On the Poincaré series for a plane
divisorial valuation

C. Galindo*

Abstract

We introduce the Poincaré series for a divisorial valuation v and prove
that this series is an equivalent algebraic datum to the dual graph of v. We
give an explicit computation of the Poincaré series.

1 Introduction

Let (R,m) be a 2-dimensional local regular ring with the maximal ideal m and
algebraically closed residue field K. Let F' be the quotient field of R. We assume
that R contains a coefficient field and we denote by X the scheme SpecR.

Let us consider divisorial valuations v of F', centered in R (valuations in this
paper). If the center of v in X is a closed point, one can get a new center by
blowing-up X at that point. We continue the sequence of quadratic transformations
if the center remains closed and we stop whenever the center becomes a divisor.
This sequence is determined by v and we will refer to it as the reduction process
of the valuation. Associated to this process there is a dual graph that shows its
complexity.

The reduction for valuations has applications in geometric problems. For in-
stance, Spivakovsky ([5] and [6]) gives a description, for a surface, of the sandwiched
singularities by blowing-up primary complete ideals for the maximal ideal m of R.
These complete ideals are equivalent data to a finite number of valuations.
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Moreover, in the canonical desingularization process of a foliation over X (see [2]
and [4]) the so-called dicritical divisors can be found. The dicritical divisors separate
the foliation sheaves and play a significant role in the geometry of the foliation. One
also has a finite number of valuations associated to this objects (see [3]).

In this paper, we characterize the valuations which have the same dual graph by
means of an easy algebraic invariant: The Poincaré series of the graded ring gr, R.

2 Preliminaries

Let v be a valuation centered in m, ¢ the value group of v and ¢* = v(R\ {0})
the value semigroup of v. For each o € ¢T, we consider the ideals of R, P, = {f €
Rlv(f) > a} and P,+ = {f € Rlv(f) > a}. Then we have the following

Definition 1 The algebra associated to v is defined to be the graded K -algebra,

gryR = @

a€¢+

Remark 1 Let A = {Q;}ier be a sequence of elements of m where [ is countable
set. Let P! be the ideal generated by the set

Ala) ={ 11 Q7 |1 € N,y > 0 and Y e 7,0(Q5) > o }.

j€IpClI, Iy finite

The two following conditions are equivalent:

i) Each v-ideal of R, a, namely, an ideal of R which is the contraction of some
ideal of the valuation ring R, of v, is generated by the set A(v(a)), where v(a) is
the value min{v(z)|z € a}.

ii) For each a € ¢*, P! = P,.

Definition 2 Any sequence A = {Q;}icr satisfying the (equivalent) conditions of
the remark 1 is called a generating sequence for v.

2.1 The Hamburger-Noether expansion

Let v be a valuation and 7 the associated blowing-up sequence,
(ﬂ-) . X(N+1) TFN_'*'i X(N) N X(l) M, X(O) = X = SpecR.

In the sequel, we denote by P; the center of ;41 and by {x, y} a regular system of
parameters (rsp) of R. Some generators {z!), y(V} of the maximal ideal of the local
ring ) = Ox@) p, can be obtained from one of the two following pairs of equalities
2 = 7 and 2z (y(1 +&) =y, €€ K or My =g and y = y). Interchanging
and y, if necessary, and writing ag; = &, a rsp of Ry will be {z,y") = (y — ap17)/x}.
Let hg be the maximum of the non negative integers j such that for every i < j, the
rsp of the local ring R; = O p, is obtained through the first type of equality. Then
some generators of the maximal ideal of the local ring R; will be, inductively, {x(i) =
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z,y D = (y=Y — agx) /z} for every i < ho. And if we put z; = (y"o™V — agp,x)/x
one has that a rsp of Ox o+ p, ., Will be {z/z1,21}.

Following with the same procedure that Campillo uses in [1, Chap. II] for al-
gebroid curves, we find a finite sequence of positive integers hg, h1, ..., h,, a fi-
nite set of subindices {so, $1,..., 54}, S0 = 0, positive integers ki, ko, ... ... , kg with
2 < k; < hg, and a collection of expressions (1), called Hamburger-Noether expan-
sion of the valuation v in the rsp {z,y}. The data h;, 0 < j < s,, s; and k;,
0 <i < g are independent of the rsp.

2
Y = Qap1x + ap2T + -+ (L()hOJZ'hO -+ xhozl
T = z{“ 29
hsl 1
281—2 = 251 1 281 b b (1)
_ s1 s1
281—1 - a81k‘12 + + asﬂlslzsl + 281 2814—1
— kg hsg h“g
Zsg—1 = aSgkgzsg + -+ aSgh»q ng + Zsg U

The change of row in the above expansion is related to the change of position of the
blowing-up center. u is one of the regular parameters of Oxw) p, .

