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Abstract

In this article, the subplane covered nets are completely classified as pseudo
regulus nets.

1 Introduction.

In the sixties, T.G. Ostrom([10],[11]) conceived the notion of a derivable affine plane.
These are affine planes of order q2 which admit a set B of affine Baer subplanes which
have the same set D of infinite points and which have the property that for every

pair of distinct affine points whose line join belongs to a parallel class of D then
there is a Baer subplane of B which contains these two points. Ostrom showed that
an affine plane may be constructed by removing the lines whose parallel classes are
in D and replacing these by the set B of Baer subplanes. The constructed plane is

called the derived plane.
More generally, it is a natural question to ask of the nature of the net which

contains the Baer subplanes of a derivable affine plane, and to ask if a net with such
properties may always be extended to an affine plane. Futhermore, it is possible to

consider infinite derivable affine planes and infinite derivable nets.
Most early attempts to determine the structure of a derivable affine plane were

made by trying to show that, for every affine plane, there is a coordinate structure
Q which is a right two dimensional vector space over a field F isomorphic to GF (q)

while the set D becomes coordinatized by GF (q) ∪ (∞)(PG(1, q)) (see the defini-
tion of pseudo — regulus net). These studies contrast with the ideas of Cofman [3]
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who associates an affine space with any derivable net minus a given parallel class.
Recently, using Cofman’s basic ideas, I was able to completely determine the struc-

ture of a derivable net (see [6], [7] and for a more complete history of the problems
involved with derivation, the reader is referred to [8]).

Theorem 1.1 (Johnson [6]).
(1) Let R = (P, L, C, B, I) be a derivable net. Then there exists a 3-

dimensional projective space
∑ ∼= PG(3, K) where K is a skewfield such

that the points in P of R are the lines of
∑

which are skew to a fixed line

N , the lines in L of R are the points of
∑−N , the parallel classes in C of

R are the planes of
∑

which contain N and the subplanes in B of R are
the planes of

∑
which do not contain N.

(2) Conversely, if
∑

1
∼= PG(3, K1) is a 3-dimensional projective space

over the skewfield K1 and N1 is any fixed line, define points P1, lines L1,
parallel classes C1, subplanes B1 to agree with the correspondence above
with respect to

∑
1 and the fixed line N1 where incidence I1 is relative

incidence in
∑

1. Then R1 = (P1, L1, C1, B1, I1) is a derivable net.

To generalize these concepts further, the term “Baer subplane” may be replaced

by the term “subplane”. That is, a net is said to be a subplane covered net if
and only if for each pair of distinct points which are collinear, there is a subplane
which contains the two points and whose infinite points are the infinite points of the
net.

When R.H. Bruck [2] proved his extension and uniqueness theorems on finite
nets, the emphasis was on ideas of R.C. Bose on graph nets and more generally
on partial geometries(see [1] e.g.). More recently, Thas and De Clerck [12] studied
partial geometries which satisy the axiom of Pasch and completely determined such

structures. For example, the result for finite nets is:

Theorem 1.2 (Thas and De Clerck [12])

Let S be a dual net of order s+2 and degree t+1(t+1 > s). If S satisfies
the axion of Pasch, then S is isomorphic to Hn

q (q − 1 = s, t + 1 = qn−1).

Here Hn
q is the set of points of the projective space PG(n, q) which are not

contained in a fixed subspace PG(n − 2, q)(n ≥ 3), and lines of PG(n, q) which do
not have a point in common with PG(n − 2, q).

Very recently, De Clerck and the author combined certain of these ideas and

showed that finite subplane covered nets are regulus nets:

Theorem 1.3 ( De Clerck and Johnson [4]).

Let R be a finite subplane covered net. Then there is a finite projective
space

∑ ∼= PG(2n − 1, q) such that the lines of the net are translates of
a (n − 1)-regulus where the net is of order qn and degree q + 1; a finite
subplane covered net is a regulus net.

The remaining questions now involve arbitrary subplane covered nets. Since the
work of Cofman and subsequent work on derivable nets by the author does not
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use finiteness, but the work of Thas and De Clerck and De Clerck and Johnson on
partial and semi-partial geometries does use finiteness, is it possible to determine the

structure of arbitrary subplane covered nets using similar combinations of methods?

Note that a (n − 1)-regulus in PG(2n − 1, q) may be realized as a net of order

qn and degree q + 1 which may be coordinatized by a field isomorphic to GF (q).
In the general case, given a projective space

∑ ∼= PG(V, K) where V is a (right)
vector space over a skew field K, a pseudo-regulus net is a net which may be
coordinatized by K in a manner which will be made precise later.

Is every subplane covered net a pseudo-regulus net?

In [9], K.S. Lin and the author showed that every net whose dual may be embed-
ded in a projective space is a pseudo-regulus net. More precisely, it is also shown
that given any projective space

∑
of dimension ≥ 2 and any codimension 2 subspace

N , the structure of “points”,and “lines” as the lines of
∑

skew to N and points of∑−N respectively forms a pseudo-regulus net.

In this article, we are able to completely determine the structure of any subplane
covered net. The arguments used involve certain ideas of Cofman and of Thas and
De Clerck but do not use finiteness. Recall a Baer subplane in an arbitrary net is

a subplane such that every point lies on a line of the net and every line contains a
point of the subplane(in the projective setting). The main obstacle in considering the
problem in the infinite case involves finding a suitable replacement for the point/line
properties of a Baer subplane. This obstacle may be overcome once it is realized that

within any subplane covered net, there is always a derivable subnet within which
the subplanes are Baer(see section 2).

Our main result classifies all subplane covered nets in terms of a projective space
as in Thm.(1.1) but see Thm.(3.11) for the complete statement. A corollary to this
result is the generalization of the result of De Clerck and Johnson:

Theorem 1.4 If N is a subplane covered net then N is a pseudo-regulus
net.

Note that a finite pseudo-regulus net is a regulus net, a derivable net is a subplane
covered net, and a net whose dual satisfies the axiom of Pasch is a finite subplane
covered net, so that the previously known results may be obtained as corollaries to
the above theorem.

2 Derivable subnets.

In this section, it is shown that every subplane covered net contains a derivable

subnet such that the subplanes contained in the subnet are Baer when restricted
to this net. Most of the ideas necessary for the proofs were obtained by trying to
generalize the techniques of Cofman [3], and consequently of Johnson [6], and of
Thas and De Clerck [12] to the infinite case and the diligent reader can see the

influence that Thas and De Clerck has had on the present work. However, since
Thas and De Clerck study partial geometries satisfying the axiom of Pasch, and the
duals of finite nets are the partial geometries in question, the reader who would like
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to read both papers must dualize our statements to find finite analogues in Thas
and De Clerck. In particular, two key results might be mentioned here.

First the proof of Thas and De Clerck that dual nets satisfying the axiom of

Pasch are regular uses finiteness in an essential way. The regularity condition when
properly interpreted in the language of nets says that once two subplanes share two
lines of a given parallel class then they share all of their lines on this parallel class. In
the arbitrary case, we use a similar argument but one which does not use finiteness

to prove this result(see Thm.(2.2).

Second, recall that a derivable net is a subplane covered net which is covered
by Baer subplanes. Thas and De Clerck define certain substructures which when
dualized become subnets of order q2 and degree q+1 which are covered by subplanes
of order q. Clearly, by counting, it is seen that the subplanes are Baer in the

substructure and the substructure is a derivable net. In the arbitrary order case,
it is still possible to prove that there are analogous structures which we show are
derivable subnets wherein the subplanes are Baer (see Thm.(2.5)).

