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Abstract

In the preceding article [T], we have constructed several examples of slant
immersions into complex Euclidean spaces. The purpose of this article is to
construct some additional examples to get slant and full immersions, in the
sense of slantedness, into complex Euclidean spaces with arbitrary dimension,
codimension, and positive slant angle.

1 Introduction

Let f be an immersion of a differentiable manifold M into an almost Hermitian

manifold (N, g, J) with an almost complex structure J and an almost Hermitian
metric g. For a nonzero vector X tangential to M at p ∈ M , the angle θ(X)
between Jf∗X and f∗(TpM),

(1.1) θ(X) = ∠(Jf∗X, f∗(TpM)) ∈ [0, π/2], 0 6= X ∈ TpM, p ∈M,

is called the Wirtinger angle. The immersion f is called a slant immersion with the
slant angle α, or an α-slant immersion, if θ(X) is constant α ([C1]).

Since the notion of a slant immersion is relatively new, it is necessary to construct
as many examples as possible in order to make the argument about slant immersions

substantial. In [T], we have proved the following :

Theorem. ([T])

1. For any natural numbers n and m with n ≤ m, and for any angle α ∈ (0, π/2],
there exists an α-slant spherical homothetic full immersion f : I2n → C2m of

the standard open 2n-cube I2n into C2m.
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2. For any natural numbers n and m with n ≤ m, there exists a totally real
spherical homothetic full immersion f : T 2n→ C2m of a flat 2n-torus T 2n into

C2m.

We used cartesian product and direct sum of immersions to construct these
immersions. The purpose of this article is to improve the theorem above and to
show the following :

Theorem

1. For any natural numbers n and m with 2n ≤ m, and any angle α ∈ (0, π/2),
we can construct an immersion f : I2n → Cm of the standard open 2n-cube
I2n into Cm so that f is α-slant, homothetic, and full over C.

2. For any natural numbers n and m with n ≤ m, there exists a totally real
spherical homothetic full immersion f : In → Cm of the standard open n-cube

In, and also a totally real spherical homothetic full immersion f̃ : T n → Cm
of a flat n-torus T n into Cm.

Here in (1), the fullness over C means fullness in the sense of slant immersions,
namely :

Definition We call an immersion f : M → (N, g, J) full over C, if and only if
the image f(M) is not contained in any totally geodesic almost Hermitian subman-
ifold (N ′, g|N ′ , J|N ′ ) with dim N ′ < dim N .

We recall here that if f : M → Cm is a slant immersion with the slant angle
α < π/2, then M is even dimensional and noncompact, and also that if α > 0,
then 2dim M ≤ m ([CT 1, 2]). In this sense, the theorem above shows the exis-

tence of slant full-over-C immersions into complex Euclidean spaces with all possible
dimensions and codimensions, and with any prescribed positive slant angle.

2 Preliminaries

In this article we consider immersions of connected manifolds into complex Euclidean
spaces. We use the notations of [T]. The direct sum and tensor product of immersions

into Euclidean spaces were defined in [C2].

For an immersion f : M → Cm = (E2m, < , >, J), we denote by T{ the set of

all vectors tangential to f(M), identifying tangent vectors with position vectors in
E2m,

(2.1) Tf = {f∗X ∈ E2m |X ∈ TpM, p ∈M } ⊂ E2m.

Tf is just a subset of E2m without any bundle structure. The relation between the
usual fullness and the fullness over C can be stated as in the following lemma:
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Lemma 1 We consider the following eight conditions:

1. The immersion f is full, i.e., the image f(M) is not contained in any (2m−1)-

plane in E2m.

2. The set Tf is not contained in any (2m − 1)-dimensional linear subspace of
E2m, i.e., any (2m− 1)-plane through the origin O of E2m.

3. The image f(M) is not contained in any (2m−1)-dimensional linear subspace
of E2m.

4. The image f(M) is not contained in any (2m− 2)-plane in E2m.

5. The set Tf is not contained in any (2m − 2)-dimensional linear subspace of

E2m.

6. The set Tf∪J(Tf) is not contained in any (2m−2)-dimensional linear subspace

of E2m.

7. The set Tf is not contained in any J-invariant (2m − 2)-dimensional linear
subspace of E2m.

8. The immersion f is full over C, i.e., the image f(M) is not contained in any
(2m − 2)-plane in E2m whose tangent space, the (2m − 2)-plane through O
parallel to the (2m− 2)-plane, is invariant under J .

