem 1.6 is indirect. We were told that each of the groups

32/19 : 〈a, b | a8 = b4 = 1, ab = a5〉
32/34 : 〈a, b, c | a4 = b4 = c2 = 1, ab = a, ac = a−1, bc = b−1〉
32/35 : 〈a, b, c | a4 = b4 = 1, a2 = c2, ab = a, ac = a−1, bc = b−1〉
32/39 : 〈a, b, c | a4 = b4 = c2 = 1, ab = a, ac = a−1, bc = a2b−1〉

does occur as Frattini subgroup of a 2-group; see the Acknowledgement at the end
of this paper.
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Now consider the following general observation.

Theorem 1.7 Let H be a characteristic subgroup of G. Suppose G ∈ Φ. Then

H ∈ Φ and G/H ∈ Φ.

Proof Suppose there exists a group T with G = Φ(T ). Then, as H is characteristic
in G, and as GET , it holds that HET while H ≤ Φ(T ). By [1] it thus
follows that H ∈ Φ. Also, as H ≤ Φ(T ), we see by applying ([5],III.3.4.b)) that

Φ(T/H) = Φ(T )/H = G/H. So G/H ∈ Φ.

As a consequence of the part “G ∈ Φ ⇒ H ∈ Φ” of Theorem 1.7 we have that
none of the groups 32/14, 32/17, 32/36, 32/37, 32/38 belongs to Φ. Namely, focus
the attention on

H = 〈a, bc〉 ∼= 16/10
for 32/14 : 〈a, b | a4 = b2 = 1, ab = a−1〉 × 〈c | c4 = 1〉,

H = 〈c, bd〉 ∼= 16/18
for 32/17 : 〈a, b, c | a8 = b2 = c2 = 1, ab = ac = a, bc = a4b〉,

H = 〈c, bd〉 ∼= 16/10
for 32/36 : 〈< a > × < b > × < c >, d | a2 = b2 = c4 = d2 = 1,

bd = ab, cd = c−1, ad = a〉,
H = 〈c, bd〉 ∼= 16/10

for 32/37 : 〈< a > × < b > × < c >, d | a2 = b2 = c4 = 1,
c2 = d2, bd = ab, cd = c−1, ad = a〉,

H = 〈c, ad〉 ∼= 16/9

for 32/38 : 〈< a > × < b > × < c >, d | a4 = b2 = c2 = d2 = 1,
ad = ab, cd = a2c, bd = b〉.

By the part “G ∈ Φ ⇒ G/H ∈ Φ” of Theorem 1.7 we have that none of the
groups 32/15, 32/18, 32/20, 32/21 belongs to Φ. Namely, apply

H = 〈a2c2〉 for 32/15 : 〈a, b | a4 = 1, a2 = b2, ab = a−1〉 × 〈c | c4 = 1〉 with

(32/15)/H ∼= 16/8;
H = 〈ab2, ac2〉 for 32/18 : 〈a, b, c | a2 = b4 = c4, ab = ac = a, bc = ab〉 with

(32/18)/H ∼= 8/5;

H = 〈b4〉 for 32/20 : 〈a, b, c | a2 = b8 = c2 = 1, ab = ac = a, bc = ab〉 with
(32/20)/H ∼= 16/9; and finally

H = 〈b4〉 for 32/21 : 〈a, b | a4 = b8 = 1, ab = a−1〉 with (32/21)/H ∼= 16/10.

In order to obtain more results of a “negative” nature, we mention

Theorem 1.8 Let P be a p-group of order pn of nilpotency class bigger than
1
2
n. Then P 6∈ Φ.

Proof By [1] the statement of the theorem is equivalent to a result obtained by Hill
and Parker; see ([3], Theorem 1).

The nilpotency class of the eighteen groups 32/23, 32/24, . . . , 32/32,

32/44, 32/45, . . . , 32/51 is at least three; see [2]. So Theorem 1.8 reveals that none
of these groups can occur as Frattini subgroup of a group.
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It was shown in [6] that the following is true.

Theorem 1.9 (paraphrased; see ([6], Theorem 1.1)). A non-abelian p-group with

cyclic center can be embedded in a group as its Frattini subgroup if and only if it
is either an extraspecial 2-group of order at least 128 or the central product of a
cyclic group C of order at least 4 and an extraspecial group E of order at least
32 with Ω1(C) and Z(E) amalgamated.

Corollary 1.10 32/22 6∈ Φ, 32/42 6∈ Φ, 32/43 6∈ Φ.

Proof Each of the groups 32/22, 32/42 and 32/43 has a cyclic center; now apply
Theorem 1.9.

We now have almost reached the end of our journey, but some tough obstacles

are on our way yet. First, we recall Gaschütz’s theorem.

Theorem 1.11 ([5],III.3.13). Let G be a group and NEG. Suppose N ≤ Φ(G).
Then the inner automorphism group of N is contained in the Frattini subgroup of
the full automorphism group of N .

We will omit the proof of fact that 32/33 6∈ Φ. Namely,
Inn (32/33) 6≤ Φ(Aut(32/33)) holds, so that Theorem 1.11 yields indeed 32/33 6∈ Φ.
We leave the (rather technical) proof of
Inn (32/33) 6≤ Φ(Aut(32/33)) to the reader.