ASSUMPTIONS: Let R = (P, L, B, C, I) be a subplane covered net where
the sets P , L, B, C, I denotes the sets of points, lines, subplanes, parallel classes,

and incidence respectively. Note it is assumed implicitly that there is more than
one subplane for otherwise any affine plane would be a subplane covered net. Fur-
thermore, occasionally we shall refer to the set of parallel classes C as the set of
infinite points of the net. If P is an affine point and α is a parallel class, P α shall

denote the unique line of α which is incident with P . Also, note that given a pair
of distinct points P , and Q which are collinear in N then there is a subplane πP,Q
which contains P and Q and which has C as its set of infinite points.

Proposition 2.1 The subplane πP,Q is the unique subplane of B which
contains P and Q.

Proof: Let R be any point of the subplane which is not on the line PQ. Then
RP and RQ are lines of distinct parallel classes say α and β respectively. Then
RP = P α and RQ = Q β and R = P α ∩ Q β. Hence, any point of πP,Q which is

not on the line PQ may be obtained as the intersection of the lines in {P δ|δ ε C}
and in {Q ρ|ρ ε C}.

Similarly, any point of PQ may be obtained as the intersection of lines R α and
P β for a particular point R(of intersection as above) for certain α, β in C.

Theorem 2.2 (The Share Two Theorem)

If π1 and π2 are subplanes of B that share two lines of a parallel class
α in C then the subplanes share all of their lines on α.

Proof:

Existence:
First we show that the subplanes have common lines other than the given two.

Let x and y be common lines to π1 and π2 in the parallel class α. Let z1 and z2

be lines of parallel classes β and δ respectively where α, β, δ are mutually distinct
and lines of π1, π2 respectively. Let L1, M1 be z1 ∩ x, z1 ∩ y respectively so that
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π1 = πL1,M1. Similarly, let L2, M2 be z2 ∩ x, z2 ∩ y respectively so that π2 = πL2,M2.
Note that {L1, M1} and {L2, M2} must be disjoint in order that the subplanes π1

and π2 be distinct. Let W = z1 ∩ z2. Note that if T is a point of a subplane π0 then
any line T δ for δ ε C is a line of π0; the lines thru T are lines of π0. So, it follows
that W is a point of the subplanes πL1,L2 and πM1,M2 as, for example, z1 and z2 are
lines thru L1 and L2 and thus lines of the subplane πL1,L2(such subplanes exist since

L1, L2 are collinear with x) and as such, the intersection point W is a point of the
subplane. Note that W α must be distinct from L1α = x and from M1α = y since
π1 and π2 are distinct.

Choose any point U on W α distinct from W and in πL1,L2. Hence, U and L1

and U and L2 are collinear. Choose any line r1 not equal to y thru M1 and intersect

W α in R1. Since W α and r1 then become lines of πM1,M2, it follows that R1 and
M1 and R1 and M2 are collinear. Hence, r1 = R1M1 and there is a line R1M2.

Thus, we have the lines UL1, UL2, R1M1, and R1M2.

Note that at this point, it is not clear that the intersections are affine; various
of the lines could belong to the same parallel class. Extend the notation so that
two parallel lines “intersect” in the infinite point β if and only if they belong to the

parallel class β.

Form UL1 ∩R1M1 = S and UL2 ∩R1M2 = T . We may choose r1 = R1M1 to be

not parallel to UL1 but it is still possible that R1M2 is parallel to UL2.

Let UL1 = L1β1 and UL2 = L2β2 where β1 and β2ε C . A different choice of
r1 produces a different intersection point R1 on W a and all of these intersection
points are collinear with M2 so the lines formed belong to different parallel classes.
Hence, there is at most one line r1 which will produce an intersection point R1 so

that R1M2 is parallel to UL2.

Hence, choose r1 different from y, different from z1, not on β1(i.e. not parallel
to UL1) and distinct from a line(at most one) which produces intersection point R1

such that R1β2 = R1M2. Thus, assume that the degree is ≥ 5. Then the intersection
points S and T where S = UL1 ∩R1M1 and T = UL2 ∩R1M2 are both affine. Note

that U and R1 are collinear ( there are both on W α) and U and R1 are distinct for
otherwise, R1M1 = UM1 and z1 would be lines of πL1,L2 which intersect in M1 so
that M1, L1 and L2 are points of the same subplane which cannot occur if π1 and
π2 are distinct subplanes. So, there is a subplane πU,R1. All of the indicated lines

are lines thru either U or R1 so that the intersection points S and T are in πU,R1.
Furthermore, the point S is in πL1,M1 = π1 as it is the intersection of two lines of
this subplane, and similarly T is a point of πL2,M2 = π2. Hence, ST is a line which

must be common to both subplanes. However, if the subplanes are distinct then
ST = S α = T α since otherwise, ST intersects x and y in distinct affine points
which, by Prop.(2.1), forces the two subplanes to be identical.

Thus, ST = S α = T α is a line of α which is common to both subplanes. If
ST = x then S = L1 and r1 = z1. Similarly, ST = y forces S = M1 and T = M2

so that r1 = y. Hence, we have shown that with the exception of at most four lines

thru M1, any such line produces a line of α common to both subplanes. Moreover,
two distinct lines r1 and r2 thru M1 produce distinct points R1 and R2 on W α
which produce distinct intersection points UL1 ∩R1M1 = S and UL1 ∩R2M1 = S2.
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If S α = S2α then SS2 = S α = S2α = UL1 which is a contradiction since UL1

cannot be in the parallel class α as U is a point of W α 6= L1α. Hence, each such line

r1 produces a distinct common line of π1 and π2. Hence, there are at least ((degree
N) − 4) + 2 common lines all of which must be lines of the parallel class α (note,
we are not claiming that degree N is finite as in the infinite case, degree N is an
infinite cardinal number). If the degree of the net is 3 then two distinct subplanes

can share at most two affine lines on α. So, we have the existence of more than 2
common lines provided the degree ≥ 5.

Completeness:

We first assume that the degree of the net is at least 5.

Now assume that π1 and π2 do not share all of their lines on α but share at least
two. And, we assume that the degree is > 4. Let y1 be a line of α of π2 which is
not a line of π1. Let z1 ∩ y1 = N1and z2 ∩ y1 = N2. Form the subplane πL1,N1 = π3

(note that L1 and N1 are distinct points of z1). Furthermore, π2 = πL2,M2 = πL2,N2

and note that W is a point of πN1,N2 as well as a point of πL1,L2 and πM1,M2.

Let v be a common line of π1 and π2 on α and distinct from x or y. Let T
be a point (affine) of v ∩ π2 which is not on z2. Since T is a point of π2, T and
N2 are collinear. Form TN2. Recall that W α is a line of πN1,N2 as is TN2 so the

intersection W α ∩ TN2 = R2 is a point of πN1,N2 and is affine since otherwise TN2

would be in the parallel class α and T would be on y1 which cannot be since y1 is
not a line of π1.

Since T and L2 are distinct points of π2, form TL2 ∩W α = U1 so that U1 is an

affine point (similarly TL2 is not parallel to W α for otherwise, T and L2 would be
on x and T α = v would then be x). Thus, U1 is a point of πL1,L2 and thus U1 and
L1 are collinear.

Form R2N1(possible since the joining points are in the same subplane).