Then, the relation among these conditions is:

(2.2) (1)⇔ (2)⇒ (3) ⇒ (4)⇔ (5)⇒ (6)⇔ (7)⇔ (8).

Proof. Clear. 2

As we did in [T], we start from the following fact:

Lemma 2 For any angle α ∈ (0, π/2) and any positive number κ, we can find a
radius r and an α-slant homothetic full immersion f : I2 → C2 of the standard open
square I2 into C2 with homothetic factor κ, such that the image f(I2) is contained

in the 3-sphere S3(r) centered at the origin.
This comes from the existence of spherical slant surfaces in C2 ([CT2] Lemma

4.4 and Theorem 1.5). Such spherical slant surfaces are flat. Since the slant angle is
determined by the immersed image and is invariant under homotheties with respect

to the origin, we can reparametrize the surface as stated in the lemma above.

The following lemma gives slant surfaces in C3, which are full over C, although
they may not be full in the ordinary sense.

Lemma 3 For any angle α ∈ (0, π/2) and any positive number κ, we can find
an immersion f : I2 → C3 of the standard open square I2 into C3 which is α-
slant, homothetic with homothetic factor κ, and whose image is not contained in

any 4-plane in E6. In particular, f is full over C.
Proof. Pick any α1 ∈ (α, π/2). We can choose a positive number c such that

cos α = (cosα1 + c)/(1 + c), and then positive numbers κ1 and κ2 so that (κ1)
2 +
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(κ2)
2 = κ2 and (κ2/κ1)

2 = c. Let f : I2 → S3(r) ⊂ C2 be an α1-slant homothetic
spherical full immersion with the homothetic factor κ1 described in Lemma 2. Orient

I2 so that the extended slant angle (cf. [T]) β1 of f coincides with α1. Parametrize
I2 by (s, t) and define a 0-slant homothety h : I2 → C by h(s, t) = κ2(s + it).

By Lemma 2 of [T], the direct sum f ⊕ h : I2 → C3 is a homothetic slant
immersion with the homothetic factor κ and the extended slant angle β given by

(2.3) β = arccos

(
(κ1)

2 cosα1 + (κ2)
2

(κ1)2 + (κ1)2

)
= α.

Note that β coincides with the slant angle of f ⊕ h, since α < π/2.

To show the fullness over C, we put

(2.4) X1 = (1, 0), X2 = (0, 1),

(2.5)
A = {(f∗)pX1 | p ∈ I2} ⊂ S3(κ1) ⊂ E4,

B = {(f∗)pX2 | p ∈ I2} ⊂ S3(κ1) ⊂ E4,

(2.6)
Ã = {((f ⊕ h)∗)pX1 | p ∈ I2} = A× (κ2, 0) ⊂ E6,
B̃ = {((f ⊕ h)∗)pX2 | p ∈ I2} = B × (0, κ2) ⊂ E6.

Then, A ∪ B ⊂ Tf and Ã ∪ B̃ ⊂ Tf⊕h. Note that, since f is a spherical immersion,
neither A nor B is contained in any 1-dimensional linear subspace of E4.

Case 1. Suppose that A and B are contained in 2-dimensional linear subspaces
of E4. Then, all s-curves and t-curves on f(I2) are plane curves, i. e., portions of
circles on the 3-sphere S3(r). If A and B are contained in a common 3-dimensional

linear subspace of E4, then Tf is also contained in this 3-dimensional linear subspace,
which contradicts the fullness of f by Lemma 1. Therefore, A and B are contained
in two mutually complementary linear subspaces, say V and W , respectively. Hence,
the s-curve on (f ⊕ h)(I2) through a point (f ⊕ h)(s0, t0) is a helicoid in V (s0, t0)×
E × {κ2t0}, and the t-curve is a helicoid in W (s0, t0) × {κ2s0} × E, where V (s0, t0)
and W (s0, t0) are 2-planes in E4 passing through the point f(s0, t0) and parallel to
V and W , respectively. This shows that the immersion f ⊕ h is full in E6.

Case 2. Suppose that one of A and B, say A, is contained in a 3-dimensional
linear subspace W in E4 but not contained in any 2-dimensional linear subspace of

E4. Since f is full, A ∪ B is not contained in W , and hence we can pick a point b1

in B −W . B is connected in S3(κ1) and not a singleton, so we can pick two other
points b2 and b3 in B such that the three points b1, b2, and b3 are not collinear.

