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Abstract

We obtain new lower bounds on the size of a t-fold blocking set in AG(2, q),
in the case that (t, q) = 1. As a consequence, we get that the Lunelli-Sce
conjecture on the maximal size of a (k, n)-arc is true in the affine plane.

1 Introduction

Let A = AG(2, q) be the desarguesian affine plane of order q. A nucleus of a set S

of q + 1 points of A, is a point P 6∈ S, with the property, that every line through
P meets the set S (exactly once). The main result [4] is, that a (q + 1)-set has at
most q − 1 nuclei. The only known examples of sets having this number of nuclei,
are a set consisting of a line together with a point outside, and a sporadic example

in the plane of order 5, where the 10 points of a Desargues configuration can be
partitioned into sets of size 6 and 4, where the second set consists precisely of the
nuclei of the first. It appears to be a difficult problem, to characterize the sets S
with exactly this number of nuclei. Partial results in this direction were obtained in

[3].
In [2], the notion of nucleus was extended to arbitrary sets. Here P is a (gen-

eralized) nucleus of S, if P 6∈ S, and every line through P contains a point of S.

The main result was, that a set of size q+ k has at most k(q− 1) nuclei, and again
this result is best possible (for k < q). As a corollary of this result, one obtains the
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lower bound 2q − 1 for the size of a blocking set, a result conjectured by Doyen [8],
and proved first by Jamison [10] and independently by Brouwer and Schrijver [5].

A set S is a blocking set if every line contains at least one point of S. Hence if S is
a blocking set, all other points are nuclei of S.

Using essentially the methods of Jamison and Brouwer-Schrijver, Bruen [6] ob-
tained the lower bound (t+ 1)q − t, for the size of t-fold blocking set, that is a set

intersecting every line at least t times. For certain pairs (t, q), this bound is again
sharp. It seemed therefore natural to expect, that this bound also would follow as
a corollary from a more general result on multiple nuclei. It is a bit surprising that

this only works if (t, q) = 1, more surprising is, that the bound we get is essentially
better, namely (t+ 1)q − 1.

2 Multiple nuclei

Let S be a collection of points in A = AG(2, q). A point P 6∈ S is called a t-fold
nucleus of S, if every line through P meets the set S in at least t points. In order
to possess a t-fold nucleus, the set S obviously has to have at least t(q + 1) points.

The following theorem gives an upper bound on the number of t-fold nuclei of a set.
Here p denotes the characteristic of GF(q).

Theorem 2.1 The number of t-fold nuclei of a set S of t(q + 1) + k − 1 points in

AG(2, q), is at most k(q − 1), provided that
(
t+k−1
k

)
6= 0 mod p.

Proof. We restrict to the case k < q, since otherwise everything is obvious. We
may identify the points of A with the elements of GF(q2) in a suitable way. Through

every point of A there are q+1 lines, one from each parallel class. There is a natural
correspondence between the q + 1 different parallel classes, and the (q + 1)-st roots
of unity in GF(q2). For two points a and b, the direction of the line joining them
corresponds to the value of (a− b)q−1.

With the set S, considered as a subset of GF(q2), we associate the following
polynomial in two variables

F (X, T ) =
∏
s∈S

(T − (X − s)q−1).

Consider now a t-fold nucleus x of S. This means, that every line through x contains

at least t points of S. If we consider the multiset

{(x− s)q−1 | s ∈ S},

then every (q + 1)-st root of unity occurs at least t times. This implies that the
polynomial F (x, T ) ∈ GF(q)[T ] is divisible by

(T q+1 − 1)t,

whenever x is a t-fold nucleus of S. Let σj(X) ∈ GF(q)[X] denote the j-th elemen-
tary symmetric function of the set of polynomials:

{(X − s)q−1 | s ∈ S}.
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Note that σj has degree at most j(q − 1), and the degree equals j(q − 1), precisely

if the binomial coefficient
(
|S|
j

)
doesn’t vanish. If the polynomial F is expanded in

powers of the variable T , we get

F (X, T ) =
|S|∑
j=0

(−1)jσj(X)T |S|−j.