Now U1L2∩R2N2 = T (R1 = TN2∩W α and TL2∩W α = U1 so that U1L2 = TL2

and R2N2 = TN2)and is, of course, in π2. Similarly, U1L1 ∩ R2N1 = S1 is in
πL1,N1 = π3. Note that R2 and U1 are both on W α and if distinct determine a
unique subplane πU1,R2. Similar to the above argument, if R2 = U1 then R2N1 and

z1 are common lines of πL1,L2 so that L1, L2, and N1 are in the same subplane. But,
πL1,N1 = π3 and πL2,M2 = π2 so that π3 and π2 share a common point(namely L2)
and two common lines x and y1 which forces these two subplanes to be equal. But,
in this case, π3 contains L1 but π2 cannot.

Thus, S1 and T are points which are common to πU1,R2. However, we don’t know
yet know that S1 is an affine point. We know from above that there are at least
((degree N) − 4) + 2 lines on α which are common to π1 and π2. If the degree
N − 4 > 1, let v1 be a line on α common to π1 and π2 and distinct from x, y, or

v. Form TN2 ∩ v1 = T1. Then T1 is a point of π2 distinct from T or N2. Form
T1L2 ∩W α = U2 and note that T1N2 ∩W α = TN2 ∩Wα = R2 and since U2 is a
point of πW,L2 = πL1,L2, then we may also form the intersection S2 = U2L1 ∩ R2N1

and since U1L1 and U2L1 intersect in L1 then both cannot be parallel to R2N1. Note
U2 6= U1 since otherwise T would be on z2.

Now both S1 and S2 are points of πL1,N1 = π3 and T , S1 are points of πU1,R2

and T1 and S2 are points of πU2,R2 (note that U2 is distinct from R2 for otherwise,
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T1N2 = R2N2 = U2 N2 and T1L2 = U2L2 which would force U2 to be a point of
πL2,N2 = π2 which would then in turn force W α = U2α to be a line of π2 which

cannot occur if π2 and π1(π3) are distinct). Without loss of generality, we may
assume that S1 is an affine point ( note that both points S1 and S2 are points of
R2N1 so are either equal or one is affine and it is direct that they cannot be equal).
Since S1 and T are collinear it follows that S1T is a line common to π3 and to π2 but

since π2 and π3 share x and y1, it then follows that S1T = S1α = T α = v. Hence,
π3 and π1 share a point L1 and two common lines x and v which implies that π1 and
π3 are identical which cannot be the case as y1 is a line of π3 but not π1. Hence, we

have a contradiction and the proof to our lemma provided the degree of the net is
at least 6.

We now assume that the degree of the net is exactly 4. Note that we
are not necessarily assuming that the net is finite for we could have a net
covered by infinitely many subplanes of order 3.

With the set up as above, there are exactly four affine lines thru M1, namely y,
z1 and say r1 and r2. Let R1 = r1 ∩W α and R2 = r2 ∩W α. There are three affine

points of πL1,L2 on W α, namely W and say U1, U2. Note that neither R1 nor R2

can be in πL1,L2 since if so, for example if R1 is a point of πL1,L2 then r1 and z1 are
lines of this subplane which forces r1 ∩ z1 = M1 to be a point of πL1,L2 which cannot
occur as we have seen previously.

Now consider U1L1 and U2L1. At least one of these two lines is not parallel to
R1M1 and at least one is not parallel to R2M1. Without loss of generality, assume

that U1L1 is not parallel to R1M1. Now form R1M2 and U1L2. If these latter two
lines are not parallel, then we may find a common line on α of π1 and π2 distinct
from x and y by the above argument. Hence, assume that R1M2 is parallel to U1L2.

If U1L1 is also not parallel to R2M1 then forming U1L2 and R2M2 and noting
that R1M2 is parallel to U1L2 shows that U1L2 cannot be parallel to R2M2. So, we

obtain a common line of π1 and π2v on α distinct from x and y. Hence, it must be
that U2L1 is not parallel to R2M1. Forming U2L2 and R2M2, we must have these
two lines parallel or we are finished.

Summarizing, we are forced into the following situation:

U1L2 is parallel to R1M2, (so is not parallel to R2M2)

U2L2 is parallel to R2M2(so is not parallel to R1M2), and

U1L1 is parallel to R2M1(since U1L2 is not parallel to R2M2),

U2L1 is parallel to R1M1(since U2L2 is not parallel to R1M2).

We have exactly four parallel classes say α, β, δ, γ.

U1L2 is parallel to R1M2 so these lines lie say in β(as they can’t lie in α).

U2L2 is parallel to R2M2 but U2L2 cannot lie in α or β so these lines lie say in δ.

U1L1 is parallel to R2M1 but U1L2 cannot lie in β as U1L2 does and R2M1 cannot
lie in δ as R2M2 does so that these two lines lie in γ.

U2L1 is parallel to R1M1 but U2L1 cannot lie in δ or γ as U2L2 lies in δ and
U1L2 lies in γ and since R1M1 cannot lie in β since R1M2 does, U2L1 and R1M1 are
forced to lie in α which is a contradiction.

Now assume the degree is 5. By the existence argument, π1 and π2 share
lines x, y and say v on α. Let v1 be the fourth line of π2 on α. Form the subplane
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π3 which contains L1 and v1 (that is, π3 = πL1,z1∩v1). Then π3 shares x, v1 with π2

and by the existence result, shares either y or v also. In either case, π3 and π1 share

L1 and two distinct lines on α. Hence, π1 = π3. This shows that π2 and π1 share all
four of their lines on α.

The reader might note that the argument for degree 5 originates in Thas and De
Clerck who utilize this more generally in the finite case.

Hence, we have the proof to the Share Two Theorem.

THE STRUCTURES SN
L

Let L and N be any two affine points of the net which are not collinear. Let
x be any line incident with N . Form the intersection L β ∩ x if x does not lie in
β ε C and determine the subplane πL,L β∩x. This subplane contains all of the points

L δ ∩ x so that by Prop.(2.1) any such intersection point together with L uniquely
determines the subplane. We shall use the notation πL,x for this subplane.

We define the structure SN
L as ∪NπL,x where x varies over the set of

lines incident with N . Note that the lines of SN
L are the lines of a subplane

πL,x whereas the points of SN
L are defined as intersections of nonparallel

lines of the subplanes πL,x for various lines x.

Note also it is possible that there are other subplanes within SN
L which are not

of the type πL,x. In the following lemmas, we shall describe the properties of the
structures SN

L .

Lemma 2.3 (i) Let P be an affine point of SN
L . Then every line of the net

incident with P is a line of SN
L .

(ii) Let Q be any affine point of SN
L which is not collinear to L.

Then ∪QπL,y = SQ
L = SN

L .

Proof: Note that (ii) implies (i) since if y is a line incident with P and P is
incident with L then y is a line of any subplane πL,x for any line x incident with N
and if P is not incident with L then y in πL,y and SP

L = SN
L implies that y is in SN

L .

Hence, it remains to prove (ii).
First assume that N and Q are collinear but N and Q are both noncollinear with

L.
Since Q arises as an intersection of two lines of SN

L there is a line z incident with

Q such that z is in πL,x for some line x incident with N.
Case 1. z is parallel to x.
Consider x is in the parallel class α and form L α. Then z, x and L α are all

lines of the subplane πL,x and since Q and N are collinear, we may assume that

z and x are distinct. L α is distinct from z and from x as otherwise L would be
collinear to Q or N.

