The Van Der Put Base for C"-Functions

Stany De Smedt

1 Introduction

Let K be an algebraic extension of Q,, the field of p-adic numbers. As usual,
we write Z, for the ring of p-adic integers and C(z, — K) for the Banach space
of continuous functions from 7, to K. We have the following well-known bases for

C(z, — K): on one hand, we have the Mahler base < i ) (n € N), consisting of

polynomials of degree n (see [3] p. 149 or [1]) and on the other hand we have the van
der Put base {e, | n € N} (see [3] p. 189 or [4] p. 61) consisting of locally constant
functions. e, is defined as follows: eg(x) = 1 and for n > 0, e, is the characteristic
function of the ball {a € Z, | |@ —n| < 1/n}. For every f € C(z, — K) we have
the following uniformly convergent series:

F0 =Y (5] whee a =3 (1) 0
o) = ibnen@) where b = £(0) and by = f(n) — f(n_).

Here n_ is defined as follows.

For every n € Ny, we have a Hensel expansion n = ng+n1p+...+nsp® with ng # 0.
Then n_ = ng +mip + ... +ne_1p* L. We further put v9 = 1, v, = n — n_ = nyp°,
do =1, 0, = p® and n. = n — d,. Remark that |3,| = |y.|. Let f : Z, — K. The

rst) difference quotient ¢, f : V°Z, — K 1s delined by ¢ f(x,y) = —==—-—, where
first) diff i V?z, — K is defined b [WIE) | wh

V22, =7, x Z,\{(z,x) | * € Z,}. f is called continuously differentiable (or strictly

Received by the editors November 1992
Communicated by J. Schmets

Bull. Belg. Math. Soc. 1 (1994), 85 - 98



86 S. De Smedt

differentiable, or uniformly differentiable) at a € z, if lm ¢, f(z,y) exists. We

(z,y)—(a,a)

will also say that f is C! at a.

In a similar way, we may define C"-functions as follows: for n € N, we define
VHiz, = {(@1,...,Tp1) | ;i # x; if @ # j} and the n-th difference quotient
bnf : V'HZ, — K by

¢0f:fand ¢nf(9317$27---a93n+1)

_ 1 f(T2, T3, .., Tny1) — G 1 f (21,73, .., Tpya)
To — X1 .

A function f is called a C™-function if ¢, f can be extended to a continuous function

Onf on z2F!. Recall from (2,3] that ¢, f(z,z,...,z) = () , for all z € z,. The
set of all C"-functions from Z, to K will be denoted by C’"(Z — K). For any
C™-function f, we define

[ lln = max{{|¢;f[ls |0 < j <n}

where || || is the sup norm. (For f: X — K, ||f||s = max.ex | f(2)])
|| || is a norm on C™, making C™ into a Banach space.

For C"-functions the polynomials ( f ) (7 € N) still remain a base, we only have
to add the factor v;vji/2) - - - Vjin) Where v; =4 —i_ and [a] denotes the entire part

of o, to obtain the orthonormal base v;7ji/2) - - - Vji/n] ( f ) . A similar property does

not hold for the van der Put base.

In the case n = 1, we have the following property:

{viei(z) | i e N}FU{(z — i) - e;(z) | i € N} is an orthonormal base for C*(z, — K).
Therefore every continuous differentiable function f can be written under the form
f(z) = Y anen(z) + X bp(x — n)e,(z) where ag = f(0),a, = f(n) — f(n-) — (n —
n_)-f'(n-), by = f'(0) and b, = f'(n) — f'(n_). For details we refer to [3]. The
construction uses the antiderivation map P : C'(z, — K) — C'(z, — K), given by

[ee) +oo n—1
Pf(z) = f(zn)(Tnt1 — zn). Here for x = > a;p’, we write z,, = > a;p’.
n=0 Jj=—00 Jj=—00

The antiderivative P has among others the following properties:

) (Pf) =f
*) P is a linear isometry of C(z, — K) into C*(z, — K)

) If f(x Zanen ) then Pf(x Zan T —n)e,(z).

In this note, we will construct an orthonormal base for C"(z, — K). We will show
that {y7%;(z), 7" ' (z —i)e;(x),. .., (x —i)"e;(z) | i €N} is an orthonormal base for
Cc"(z, — K).
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To prove this, we will use the C"-antiderivative P, : C"'(z, — K) — C"(z, — K)
defined by

1) (g,
Zf< )

Jj+1
m=0 j=0 <j + 1)! .

(merl - xm)

Notice that P; is what we have called P above.

To simplify the notations, we will treat only the case n = 2 in full detail. The
general case may be handled in a similar way. In section 2 we will show that
|7 (z — i)7e;(x)||n = 1. In section 3 we give a necessary and sufficient condition
for C'-functions to be C?. Finally, in section 4, we prove our main result.

2 Norms

To simplify the computations, we start with the following two lemmas.