Next, we can pick three points a1, a2, and a3 in A such that they are linearly

independent in W as position vectors, and moreover that the 2-plane passing through
these three points is not parallel to the 2-plane passing through b1, b2, and b3. The
reason is as follows. If A is contained entirely in a 2-plane in E4 parallel to the 2-
plane passing through b1, b2, and b3, thenA is contained in a small, not a great, circle

on the 2-sphere S3(κ1)∩W . Let v be a vector in W perpendicular to this small circle.
Then, for any point p0 ∈ I2 the s-curve c(s) on f(I2) through f(p0) is a helicoid in
a 3-plane W̃ through f(p0) in E4 parallel to W , satisfying < c′(s), v >= const 6= 0.
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This contradicts the fact that c(s) lies in the 2-sphere S3(r) ∩ W̃ . Accordingly, if

we put

(2.7)
b2 − b1 = λ1a1 + λ2a2 + λ3a3 + λ4b1,
b3 − b1 = µ1a1 + µ2a2 + µ3a3 + µ4b1,

then at least one of λ1 + λ2 + λ3, λ4, µ1 + µ2 + µ3, and µ4 is nonzero. Put ai =

(ai1, ai2, ai3, ai4), bi = (bi1, bi2, bi3, bi4), and consider the matrix

(2.8)



a11 a12 a13 a14 κ2 0
a21 a22 a23 a24 κ2 0
a31 a32 a33 a34 κ2 0

b11 b12 b13 b14 0 κ2

b21 b22 b23 b24 0 κ2

b31 b32 b33 b34 0 κ2


.

By elementary transformation of matrix, we get

(2.9)



a11 a12 a13 a14 κ2 0

a21 a22 a23 a24 κ2 0
a31 a32 a33 a34 κ2 0
b11 b12 b13 b14 0 κ2

0 0 0 0 −(λ1 + λ2 + λ3)κ2 −λ4κ2

0 0 0 0 −(µ1 + µ2 + µ3)κ2 −µ4κ2


.

The rank of this matrix is at least 5, which means that Ã ∪ B̃ is not contained in

any 4-dimensional linear subspace of E6.

Case 3. Suppose that one of A and B, say A, is not contained in any 3-
dimensional linear subspace of E4. We pick up four points a1, ..., a4 in A whose

position vectors are linearly independent in E4, and two points b1, b2 in B whose
position vectors are linearly independent in E4. If we put ai = (ai1, ai2, ai3, ai4) and
bi = (bi1, bi2, bi3, bi4), then the rank of the matrix

(2.10)



a11 a12 a13 a14 κ2 0

a21 a22 a23 a24 κ2 0
a31 a32 a33 a34 κ2 0
a41 a42 a43 a44 κ2 0
b11 b12 b13 b14 0 κ2

b21 b22 b23 b24 0 κ2


is at least 5. Therefore, Ã∪ B̃ is not contained in any 4-dimensional linear subspace

of E6.

In any of Cases 1 to 3, the image of f ⊕ h is not contained in any 4-plane in E6

by Lemma 1, and hence f ⊕ h is full over C. 2

We alter the statements of Propositions 1 and 2 in [T] from the view point of
fullness over C, and get the following lemmas 4 to 6.
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Lemma 4 If the two immersions f : M → Cm and h : M ′ → Cl are full over C,
then the cartesian product f × h : M ×M ′ → Cm+l is also full over C.

Proof. Since

(2.11) Tf×h ⊃ Tf ∪ Th, J(Tf×h) ⊃ J(Tf ) ∪ J(Th),

the equivalence of (6) and (8) of Lemma 1 means our claim. Note that in (6) the
minimal linear subspace containing Tf ∪ J(Tf ) is invariant under J . 2

Lemma 5 Let f : In → Em be an immersion such that the image f(In) is not

contained in any l-plane in Em (l < m). Then, there is a spherical full immersion
h : In → E2n such that the image (f ⊕ h)(In) of the direct sum f ⊕ h : In → Em+2n

is not contained in any (l + 2n)-plane in Em+2n.

Proof. The proof of Proposition 2 (ii) of [T] is valid also here after a small
adjustment, just choosing (l+1) points p0, ..., pl in Step 2 instead of choosing (m+1)
points, and accordingly (l + 2n + 1) points in Step 5. 2

Lemma 6 Let f : In → Em be an immersion of the standard open n-cube In

into Em. Assume that the image f(In) is not contained in any (m− 1)-dimensional
linear subspace of Em. Then, we can choose a spherical full immersion h : In → E2n

such that the image (f ⊗h)(In) of the tensor product f ⊗h : In→ Em⊗E2n = E2mn

is not contained in any (2mn − 1)-dimensional linear subspace of E2mn.