Since Q and N are collinear, we may form the subplane πQ,N and note that this
subplane has x and z as lines. Thus, πQ,N shares x and z with πL,x and by Thm.(2.2)

must share all lines with πL,x on α. Thus, L α is a line of πQ,N. Now take any line
x1 incident with N and not in α and intersect L α say in P . Since L and N are not
collinear then P is distinct from L. Hence, P is a point of πQ,N . So, P and Q are
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collinear so form PQ = z1. Now form the subplanes πL,z1 and πL,x1 and note that
both subplanes contain L and P since L α∩x1 = P = Lα∩z1 so that by Prop.(2.1),

we must have πL,z1 = πL,x1.

Hence, for each line x1 incident with N , there is a line z1 incident with Q such
that πL,x1 = πL,z1. Note that πL,x = πL,z.

Suppose that z1 = z2 and πL,z1 = πL,x1 and πL,z2 = πL,x2 where z1 is a line
incident with Q and x1 and x2 are lines incident with N . Then this forces x1 and x2

to be lines of the same subplane so that x1 ∩ x2 = N(assuming x1 and x2 distinct)
which is a contradiction as this would imply N and L are collinear.

Hence, in the case where z and x are parallel, we obtain (∪NπL,x) ⊆ (∪QπL,y).

Conversely, the previous argument may be seen to be symmetric. Let z1 be any

line distinct from z and incident with Q and form z1∩L α = K so that K is a point
of πQ,N as z1 incident with Q forces z1 to be a line of πQ,N(see(2.1)). Hence, K and
N are collinear so form KN = x1. Form the subplanes πL,z1 and πL,x1 and note that
both contain K and L so are equal. This proves that (∪QπL,y) ⊆ (∪NπL,x) so that

SQ
L = SN

L in the case that z and x are parallel and Q and N are collinear.

Now assume that Q and N are not collinear. Consider any line w incident with N
and any line u incident with Q and if w and u are not parallel form the intersections
w ∩ u.

Let w lie in the parallel class β and let u and v be lines incident with Q and in

parallel classes distinct from β. As the degree of the net is at least 3, we may select
lines as above. Form πw∩u,w∩v. Assume both intersection points w∩u and w∩u are
collinear with L. Then we have Q and L points of the same subplane which implies
that Q and L are collinear(as Q = u ∩ v and u and v are lines of πw∩u, w∩v).

Now Q occurs as the intersection of two lines u, v of SN
L . Take a line u incident

with N and not parallel to u or u. Without loss of generality E = u ∩ v is not
parallel to L. Hence, it follows that there is a point E of SN

L which is collinear to
both Q and N but which is not collinear to L. Case 2 below considers the case

where the points Q and N are collinear but the lines z and x are not collinear in a
general or generic sense. Hence, SN

L = SE
L = SQ

L .

Case 2. z is not parallel to x.

Initially, assume that Q is collinear to N.

Let z1 be any line incident with Q and distinct from z. Consider z ∩ x = P .
Since z and x are lines of πL,x by assumption, we have that P and L are collinear.

Assuming that z1 is not parallel to PL, let T = z1 ∩ PL and note that T is distinct
from L as Q and L are not collinear and z1 is a line incident with Q. Form the
subplane πP,Q and note that N = NQ ∩ (x = PN) and T = PL ∩ (z1 = TQ) so

that both N and T are points of the subplane πP,Q. Hence, N and T are collinear
so form NT = x1. Note that the subplanes πL,z1 and πL,x1 both contain the points
T and L so are identical by Prop.(2.1).

Now suppose z1 is parallel to PL. Note that z1, z, and PL are lines of πQ,N(P is
a point of the subplane and PL is a line incident with P ). Assume that z1 and PL

belong to the parallel class δ so that N δ is also a line of πQ,N and Form πL,N δ and
note that this subplane shares two lines PL and Nδ on δ with πQ,N so by Thm.(2.2)
the two subplanes shares all of their lines on δ. Hence, z1 is a line of πL,N δ so that
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πL,z1 = πL,N δ.

Hence, for each line z1 incident with Q there is a line x1 incident with N such
that πL,z1 = πL,x1.

Conversely, let x1 be a line incident with N and not parallel to PL. Let

T = x1 ∩PL. Form πN,P and notice that PL and x1 are lines of this subplane as

are z and QN. Recall Q = z∩QN , so that Q is in πP,N . Note also that T = x1∩PL
so that T and Q are collinear. Hence, let TQ = z1 and observe that πL,x1 and πL,z1
both contain the points T and L so are identical.

If x1 is parallel to PL and both lines are in the parallel class δ, note that x1 and

PL are both in πQ,N(x1 is incident with N , P is a point of πQ,N and PL is a line
incident with P ). Form πL,Q δ and note that PL and Q δ are also lines of πQ,N so
that, by Thm.(2.2), x1 is also a line of πL,Q δ so that it follows that πL,x1 = πL,Q δ.

Hence, the previous arguments show that ∪QπL,y = SQ
L = ∪NπL,x = SN

L provided
Q and N are collinear but Q and N are both noncollinear with L in the case where

z and x are not parallel.

If Q and N are not collinear there is a point E of SN
L which is not collinear to

L but is collinear to Q and to N . Hence, SN
L = SE

L = SQ
L . This completes the proof

of Lem.(2.3) in both cases z parallel to x and z not parallel to x.

In the following, let SL = SN
L = SQ

L for all points Q of SN
L which are

noncollinear with L(note that N is a point of SN
L ).

Lemma 2.4 Let A, B be points of SL where A is not collinear to B and B

is not collinear to L. Then ∪BπA,z = SB
A = SL.

Proof: First assume that A and L are collinear and form πA,L. Since A is in SL,
every line incident with A is a line of SL and as such is in some subplane πL,x where

x is a line incident with N . It then follows that πA,L is one of the basic subplanes
πL,x. Let B be any point of SL which is not collinear to L. This subplane is equal
to a subplane πL,w where w is a line of SL incident with B by the previous lemma.

Hence, πA,L = πA,w for some line w incident with B. Any line z thru B is a line of
SL by the previous lemma. Any line thru L is a line of πA,L. Form πL,z : The initial
points are determined by taking lines thru L and intersecting these with z to form
points on z. If P is such a point then P δ for all δ ε C is a line of the subplane. Since

all lines thru L are lines of πA,L = πA,w and all lines thru B are lines of ∪B πA,y,
it follows that all these initial intersection points are also points of ∪B πA,y. Since
the remaining points of πL,z are generated by these initial intersection points , it
follows that the points of each of the subplanes πL,x for x incident with B are points

of ∪B πA,y. By applying the lemma (2.3)(i) to ∪B πA,y, it follows that on any point
Q of ∪B πA,y, all lines on Q are also lines of ∪B πA,y. Moreover, since the lines of
the subplanes πL,x for x incident with B may be obtained by taking the points P
and forming P α for all α ε C , since P is also a point of ∪B πA,y then such lines also

become lines of ∪B πA,y.

Hence, all lines of the subplanes πL,x for all lines x incident with B are also
lines of ∪B πA,y so that all subsequent points of SL are also points of ∪B πA,y.
Thus, SL ⊂ ∪BπA,y. Since A and B are points of SL, all lines incident with A and
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all lines incident with B are lines of SL by Lem.(2.3)(i) and hence all subsequent
points and lines generated within ∪BπA,y are likewise in SL (the previous argument

is symmetric) so that ∪BπA,y ⊂ SL.
Hence, we have shown that if A and B are points of SL which are not collinear,

A and L are collinear but B and L are not collinear then ∪BπA,y = SL.
Now assume that there is a point C in SL such that A is collinear with C , C is

collinear with L and A, C, L are each not collinear with B. Then

∪BπC,w = ∪BπL,x = SL and since A is then in∪B πC,w, it follows from the above
argument that ∪BπA,y = ∪BπC,w = SL.