If we now substitute for the variable X a t-fold nucleus x of S, and use the divisibility
property above, we get (with |S| = t(q + 1) + k − 1):

F (x, T ) = (T q+1 − 1)t(T k + terms of lower degree ).

Expanding this again, we note that the coefficient of T t(q+1)−1 is zero, since k < q.
Since this coefficient equals (−1)kσk(x), we see that σk(x) = 0, for all t-fold nuclei
x of S. If (

t(q + 1) + k − 1

k

)
6= 0,

then σk(X) has degree k(q − 1), and hence the number of t-fold nuclei of S is at
most this number. 2

If the binomial coefficient vanishes, then it might be that σk(X) vanishes iden-
tically, and we have no conclusion (this indeed may happen).

3 Multiple blocking sets and (k, n)-arcs

Recall that a t-fold blocking set is a set S, meeting every line at least t times. For
such a set, every other point of the plane is a t-fold nucleus. Using the result in the
previous section, we now can prove the following.

Theorem 3.1 Let S be a t-fold blocking set in AG(2, q), where (t, q) = 1. Then

|S| ≥ (t+ 1)q − 1.

Proof. We show that a set of size (t+ 1)q − 2 = t(q + 1) + q − t− 2 cannot be a
t-fold blocking set. First of all consider the binomial coefficient

(
q − t− 2 + t

q − t− 1

)
=

(
q − 2

t− 1

)
.

It is easily verified, for instance using Lucas’ Theorem, that this only vanishes if
p | t, where p is the characteristic of GF(q) (we obviously may assume t ≤ q). Since
(t, q) = 1, this is not the case. It follows, that we may apply the bound on the

number of t-fold nuclei, and we get that S has at most k(q− 1) = (q− t− 1)(q− 1)
nuclei. We now get a contradiction, since

(q − t− 1)(q − 1) + (t+ 1)q − 2 = q2 − q + t− 1 < q2.
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A (k, n)-arc (in PG(2, q) or AG(2, q)), is a set S of k points with the property,
that every line contains at most n points of S. Most authors add the condition, that

there should be some line meeting S in exactly n points. There is an obvious relation
between (k, n)-arcs and multiple blocking sets: the complement of a (k, n)-arc is a
(q − n)-fold blocking set of size q2 − k.

It was shown by Barlotti [1], that k ≤ (n − 1)q + n. Equality in the bound is

only possible if n | q. In fact the only known non-trivial examples (that is with
1 < n < q) meeting the bound with equality are hyperovals and more generally,
Denniston arcs [7], with q = 2h, and n an arbitrary divisor of q. It is conjectured
[12], that no (non-trivial) examples exist for odd q, but this has only been proved

for q a power of 3 and n = 3 or q/3 [12]. In the case that n does not divide q, that is
(n, q) = 1 it was shown by Lunelli and Sce [11], that k ≤ (n−1)q+(n−3) provided
that n ≥ 4, and k ≤ (n − 1)q + (n − 4) if n ≥ 9. Moreover they conjectured, that
if (n, q) = 1 then k ≤ (n− 1)q + 1. An infinite sequence of examples realizing this

bound (with n = (q+1)/2) is provided by the set consisting of the interior points of
an irreducible conic, together with one arbitrary point on the conic. Note that this
set is in fact contained in the affine plane if we take for the line at infinity a tangent

of the conic (not the one at the chosen point of course). Other examples meeting
the bound are conics in planes of odd order, and unitals (in planes of square order).
This last example is not contained in an affine plane.

In general their conjecture is false, as was shown by Hill and Mason [9]. A typical
counterexample, for q a square and n = q−√q− 1, is the complement of the set of

points of two disjoint Baer subplanes. From our bound on t-fold blocking sets in the
affine plane however we see that this exactly corresponds to the bound conjectured
by Lunelli and Sce. Hence their conjecture is true for affine planes.
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