2.2 The dual graph

Following the results of Spivakovsky [5], for each valuation v there exists a collection
of non-negative integers:

geN

m; € N, for 1 <i<g+1,m; >2fori <g, and, myy1 = 1;

o) € N, for 1<i<g,1<j<my a? >0
such that if we denote

i—1 my

sza ZZa(k—i-Za(

k=1 p=1

where 1 <i<g+1,0<m<m;—1land 1 <a< aﬁ,?ﬂ, the above set of numbers
exhausts the set {1,2,..., N + 1}. The dual graph associated to v, G(v) = aray
will be the one that appears at the top of the next page.

Moreover, there exist some values {3}/, such that, the set {3;}{_, generates
the semigroup ¢*. These values can be obtained from the dual graph and vice-versa
(see [5] and [6]).

This dual graph is weighted by a dynamical form. That is to say, G(v) is obtained
as a limit graph G(v) = lim;—.G; where the weights of the vertices of G(v) and
of their homologous ones in some G;’s can be different (see [6, chap. 5]). There
exists an equivalent statical form, such that, the weight of each vertex is the ”age”
of the corresponding divisor. This dual graph can be reconstructed easily from the
Hamburger-Noether expansion for v. (See [3]).
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LZ(2,0,1) LZ(3,0,1) LZ(g,O,l)LZ(g-f—l,l,l)

LZ(LO,I) ' . . |

‘

LZ(1,1,1) ‘ LZ(2,1,1) ‘ LZ(g,m)
r r

1 2 g

Definition 3 Let C;, 0 <1 < g, be an analytically irreducible curve of X. We say
that C; has (i — 1)-Puiseuz exponents if the total transform of C; in X5 @0,1) 15 @
divisor with normal crossings and the strict transform meets LZ(z‘,O,l) transversely
m one point.

Definition 4 Let C be the family of analytically irreducible curves, whose strict
transforms in XN) are smooth and meets Ly transversely. Let C; be a curve with
(1 — 1)-Puiseuz exponents. C; is said to have mazimal contact with C if the strict

transform of C; in X™) meets ngml) (necessarily transversely) and no other ex-
ceptional curves. We denote by Lg»N) the strict transform of L; in X0,

Above discussion does not take into account the case a(19+1) = 0. In that case, the

curves in C will be required to be transverse not only to Ly but also to LZ(g,mg_l,O)'

Proposition 1 a) Any generating sequence for a divisorial valuation contains a
subsequence {Q;}o<i<g such that each curve Cg, whose equation is given by Q; has
(1 — 1)-Puiseux exponents.

b) If a(19+1) = 0 then {Qi}o<i<q is @ minimal generating sequence of v. If a(19+1) >

0, every generating sequence, {Q;}o<i<g+1, contains a subsequence {Q;}o<i<y as in
a) and the curve Cq,,, belongs to C.
c) {3 = v(Qi) bo<i<g is a minimal system of generators for the semigroup ¢+.

(See [6, chap. 8])

Proposition 2 A set {Q;}ier where Q; € m, is a generating sequence of v if, and
only if, the K-algebra gr,R is generated by the images of Q; in gr,R.

Proof. ”"Only if” is obvious.
Conversely, suppose that Q; = Q; + P+ generates gr, R. We are going to prove

that if « € ¢ then P, = P,. The inclusion P, C P, is trivial. To prove the
opposite inclusion, we remark that if o, 3 € ¢* and o < 3, one has P; C P, and
P3 C P,. Let f € P, be such that v(f) = fy > «, then f € P, and f—l—Pﬂar € gr,R

is a homogeneous element. Since f + Pﬂar = Y emrcm Ay [1Q} for some M’ one

has f — Y e AL TIQT € P/@ar, and obviously, f € Pj + P/@ar. We can write
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f+fo € P/@ar, for some fy € Pg and similarly, f + fo € Pj + P/@T for some

B1 € ¢F, 81 > [o. Iterating this process, there exist Gy < (1 < --- < 3; < ---, with
B; € ¢T, such that f € P+ P+ for each i, therefore

=0

Now, we prove that N2o(Ps, + Pg+) = NiZ(Pg, +m'). Since v is a divisorial

valuation, v has a minimal generating sequence {G;};cr and if f € P with § € ¢

then,
f= Z AWHGz‘%

yeEMoEM

for M = {y = (y0,.., )|k € N, S} 78 > B}

If pg = mz’n{z;?:() il (Y05 - - -y yk) € M}, one has that, f € m/, and moreover
ps > pp if B> 3. Thus N2, (P, + P/@j) C Ny (Pp, +m'). The opposite inclusion
is easy, because R is a noetherian domain and Pj is a m-primary ideal for all (3.