If A and L are not collinear take any two lines u and v thru A. These lines u
and v are lines of SL by Lem.(2.3). Take any line w thru L which is not parallel to
either u or v.

Suppose both intersection points u ∩ w and v ∩ w are collinear with B. Then
since A is collinear with both intersection points(A is u ∩ v), it follows that A and
B are points of the subplane πu∩w,v∩w which forces A and B to be collinear.

Since u, v and w are lines of SL, the intersection points are also in SL and one
of these, say C , is not collinear with B but is collinear to both A and L.

Hence, it follows that ∪BπA,y = ∪BπL,x = SL.

Theorem 2.5 The structures SL are derivable subnets; the structures SL
are subnets with parallel class C and the subplanes contained within the
structures are Baer subplanes of SL.

Proof: We define a subnet as a triple of subsets of points, lines, and parallel classes.

The lines of the subnet will be the the lines of the subplanes πL,x for x incident
with N where L and N are not collinear. The points of the subnet shall be the
intersections of lines of the subplanes indicated. The set of lines of each parallel

class α ε C is the union of the sets of lines belonging to the subplanes πL,x which lie
in α.

Note that each line on each point of SL is a line of SL by Lem.(2.3) so that each

point P is on exactly one line of each parallel class. Hence, it easily follows that we
have a subnet. It remains to show that given any pair of distinct collinear points
P and Q of SL then the subplane πP,Q is a subplane of SL and to show that the
subplane is Baer within SL.

Each line incident with P or Q is a line of SL by Lem.(2.3). The points of πP,Q
are obtained via intersections of P α and Q β for all α, β ε C so that all points are

then back in SL as are all subsequent lines by appplications of Lem.(2.3)(i). This
shows that πP,Q is a subplane of SL.

Take any subplane π1 of the net which is within SL and let A be any point of

SL. To show that π1 is Baer within SL, we must show that every line of the net
contains a point of the projective extension of π1, and that every point of the net is
incident with a line of π1. The first condition is trivial since each line projectively
contains an infinite point(point of C) of π1. To show the second condition, we first

show that π1 is of the form πQ,x where x is a line incident with a point B which is
not collinear to Q and Q and B are points of SL. Let π1 = πP,Q where P and Q
are any two distinct affine points of the subplane and note that P and Q must be
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in SL. Take any line u of π1 incident with P and not PQ. u must be a line of SL.
If u contains a point B in SL which is not in π1, then B cannot be collinear with Q

for otherwise B would lie on two lines of π1 and hence be a point of π1. But u is in
some subplane πL,x where x is a line incident with N and as such u contains at least
two affine points of πL,x in SL. If both of these points are in πP,Q then πP,Q = πL,x
by Prop.(2.1). If one of these points say B on u in πL,x is not in πP,Q then B and Q

are not collinear and πP,Q = πQ,u. Now to show that there is a line of πQ,u incident
with A. If A and Q are collinear, clearly AQ is a line of πQ,u incident with A.

First assume that πQ,u is a subplane of the type πL,x1 for some line x1 incident

with N . We may assume that A and L are not collinear. Then, ∪AπL,z = ∪NπL,x
and furthermore, there is a 1-1 and onto correspondence x → z of lines x incident
with N and lines z incident with A such that πL,x = πL,z. Hence, there exists a line
z1 thru A such that πL,x1 contains this line; π1 contains a line incident with A.

Now assume that πQ,u is not a subplane of the type πL,x but note that u is a
line of πL,xo for some line xo incident with N . We want to show that A is in ∪CπQ,w
where C is a point of SL on u. We know that A is in SL and ∪CπQ,w ⊂ SL.

On any line t thru Q of πP,Q = π1 assume two points of t in πP,Q are incident with

L. Then L must be in πP,Q. Hence, if πP,Q is not of the form πL,x for some line x
then at most one point of t in πP,Q is incident with L. If degree > 3, we may assume
without loss of generality that neither P or Q are incident with L. Furthermore, we
may assume that A and Q are not collinear for otherwise we are finished.

Let B be a point of πL,xo on u which is not in πQ,u. Form the subplane πB,P(note
u = BP ) and note that this subplane must be distinct from either πQ,u or πL,xo
since if πB,P is πL,xo then P and L are collinear. We have established that πB,P
is a subplane of SL. Assume that the degree is > 3. Hence, any point C on u
of πB,P distinct from B or P is not in either plane πQ,u or πL,xo (if c is in πQ,u
then πB,P = πC,P = πQ,u). Then C is not collinear to L or Q so that ∪CπQ,w =
∪CπL,y = SL (note if C is collinear to L then πL,xo = πL,u implies c in πL,xo so that

πB,P = πB,C = πL,xo, a contradiction). Hence, A must be in ∪C πQ,w so that we
may apply the previous results to show that ∪AπQ,y = ∪CπQ,w. Moreover, there is a
1-1 and onto correspondence w → y of lines w incident with C and lines y incident
with A such that the πQ,w = πQ, y. This implies that for the line u there is a line

z incident with A such that πQ,u = πQ,z so that the subplane π1 = πQ,u contains a
line incident with A.

Thus, it remains to show that when the degree is exactly 3, the subplanes con-
tained in SL are Baer.

Note that, in this case, we are not necessarily assuming that the net is finite.
However, there are exactly three lines of SL incident with N and on each line there
is a unique point incident with L so there are exactly 4 ·3 lines of SL and it follows

that on each line there are exactly 4 points of SL. That is, SL is a subnet of degree
1 + 2 = 3 and order 22. Since the subplanes contained in SL now have order 2, it
follows that such subplanes are Baer within SL. This completes the proof of the
theorem.

Corollary 2.6 Consider any of the subnets SL of points, lines, subplanes,
parallel classes, and incidence.
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Then there is a 3-dimensional projective space
∑

and a line N of
∑

such that the lines of
∑

skew to N are the points of SL, the points of∑−N are the lines of SL, the planes of
∑

which intersect N in a point are
the subplanes of SL and the planes of

∑
which contain N are the parallel

classes of SL.

Proof: The main result of Johnson [6] applies to the subnets SL.

3 The associated projective space.

The previous corollary in section 2 shows that there is a 3-dimensional projective
space associated with any subnet SL. We shall use this to show that associated with
any subplane covered net is a projective space Π with a fixed codimension 2 subspace

N such that the points, lines, subplanes, parallel classes of the net are(correspond
to) the lines skew to N of Π, the points of Π− N , the planes of Π which intersect
N in a point, and the hyperplanes of Π which contain N respectively.

3.1 The parallel classes are affine spaces

First we consider making the parallel classes into affine spaces.

Let α be any parallel class. Define the structure Aα as follows:

The points of Aα are the lines of the net on α. The lines of Aα are the sets of
lines of subplanes πP,Q which lie on α. The planes of Aα are defined via the sets
SL(derivable subnets) and are denoted by SL,α. The points of SL,α are the lines on

α of the set of subplanes of SL. A line of SL,α is, of course, the lines on α of a
subplane of SL.

We shall define two lines of Aα to be parallel if and only if the two
lines correspond to subplanes which belong to some SL and their lines on

α are disjoint or equal.

Note that it is clear that the relation of being parallel is symmetric and reflexive.

The previous result that there are derivable subnets is vital for the results in this
section. Furthermore, as the structures Aα are interconnected to the net, we shall
require net properties to show that the Aα are affine spaces.

We define two lines a and b(a||b) of the structures Aα, Aβ for α 6= β ε C to
be parallel if and only if these sets are the sets of lines on α, β respectively
of a subplane πo.