Proof. The idea is basically the same as that of Proposition 2 (ii) of [T].

Step 1. Let T n(r) be the same as in Step 1 of Proposition 2 (ii) of [T]. Pick 2n

points q1, ..., q2n in T n(r) whose position vectors are linearly independent in E2n.

Step 2. Pick up m points p1, ..., pm in In such that f(p1), ..., f(pm) are linearly

independent in Em. Choose ε > 0 such that, if we pick any point xi out of each
ε-neighborhood Vi of f(pi) in Em, then x1, ..., xm are linearly independent in Em.

Step 3. Divide In into small cubes and pick Ai for each i = 1, ..., m in the same

way as in Step 3 of Proposition 2 (ii) of [T], except for the range of the index i and
replacing the Ui’s with Vi’s.

Step 4. Let the h and pij ’s be the same as in Step 4 of Proposition 2 (ii) of [T],
except for the ranges of the indices i, j and that h(pij) = qj.

Step 5. The 2mn points (f ⊗ h)(pij), i = 1, ..., m, j = 1, ..., 2n are linearly
independent in Em ⊗ E2n, and so the image (f ⊗ h)(In) is not contained in any
(2mn− 1)-dimensional linear subspace of E2mn. 2

3 Construction

We construct the wanted immersions by combining the slant surfaces of Lemmas
2 and 3 by means of cartesian product ×, direct sum ⊕, and tensor product ⊗ of

immersions.

Case 1. Assume α ∈ (0, π/2).

Let ϕj : I2 → C2, j = 0, 1, ..., k be spherical homothetic full slant immersions
described in Lemma 2, and let ψ0 : I2 → C3 be a slant full immersion over C
obtained by Lemma 3.



Construction of slant immersions II 575

By Theorem (1) of [T], we already have α-slant spherical homothetic full immer-
sions of types

(3.1) f = ϕ1 × · · · × ϕk : I2k → C2k

and

(3.2) f ′ = ϕ0 ⊕ h1 ⊕ · · · ⊕ hk′−1 : I2 → C2k′

by a suitable choice of h1, ..., hk′−1.
Replacing ϕ0 in (3.2) with ψ0 and choosing ĥ1, ..., ĥk̂−1

suitably, we get by Lemma
5 above and Lemma 2 of [T] a slant homothetic immersion

(3.3) f̂ = ψ0 ⊕ ĥ1 ⊕ · · · ⊕ ĥ
k̂−1

: I2 → C2k̂+1

whose image f̂(I2) is not contained in any 4k̂-plane in E4k̂+2. By Lemma 6 above
and Lemma 3 of [T], we also have a slant homothetic immersion

(3.4) f̃ = ϕ0 ⊗ h̃1 ⊗ · · · ⊗ h̃
k̃

: I2 → C2×4k̃

whose image f̃(I2) is not contained in any (4× 4k̃ − 1)-dimensional linear subspace

of E4×4k̃ . In choosing ψ0, ĥi’s, ϕ0 and h̃i’s of (3.3) and (3.4), we have to be careful

about the change of slant angles so that f̂ and f̃ have eventually the prescribed slant
angle α. This can be done in the similar way as we did in the proof of Proposition
of [T], but we don’t state the detail here.

The immersions of the types (3.1),...,(3.4) are all full over C by Lemma 1. There-

fore, for any combination f1, ..., fl of these immersions such that the sum of the
dimensions of the immersed manifolds is equal to 2n, and at the same time, the sum
of the real dimensions of the target spaces is equal to 2m, the cartesian product

(3.5) f1 × · · · × fl : I2n → Cm

is also α-slant and full over C by Lemma 4 above and Proposition 1 of [T] .

Case 2. Assume that α = π/2.
Note that the dimension of immersed manifolds does not have to be even in this

case, and that the statements in Propositions 1 and 2 of [T] hold also for n = 1. Let

ϕ be a totally real immersion defined by

(3.6) ϕ : I → C ; ϕ(t) = e2πit.

Replacing the immersions ϕj’s in (3.1) and (3.2) by this ϕ, we get the first half of
our conclusion.

Since T n = S1 × · · · × S1 and S1 = Ī/{0, 1}, the second half of Case 2 is
obtained immediately.

This completes our construction.
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