To complete the proof, consider the quotient ring R/Pj, and set m + P; = m.
One has, in this ring,

(P, +m')=(\m'=0=Pj.
=0 =0

Then, N2y (P, + Pg+) = P, and f € Py C F,.

3 The Poincaré series

3.1

Let v be a valuation and (1) the Hamburger-Noether expansion of v with respect
to a rsp of R, {x,y}. The set C of Definition 4 is the set of analytically irreducible
curves f of genus g whose Hamburger-Noether expansion is the same as (1), except
for the last row, which looks like

_ k hs
Zsg—1 = QsghgZs) 0+ asyhsg'zSgg T

for a suitable (and obvious) basis of the maximal ideal of R/(f).

The curves C;,0 < i < g, of maximal contact with C, will have a Hamburger-
Noether expansion whose first s; — 1 rows coincide with those of (1) and whose last
row will be zg,_1 = agk, 25 + - - -.

If feR,v(f)=mingec(f,g), where (f,g) denotes the intersection multiplicity
between the algebroid curves Cy and Cy, whose equations are given by f and g,
respectively (see [6]). It follows that the Hamburger-Noether expansion of v yields
the value v(f). Indeed: put z,, = ¢ in the Hamburger-Noether expansion of v,
then the curves of C have a Hamburger-Noether expansion similar to (1) with v =
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apt + art* + - -;a; € K. Thus, v(f) = minu[f(x(t,u),y(t,u))], where p; is the
natural discrete valuation of the field K ((t)) and, z(¢,u) and y(t,u) are obtained by
reverse substitution in the Hamburger-Noether expansion.

Therefore, if f(x(t,u),y(t,u)) = Yisp Ai(u)t’, and A;(u) = 3 Ajw’/ we have
v(f) = p+~if, and only if, Aj g =0for j =0,1,...,y—d—1; d=0,1,...,y—1,
and, moreover, some value A; 35,7 =0,1,..., g, does not vanish.

Proposition 3 Let v be a valuation. Then,

a) groR = @peN Pa/ P+

b) dimg P,/P.,+ < 00, for all a in N. (As K-vector space).

c) Assume that the number of elements for a generating sequence of v is r + 1.
Then there exist a K-algebra graduation for the polynomial ring S = K[Xo, ..., X;]
and a 0-degree epimorphism 1 : S — gr,R of graded algebras.

The proof is obvious.

Definition 5 Let v be a valuation. We define the Poincaré series of gr,R to be

ngvR(t> = Z dimK(Pa/Pa+)ta.

a=0

Remark 2 Consider the epimorphism ¢ : S — gr, R of Proposition 3. If J = Kery
then J is a homogeneous S-ideal J = @ N Jo- For each r € N, such that there
exists a generating sequence for v with r 4+ 1 elements, consider the exact sequence
of graded algebras,

0—>J—>Si>gr,,R—>0
that allow us to write the Poincaré series of gr, R in relation to the Poincaré series
of the graded rings of the K-algebras J and S, as follows
Hyp,u(t) = Hs(t) — H(b).

If ro denotes the minimum of the r’s satisfying the above condition, the Poincaré
series of S is Hg(t) = 1/(IT:%(1 — t7)).

Theorem 1 Let v be a valuation and {BiYo<i<g+1 the values of 2.2. Define e; =
g.cd.(Bo,...,0:); 1=0,...,9+ 1 and N; = e;_1/e;. Then:

If o\ £ 0, one has the equality

1 Z1—Nh
H

gror(t) = 1 _ tho z:l_Il 1 _ B 1 _ thenr

and if a9 =0, then

1 b
nguR(t) = 1 — 5o P 1 — 51— o
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Proof. Consider the Hamburger-Noether expansion (1) for v. For each o € ¢ we
define the K-vector spaces homomorphism, 7, : P, — KJu| by

Ya(f) = Z Ajiuj

i+j=a,Aj; #0
where f € P,, z(t,u) and y(t,u) are as in 3.1 and,

f(a(t, ) =2 Ailu
>0
and A;(u) = 3; Aijul.
By 3.1 if v(f) = «, then, v,(f) # 0 and if v(f) > «a, v.(f) = 0. Therefore,
Kerv, = P,+ and obviously,

Vo Pa/Pa+ — K[u]

is a vector space monomorphism.
Let {Qi}o<i<g+1 be a generating sequence for v such that v(Q;) = 8; € Z. This

sequence is minimal if a{?™" £ 0. Put 75, (Q:) = Ai(u) € K[u] and Q; = Qi + P; - €

gr,R. Moreover, for all « € N, P, /P,+ is the homogeneous component of degree «
of K[Qo,Q1,...,Qg+1] = gruR, therefore it is generated by

g+1 g+1

{H QZ“! ZUsz = a}
i=0 i=0

as a K-vector space. Since P,/P,+ is isomorphic to 7,(FP./P,+) as a vector space,
this space will be generated by

g+1 g+1

{H)[Az‘(u)]vi | ;}vi@ =«

hence the dimension of (P,/P,+) and 7, (P,/P,+) as K-vector spaces coincides.
Now, we take an index 7 € N,0 <7 < g. Then, v(Q;) and hence 75 (Q;) are

constant under the change of variables u — u+ct for any ¢ € K, hence A;(u) = A; €

K. Ay1(u) € K[u] and so the dimension of the space generated by the products,

g+1

g
A={]T A" [Agma ()] | szﬁz = a}
i=0

is equal to dimg (P, /Pa+).