Again, it is clear that this relation is symmetric.

Lemma 3.1 Given any subplane πo and any line u of the net which is not

a line of πo, there is a unique derivable subnet < πo, u >containing πo and
u.

Proof: Take any line v in πo which is not parallel to u. Let N = u ∩ v and let L
be a point of πo which is not collinear with N . Note that N cannot be a point of πo
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Form ∪NπL,x = SN
L and note that this derivable subnet contains πo(simply take

x to be v) and u(take x to be u). Note that any derivable net containing πo and u

must contain the intersection point N as a point and hence, must contain the set of
lines incident with N . Thus, any such derivable net contains SN

L .

Lemma 3.2 Any two distinct subplanes πo and π1 which share a parallel
class of lines are in some unique derivable subnet < πo, π1 > .

Proof: Let u be any line of π1 which is not a line of πo. Form the derivable
subnet < πo, u > . Assume that the indicated subplanes share all of their lines on
the parallel class α ε C . Since < πo, u > is a derivable net containing u, there is a

subplane π∗1 of this derivable subnet which contains u and which shares the lines of
πo on α by Johnson [6]. Since π1 and π∗1 share u and share all of their lines on the
parallel class on α, it must be that π1 and π∗1 are identical.

Lemma 3.3 Let a, b, c be lines of various of the structures Aδ for δ ε C. If

a||b and b||c then a||c.

Proof: We consider the following cases:

Case (1): the lines a, b, c belong to the structures Aα, Aβ, Aγ respectively where
α, β, γ are mutually distinct.

In this case, there are subplanes πo and π1 such that a and b are the sets of lines
of πo on α and β respectively and b and c are the sets of lines of π1 on β and γ

respectively.
Form the derivable subnet < πo, π1 > by lemma (3.2) and note that a, b, and

c are lines of this subnet. Then, within this derivable subnet, there is a subplane
π2 such that a and c are the sets of lines of π2 on α and γ respectively (again see
Johnson [6]). Hence, a ||c.

Case (2): a and b belong to Aα but c belongs to Aγ for α 6= γ.

By assumption, there is a derivable subnet < πo, π1 > such that a and b are the
sets of lines on α of πo, and π1 respectively. Within this derivable subnet, there is

a subplane which contains a and say d not on α or β(a set of lines of this subplane
which does not belong to either parallel class) and a subplane which contains b and
d(since a and b are sets of lines of a parallel class of subplanes of the derivable net).
That is, a ||d and b||d.

Hence, c||b||d and all three lines are in distinct substructures Aρ for various values
ρ ε C , it follows from case (1) that c||d. Hence, c||d|| a so that another application

of case (1) shows that c|| a.
Case (3): a and c are in Aα and b is in Aβ for α 6= β.
Let πo be a subplane whose sets of lines on α and β are c and b respectively and

let π1 be a subplane whose sets of lines on α and β are a and b respectively. Form
the derivable subnet < πo, π1 > . Then a, b and c are lines of a derivable subnet and
a ||b||c so that a automatically becomes parallel to c.

Case (4): a, b, and c are in Aα.

Since a is parallel to b, there is a derivable subnet < πo, π1 > such that the lines
on α of πo and π1 are a and b respectively. Similarly, there is a derivable subnet
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< π2, π3 > such that the lines of π2 and π3 are b and c respectively. Take any set of
lines d of π1 on a parallel class β distinct from α. Then a ||b||d implies a ||d from

case (2) and d||b||c implies d||c(i.e. c||b||d) again from case (2). Then a ||d||c implies
that a ||c from case (3).

Theorem 3.4 Aα is an affine space for each parallel class α ε C.

Proof: First take two distinct points a and b of Aα. Recall that a and b are lines
on α. Take any line u of the net which is not in α. Then the intersections of u with
a and b produce a subplane πo such that any other subplane which shares a and b

with πo must share all of the lines on α with πo (see Thm.(2.2)). That is, given two
distinct points of Aα, there is a unique line joining them.

Note that the planes of Aa are affine planes since we may use the results of
Johnson [6] as these planes are induced off of derivable subnets.

Now take three distinct points of Aα, a, b, c not all collinear. Then there is a
unique plane < a, b, c >containing these points.

Pf: Let u be any line of the net which is not in α. Form the intersection of u with

a and b and the corresponding subplane πo. By assumption, a, b, c are not collinear
so c is not a line of πo. Form the intersection of u with b and c and construct the
corresponding subplane π1. Let P = u∩b so that P is a common point of πo and π1.
Take any line x of πo which is not on P and take any line z on π1 which is not on P

and not parallel to x. Let N = x∩ z. If P and N are collinear then PN intersects x
in N so that N is a point of πo and similarly also a point of π1 which forces πo to be
π1. Hence, P and N are not collinear. Form ∪NπP,w which contains π1 = πP,z and
πo = πP,x. Hence, there is a derivable subnet containing πo and π1 so that there is

a plane of Aα containing a, b, c. Let D be any derivable net containing a, b and c.
Then the set of lines of the derivable net on a form a plane of Aa containing a, b, c
by Johnson [6]. Since any plane is generated by any of its triangles, it follows that
that the plane is unique.

Now assume that there are two derivable subnets that share the lines a, b.

If two planes of Aα share two distinct points a and b then they share all points

on the line ab.

Pf: The two planes are defined by two derivable nets D1 and D2. Within D1,
there is a subplane πo which contains the lines a and b. Any other subplane which
contains the lines a and b contains as lines all of the lines of πo on α by Thm.(2.2).
Hence, any subplane on D2 which contains a and b must contains the lines of πo on

α and thus each plane of Aα containing a and b contains all of the points on the line
ab.

Lem.(3.3) shows that parallelism is an equivalence relation.

It now follows that the structures Aα are affine spaces.

This completes the proof of Thm.(3.4).

NOTATION AND ASSUMPTIONS:

By the results of Johnson [6], [7], we may assume that the net is not
a derivable net. Since derivable nets induce planes in Aα, it follows that
we may assume that the structures Aa are affine spaces of dimension ≥ 3.
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Let D and R be derivable subnets which share three lines of the same
parallel class α ε C not all in the same subplane. Then the derivable

subnets share all of their lines on α and we denote this by Dα = Rα .
The reader will need to distinguish between lines of the net or subnet

and lines of the affine spaces Aα or Dα since a line of a derivable subnet
Dα is the set of net lines on α of a subplane of D.

We consider the projective extensions of the affine spaces Aa. Let Na denote
the hyperplane of Aa at infinity obtained by defining infinite points to be parallel
classes of lines of Aa and infinite lines to be parallel classes of planes of Aa. We

want to show that Na = Nβ for all α, β ε C . What this basically implies is that
there is a projective space Π such that the parallel classes when properly extended
become hyperplanes in Π that contain a common codimension two subspace. In
order to do this, we need to define what it means for two planes of different affine

spaces Aα and Aβ to be parallel for possibly different parallel classes α and β. The
following is similar to arguments of Thas and De Clerck in the finite case except
that we make more use of the structure of derivable nets.

Let Πα, Πβ be planes of Aα and Aβ respectively. We shall say that Πα

is parallel to Πβ, written Πα||Πβ if and only if each line of Πα is parallel to
some line of Πβ .

Before proving that the relation defined in the above definition is an equivalence
relation, we provide some lemmas on derivable subnets.

Lemma 3.5 Let D be a derivable subnet and α a parallel class of the net.
Let x be a line which is not in α. There there is a unique derivable subnet

generated by x and Dα which we denote by < x, Dα > .