The following theorem will help us to provide a comparatively easy proof of the

fact that 32/41 6∈ Φ.

Theorem 1.12 Suppose P is a normal Sylow p-subgroup of G. Then Φ(P ) =
Φ(G) ∩ P ; or otherwise said, Φ(P ) is the (unique and normal) Sylow p-subgroup
of Φ(G).

Proof See ([8], Lemma 5).

Corollary 1.13 32/41 6∈ Φ

Proof Put G = 32/41. It holds by inspection that #Aut(G) = 192, that
Aut(G) contains an elementary abelian normal subgroup T of order 64 where each
t ∈ T operates on G in such a way that

gtΦ(Aut(G)) = gΦ(Aut(G)) whenever g ∈ G. Hence by Theorem 1.12,
Φ(T ) = Φ(Aut(G))∩T . Now Φ(T ) = 〈t2 | t ∈ T 〉; by ([5],II.3.14.b)). Thus Φ(T ) =
{1}. Therefore #Φ(Aut(G)) ≤ 192

64
= 3. However, #Inn(G) = #G/Z(G) = 8.

Hence Inn(G) is not contained in Φ(Aut(G)). Therefore, 32/41 6∈ Φ by Theorem

1.11 and [1].

Thus “only” the groups 32/16 and 32/40 are left to investigate. For P ∈
{32/16, 32/40} it can be verified by inspection that Inn(P ) is contained in
Φ(Aut(P )).

On the other hand we will next prove the Theorems 1.14 and 1.15. Despite
several strenuous efforts over long a period of time to improve those results, we were
not able to show that P 6∈ Φ, nor to disprove that.
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Theorem 1.14 Let P be isomorphic to the group 32/16. Then there does not
exist a 2-group G satisfying P = Φ(G).

Proof Define P = 〈a, b, c | a4 = b4 = c2 = 1, ab = a, ac = a, bc = a2b〉. We have
P ′ = 〈a2〉, Φ(P ) = 〈a2, b2〉 and Z(P ) = 〈a, b2〉. Suppose on the contrary that a
finite 2-group G exists satisfying P = Φ(G). Consider the fact that G/CG(P ) can
be regarded as subgroup of Aut(P ). From [2] we borrow that |J | = 26, where

J := {α ∈ Aut(P ) | gαΦ(P ) = gΦ(P ) for all g ∈ P}. It is easily seen that
J consists precisely of the 26 maps t


a 7→ a(b2)δ(a2)ε

b 7→ b(b2)ρ(a2)ψ with δ, ε, ρ, ψ, σ, τ ∈ {0, 1},
c 7→ c(b2)σ(a2)τ

whence that J is an elementary abelian normal subgroup of Aut(P ). From [2] we

also extract that |Aut(P )/J | = 4. Observe that the set {1, ξ1, ξ2, ξ3} provides a
full set of representatives of the cosets of J in Aut(P ), where

ξ1 :


a→ a

b→ ba
c→ c

; ξ2 :


a→ a

b→ bc
c→ cb2

; ξ3 :


a→ a

b→ bac
c→ cb2

.

Consider (ξit)
2 with i ∈ {1, 2, 3}. Now P = Φ(G) = 〈g2 | g ∈ G〉. Therefore,

under the assumption that ξit corresponds to an element of G \ CG(P ) for
i ∈ {1, 2, 3} it follows that

(ξ1t)
2 :


a→ a
b→ ba2(a2)ε+ρ

c→ c(a2)σ
; (ξ2t)

2 :


a→ a
b→ b(a2)ρ+τ

c→ c
;

(ξ3t)
2 :


a→ a
b→ ba2(a2)ε+τ

c→ c

.

As to the action of (ξ2t)
2 and (ξ3t)

2 it is used that {b, ba2} constitute a full

class of conjugates of P , whereas for (ξ1t)
2 and (ξ2t)

2 it is used that a ∈ Z(P ).
Thus we observe that c(ξit)

2
= c when i ∈ {2, 3}. Regard ξ1t as an element

of G \ CG(P ). Thus (ξ1t)
2 = bicjz for suitable i, j ∈ Z and z ∈ Z(P ).

Hence, as a ∈ Z(P ), bicjz = (ξ1t)
2 = ((ξ1t)

2)(ξ1t) = (bicjz)(ξ1t) = (biaicjzξ1)t ∈
biaicjzξ1t〈a2, b2〉. Since zξ1t ∈ z〈a2, b2〉 (remember Z(P ) = 〈a, b2〉 en Φ(P ) =
〈a2, b2〉 are characteristic subgroups of P ), we conclude that ai ∈ 〈a2, b2〉, that is,
i is even. Thus (ξ1t)

2 = cru for suitable r ∈ Z and u ∈ Z(P ), i.e. c(ξ1t)
2

= c.

Therefore, cg
2

= c for all g ∈ G. As cb = ca2, we have found a contradiction to
the assumption P = Φ(G) = 〈g2 | g ∈ G〉.

The proof of the theorem is complete.