Let us observe that if 37 v:3 = a = 37, v’ﬁz, then JT7_o(Q;)" = T
mod P,+ for a suitable ¢ € K. To show it, we note that Q;(x(t,u),y(t,
AP + Mi(t,u), 0 # A; € K, Mi(t,u) € K[[t,u]], ord(M;(t,u)) > f;.
applying 3.1

0(Q:)"
u)

) =
Then,

v H —CH = we[At* + M(t,u) — c(A't* + M'(t,u))] > «
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for ¢ = AJA" (u € {aot + ait®> + ---}). The data A, A" € K,A # 0 # A’ and
M(t,u), M'(t,u) € K[[t,u]], ord(M(t,u)) > o < ord(M'(t,u)) are the ones got by
substituting and computing.

Consider the set

H, = {v* € N] there exists a (g + 1)-uple of non negative integers
(vo, - - ., vy) such that 39 v;B; + v* By = a }.
Since the K-vector space generated by A and the vector space generated by
g+1

{[Agy1(u)]’s+] ; v = a}

coincide, and its dimension is card(H,), one has that

Hyor(t) = > card(Hy)t".
aeN

In order to give an explicit computation of H,, r(t) we define

S 0 ifad¢ H,
@11 ifae H,

and then card(H,) = Y 4eN Pa.a, therefore,

Hyor(t) = > card(Ho)t* = > (D hao)t® = > > kot

aelN aeN acN aeN aeN

The second equality holds because for each o € N the values h, , vanish all but a
finite number of a.
Thus, one can write

nguR(t> = Z hmota + Z ha,lta 4+ ...
aeN aeN

and since {fBo, . . ., 3,} generates the semigroup of values ¢, the following equalities
hold

- 0 ifadgo"
711 ifaegt

hoo_ 0 if&—a@+1¢¢+
Sl 1 ifa—aBy € 6T
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Now, the Poincaré series can be written as follows

ngvR(t) = Z tP + Z tp+/ég+1 I Z tp+(a—1),@g+1 I
pegt peSt pe+

and making the change p = a — (a — 1)B,41 in the a-th term, we obtain:

( Z tp)(l + t/ég-&-l 4+ . 4 t(a—l)/ég-&-l + .- ) — H¢+(t>(1/1 . t’é‘”‘l).
pept

The right hand side of this equality follows from the fact that the first series is the
Poincaré series of a curve in C, that we denote by Hy+(t), and the second one is a
geometric series.

Let C' € C be an analytically irreducible curve with semigroup of values ¢, and
maximal contact values {3;}7_,. If a € ¢, there exists a unique expression of «,
a=iyfy+- -+ ing such that its indices satisfy the conditions,

i0>0,i; <Nj,i<j<g. (2)

(See [1, 4.3.9]).
Then,

H¢+ = Z tioﬂ_0+"'+ig5g _

{i0,.-vig, satisfy (2)}
= (3 Py N hy (S piefe) =

’iQEN 0<i1 <N, 0§i9<Ng

1 1—tMBA 1 Nefs
T 1t 1 —th 1B

Finally, the theorem is completed in the case a(19+1) # 0, and in the remaining

case it suffices to simplify the formula considering that (,.; = N,3, according to
6, 8.13].

Theorem 2 Let v be a valuation. The dual graph and the Poincaré series Hy,, g (t)
are equivalent data.

Proof. From the dual graph is easy to compute the data {3;};2, and from them
the Poincaré series Hy,, g(?).
Conversely, we are going to obtain the values 3; from Hg, g(t). If H, r(t) =
%, a;t’, one has ¢f = {jla; # 0}. Let {3;}_, be the minimal system of generators
for ¢ and write,

1 s 1 91— b
B, =175 U956 1 and Ho+(t) = 75, S
If Hy(t) = Hy r(t), one has alf™ = 0. If H,(t) # Hgyr, r(t) we have the equality
Hgy r(t) = Hy+ (1) l—tég'*‘l therefore

t/ég-&-l =1 (H¢+ (t>/nguR(t>)'
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Thus, we obtain (3,41, that together with {3;}{_, are some data which show the
dual graph of v.
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