Proof : Take any three lines u, v, w of D on α not all in the same parallel class
of lines of a subplane of D. Form the intersections u ∩ x = P , v ∩ x = Q, and

w ∩ x = R and form the subplanes πP,Q and πQ,R. There is a unique derivable net
R containing these subplanes by Lem.(3.1) and the proof to Thm.(3.4) and clearly
Rα = Dα. R contains x so that R =< x, Dα > .

We known that planes of Aα must fall into parallel classes since Aα is an affine

space. What we don’t know if how the derivable subnets that define these planes
are related. The next two lemmas study this problem.

Lemma 3.6 Let D be a derivable subnet so that Dα is a plane of Aα. Let
x be a line of α which is not in Dα. Then the unique plane of Aα incident
with x and parallel to Dα may be constructed as follows: Take any line z
of D not in α.

Then there exists a unique derivable net R containing x and z with
the property that Rα is parallel to Dα.

Any other derivable net B so constructed from any derivable net T
where Tα = Dα and containing x has the property that Bα = Rα.

Proof: Let a be a line of Dα in Aα. Let z be a line of D in β distinct from
α. Then z intersects a in a uniquely defined subplane πo which does not contain x.
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Then there is a unique derivable net containing πo and x , < x, πo > by Lem.(3.1).
Note that since < x, πo >α is an affine plane in Aα, it follows that there is a unique

line La,x of < x, πo >α parallel to a thru x. Recall that this line on Aα is the set of
lines on α of some subplane. In < x, πo >, there is a unique subplane π1 which has
La,x as its lines on α and which contains z. Let La,z denote the line of Aβ which is
the set of lines of π1 on β. Note that a ||La,x||La,z so that a ||La,z by Lem.(3.3).

So, there is a unique subplane π2 containing a and La,z as its sets of lines on α

and β respectively and since π2 contains a and z, it follows that π2 = π0. Hence,
∪{La,z| a is a line of Dα} = Dβ .

Note that < x, Dβ > is a derivable net by Lem.(3.1) and there is a unique
subplane containing La,z and x and this is a subplane π1 containing La,z and La,x so
that π1 ε < x, Dβ > .

Hence, ∪{La,x| a is a line of Dα} =< x, Dβ >α.

Hence, we have produced a derivable net R containing x such that every line of
Dα is parallel to some line of Rα. Let a and b be any two lines of Dα then since
Aα is an affine space, the plane generated by a and x is unique and hence the line

parallel to a thru a is unique. A similar statement is valid for b and x. Hence, let B
be any derivable net which contains x and contains the lines on x parallel to a and
b. Then Bα is uniquely determined.

It follows that Rα and Dα are mutually parallel(since they are planes of an affine
space and one is parallel to the other). Furthermore, since each line of Rα is parallel
to a line thru x and parallelism on lines of the affine spaces A′γs is an equivalence

relation, it follows that each line of Rα is parallel to a line on z of Dβ and conversely
each line of Dβ is parallel to a line of Rα containing x. Hence, it follows that Rα

and Dβ are parallel planes.

Lemma 3.7 Parallelism on planes of the affine spaces A′γs is an equivalence
relation.

Proof: Note that if Dα||Rβ where D and R are derivable nets and α and β are
distinct then if z is any line of Rβ then there is a derivable net < z, Dα > . Take

any line a of Dα and note there is a unique subplane πo of < z, Da > containing z
and with a as its set of lines on a. Since Rβ is an affine plane, every line of Rβ is
parallel to a line which contains z. Hence, since a is parallel to some line of Rβ , it
follows that a is parallel to a line b which contains z and this line b must be exactly

the set of lines of πo on β. It follows that < z, Dα >β= Rβ . It follows that any line
of Rβ is parallel to some line of Dα.

To prove transitivity, simply note that if three planes Dα||Rβ||Bγ where D, R,
B are derivable subnets then every line a of Dα is parallel to some line b of Rβ and
every such line b is parallel to some line c of Bγ and since parallelism on lines is an
equivalence relation, it follows that a is parallel to c and hence, every line of Dα is

parallel to some line of Bγ and hence Dα||Bγ.

This proves the lemma.

Proposition 3.8 If D and R are derivable nets and for some parallel class
α, Dα||Rα then for all parallel classes β, Dβ ||Rβ.
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Proof: Clearly for any derivable net B and any parallel classes γ and ρ, it follows
that Bγ||Bρ. Hence, Dα||Rα||Rβ implies that Dα||Rβ and Dβ ||Dα||Rβ implies that

Dβ ||Rβ .

Lemma 3.9 Let Aα be any affine space for α ε C and let Nα denote
the hyperplane at infinity of the projective extension A+

α of Aα. Then
Nα = Nβ = N for all α, β ε C.

Proof: In order to construct Nα, we define the points of Nα to be the equivalence
classes of lines of Aα and the lines of Nα as the equivalence classes of the planes of
Aα. Recall that any plane of Aα is defined by a derivable net D as Dα and any line

of Aα by a subplane. Since a parallel class of lines of Aα has a representative in any
Aβ and any parallel class of planes of Aα has a representative in any Aβ it follows
that Nα = Nβ = N.

Theorem 3.10 Let R = (P, L, B, C, I) be any subplane covered net. Then

there is a projective space
∑

defined as follows:
Call the lines of a given parallel class of a subplane “class lines” and call

the lines of a given parallel class of a derivable subnet “class subplanes”.
Note that there are equivalence relations on both the set of class lines
and on the set of class subplanes. Call the equivalence classes of the class
lines “infinite points” and the equivalence classes of the class subplanes

“infinite lines”. Also, note that the infinite points and infinite lines form
a projective subspace N.

The points of
∑

are the lines L of the net and the infinite points defined
above.

The lines of
∑

are the sets of lines on an affine point(identified with
the set P ), the class lines extended by the infinite point containing the

class line, and the lines of the projective space N.
The planes of

∑
are

(1) subplanes of B extended by the infinite point on the equivalent

class lines of each particular subplane where the points and lines of the
subplane are now considered as above(actually the dual of the subplane
extended),

(2) the affine planes whose points are the lines of a net parallel class
and lines the class lines of a derivable subnet of the net parallel class
extended by the infinite points and infinite line, and

(3) the projective planes of the projective space N.

The hyperplanes of
∑

that contain N are the parallel classes C ex-

tended by the infinite points and infinite lines of N .
Note that N becomes a codimension two subspace of

∑
.

Proof: To complete the proof, we need only show that any three distinct points
A, B, C not all collinear generate a unique projective subplane.

If the points are all infinite points then since N is a projective subspace, the
result is clear.
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Assume that A, B and C are all lines of the net.

If all are points of the same Aα then since Aα is an affine space, the points will
generate an affine plane which then uniquely extends to a projective plane in Aα∪N.

If A and B are in Aα and C is in Aβ where α and β are distinct then by taking
intersection points of the lines, there is a unique subplane of the net containing A, B
and C . By extending the subplane with the infinite point corresponding to the class
points, it follows that there is a unique projective plane interpreted in the notation

in the statement of the theorem generated by these points A, B and C.

Similarly if A, B and C are all in mutually distinct affine spaces Aα, Aβ, Aγ, there
is a unique subplane of the net containing A, B and C and the previous argument
applies.

Suppose that A and B are infinite points and C is a line of the net. Let C be

in the parallel class α. Since A is an infinite point, there is a unique representative
class line A1C1 which contains C(as a line of the net). Similarly, there is a unique
representative class line B1C1 in α of B which contains C . Note that A1C1 and
B1C1 extended are lines of the structure

∑
. Now the two class lines contain C and

thus there is a derivable subnet D which contains these two class lines and any other
derivable subnet containing these class lines agrees on the parallel class α with D.
The set Dα is a plane of Aα which when extended becomes the unique projective
subplane generated by A, B, and C.

Assume that A and B are lines of the net and C is an infinite point.

If A and B are in the same parallel class α , consider the set of subplanes which
contain A and B. Recall that the line of Aα, AB is uniquely determined as the set
of lines of any subplane containing A and B. Now if A, B and C are not collinear
then C is not an equivalence class of any subplane that contains A and B. Hence,

there is a representative class line on α which contains A but not B. Take any line
x not in α and intersect the lines of the class point and B. Then there is a unique
derivable net D containing x and these intersection points. Furthermore, any other
derivable net containing the class line and B shares the lines on α with D. Hence,

there is a unique affine plane Dα of Aα which when extended is the unique projective
plane generated by A, B, and C.

Finally, assume that A and B are lines in different parallel classes of the net and
C is an infinite point. Let P = A∩B. The set of lines of the net incident with P is a

line of the structure which does not intersect the projective subspace N so that A, B
and C are intrinsically noncollinear in this case. Take a representative class line on
the parallel class a of the net containing A. Form the intersection points of this class
line (which is a set of lines of a subplane) with B and note that there is a unique

subplane of the net generated. This subplane contains A, B and when extended
by C is the unique projective plane containing A, B and C when interpreted in the
notation of the theorem.

This completes the proof of theorem (3.10).
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4 Pseudo regulus nets.

Let R be an ordinary (n− 1)- regulus in PG(2n − 1, q) =
∑

. This is a set of q + 1
(n−1)-dimensional projective subplanes of

∑
which is covered by a set of transversal

lines; if a line intersects at least three members of the (n− 1)-regulus then the line
intersects all members of the regulus.

Let V2n denote the corresponding vector subspace over GF (q) such that
∑

is the
lattice of subspaces of V2n. Then

Proposition 4.1 (Johnson [7]). In V2n, every (n − 1)-regulus R has the

following canonical form:
Let V2n = W⊕W for some n-dimensional vector subspace W over GF (q).
Then R may be represented by x = 0, y = δ x for all δ ε GF (q) where
x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are vectors in W with

respect to some basis for W for xi, yi for i = 1, 2, . . ., n are in GF (q) and
δ x = (δx1, δx2, . . ., δxn).
We call the corresponding net a (n−1)-regulus net or simply a regulus

net when there is no ambiguity.

Now we define a similar quasi-geometric structure which we only consider in its

vector form.

Let W be a left vector space over a skewfield K. Let Z(K) denote the

center of K.
Let V = W ⊕W . Let R be the net defined by the following Z(K) —

subspaces x = 0, y = δ x where δ ε K and if x = (xi) for i ε λ as a tuple with
respect to some K-basis for W and y = (yi) for xi, yiε K for i ε λ. Then

we call any net which can be represented as in the form of R a pseudo
regulus net.

Note that any regulus net is a pseudo regulus net and any finite pseudo regulus

net is a regulus net. Also note that if K is a field then it is possible to define regulus
nets over K (see. e.g. Johnson and Lin [9]). Also note that a pseudo regulus net is
a subplane covered net by [9].

We note that the nets of section 3 in Thm(3.10) are pseudo regulus nets:

Theorem 4.2 (Johnson and Lin [9]). Let
∑

be any projective space of
dimension at least three. Let N be any codimension two subspace. Define
the structure R = (P, L, B, C, I) of the sets of points P , lines L, subplanes
B, parallel classes C and incidence I to be the lines of

∑
skew to N , points

of
∑−N , planes of

∑
which intersect N in a unique point, hyperplanes of∑

which contain N , incidence is the incidence inherited from
∑

.
Then R is a pseudo regulus net.

Hence, since any subplane covered net is isomorphic to the structure
∑

, we have
the following characterization of subplane covered nets.

Theorem 4.3 Any subplane covered net is a pseudo regulus net.
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Note as a finite pseudo regulus net is a regulus net that we obtain the results of
De Clerck and Johnson as a corollary to Thm.(4.3).

Corollary 4.4 (De Clerck and Johnson [4]).
Any finite subplane covered net is a regulus net.

There are many translation planes whose spreads may be represented as the
union of regulus nets with various intersection properties. For example, a transla-
tion plane whose spread is in PG(3,q) and which is the union of q reguli that share
a line corresponds to a flock of a quadratic cone. If the spread is the union of q+1

reguli that share two lines, there is a corresponding flock of a hyperbolic quadric.
Furthermore, there are many planes whose spread contains q-1 mutually disjoint
reguli. Moreover, there are planes of order qn with n not 2 with similar properties.
Thus, we see that there are many open problems concerning the connections with

translation planes whose spreads contain various configurations of reguli and projec-
tive spaces. We shall mention specifically only the problems associated with flocks
of quadratic cones in PG(3,q).

Problem: Let F be a flock of a quadratic cone in PG(3,q) and let πF denote
the associated translation plane of order q2 which can be represented as a set of q
regulus nets that share a common line(component). There are q projective spaces

each isomorphic to PG(3,q) associated with the q regulus nets . Each regulus net
produces a projective space Σ and a fixed line N on the space such that the points
of the net are the lines of Σ−N . Since the points of each net are the points of the
translation plane, we have q different projective spaces Σ and q lines Ni such that

the sets of lines of Σi −Ni are identified.
The problem would be to find a combinatorial characterization of a

flock of a quadratic cone in terms of these projective spaces.

References

[1] R.C. Bose. Strongly regular graphs, partial geometries and partially balanced
designs, Pacific J. Math. 13 (1963), 389-419.

[2] R.H. Bruck. Finite nets II: uniqueness and embedding, Pacific J. Math. 13
(1963), 421-457.

[3] J. Cofman. Baer subplanes and Baer collineations of derivable projective planes.
Abh. Math. Sem. Hamburg 44 (1975), 187-192.

[4] F. De Clerck and N.L. Johnson. Subplane covered nets and semipartial geome-
tries. Discrete Math. 106/107(1992), 127-134.

[5] F. De Clerck and J.A. Thas. Partial geometries in finite projective spaces. Arch.
Math. 30 (5) (1978), 537-540.

[6] N.L. Johnson. Derivable nets and 3-dimensional projective spaces. Abh. Math.
Sem. Hamburg, 58(1988), 245-253.



508 N. L. Johnson

[7] N.L. Johnson. Derivable nets and 3-dimensional projective spaces. II. The
structure. Archiv d. Math., vol. 55 (1990), 84-104.

[8] N.L. Johnson. Derivation. Research and Lecture Notes in Mathematics, Com-
binatorics ’88, vol. 2, 97-113.

[9] N.L. Johnson and K − S. Lin. Embedding dual nets in affine and projective

spaces. Rend. d. Mat., vol 14, (1994),483-502.

[10] T.G. Ostrom. Translation planes and configurations in Desarguesian planes.

Arch. Math. 11 (1960), 457-464.

[11] T.G. Ostrom. Semi-translation planes. Trans. Amer. Math. Soc. 111 (1964),

1-18.

[12] J.A. Thas and F. De Clerck. Partial geometries satisfying the axiom of Pasch.

Simon Stevin 51 (1977), 123-137.

Norman L. Johnson
Mathematics Dept

University of Iowa
Iowa City, Iowa, 52242
e-mail: njohnson@math.uiowa.edu