Lemma 1. For (ti,...,t;) € V*X = {(21,29,...,21) | @i # x; if i # j} with
ty =z, t; =y and t;, = z, we have

k—1
¢2f<x>yv Z) = Z Mj¢2f(tj—17tjatj+l)
=2

with
- (tH(lZ__t;;(l;f;)_tk) for j >
(tj+(1z j;)—(ly)it;) 1) for J <.
k—1
Moreover, Z,uj =1L
j=2

Proof. (Using induction on k)

x—t t—z
¢2f<l',y,2,’) - ¢2f(xay7t)ﬁ+¢2f(tayaz) _
r—t t—z
- ¢2f($,y7t)—+¢2f(y,t72) :
T —z T —z
Let t = t, with ¢ < £ < k (in case 1 < ¢ < i, the proof is similar).
Using the induction hypothesis, we can write ¢of(x,y, 2) as
o
ZMJ, (tj—1,t5, tg+1)+— Z iz Gaf(tj—1,tj,tj41)
j =i+1
A r—t &
= Dot Gaf (L1, by, i) + Z i G2 f (1,5, t541)
=255 ? j=it1
t —Z
m Z W2 - Gaf(ti—1,ty tipr) + 2 Oaf(tj—1,t),tj41)

j =1+1
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where
(i1 — 1) (t; — o) o
= for j > 1
N R o
_ (i =t )t — 1) for j < i
(t—2)(y —x)
and
o — (1 = t)(t5 — ) for j > ¢
(z —y)(t —2)
_ (tj+1 - tJ?l)(tJ’ — tl) fOl"j < /.
(z=y)t—y)
Now for j < 1,
vt bt )l —t)  (Gn =)t =h)
x— 7t th—te  (te—t1)(ti — t1) (te —t1)(t; — t1) g

Fori+1< 75 </¢—1, we have
r—t z—1

1+ 15,2
T —z Z—

ty —te (tjr —t1) (5 — te) | b — e (Ejn — 1) (8 — 1)
ty—tr (te—t1)(ti — o) tr —t1 (tp —t;)(te — ;)
(tje1 — 1) (t; — ty)

(te —t1)(ti — tx)

and for j > /¢,
z— th et (G — o) ) (G — o) — ) y
9= — — .
z—x' Tt —ty (e —t)(te — ty) (te — t1)(t;s — t) !

k—1
Thus ¢of (2,y,2) = D_pidaf (tj-1,t5,t41)-
j=2

k—1

To show » u; =1, take f(x) = 2. Then ¢y f(2,y,2) = 1 for all (z,y, 2) € Z3, and
j=2

the property follows immediately.

In the sequel, we will use the following notation, for m,x € Q,: m < z if m = a;

for some i € Z. We sometimes refer to the relation < between m and x as “m is an

initial part of 7 or “x starts with m”.
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Lemma 2. Let S be a ball in K and f € C(z, — K).
Suppose that ¢of (n,n—09,,n+p*,) € S for alln € Ny, k € N, then ¢of(v,y,2) € S
for all x,y,z € Zy, x # y,x # 2,y # 2.

Proof. It suffices to prove the statement for z,y, 2 € N, since N is dense in Z,, f is
continuous and S is closed in K.

S is “convex” in the following sense: if x1,29,...,2, € S and A\, X\o,..., N\, € K
with |[A;| <1 for all ¢ and > \; = 1 then Y- \jz; € S.

Let t be the common initial part of x and vy, i.e.

t0—|—t1p++tsps
T o= to+tipt ... Ftp' +repttt L+ a pY
= to+tip+.. .+t FysptTt .+ Ys, P72 With 11 # Ysy1.

Now ¢2f($,y, Z) - ¢2f(l',t, Z) -
: y—t

and ¢ f(t,y,2) € S since |
y—x

Therefore it suffices to show that ¢, f(x,y,2) € S if y < x.
Let 7 be the common initial part of z and z, i.e.

+ ¢2f(tayaz);i:

Y € S as soon as Gof(z,t, 2)
Yy

t—
\Sland]—xlgl.
y—1x

= To+Tp+...+7,0°

= +7np+...+7,.p° + gzzc,Hp"+1 + .. T, 0"
a+1+

= To+Tp+...+ 70" + 2o11p vt 20,07 With 2501 # 2541

r—T T—Z
P +¢2f(7-7y72)

Now ¢of(z,y,2) = ¢of (z,y,T) € S as soon as ¢of (z,y,T)

z —

r—z

and ¢of(7,y,2) € S since | 7—| <1 and ]ﬂ| <1.
T Z2—x

z
Therefore it suffices to show that ¢of(x,y,2) € S if y < 2 and = < z. There exist
distinet uy, ug, . .., Ui, Uit1, - - ., ug such that uy =y, u; = x, up, = z and (u;j) = w1
for j <iand u; = uj_1 + |uj—1 — z|7! for j > i. Now ¢of(x,y,2) = ¢of (y,x,2) =
k-1

Z)‘j(be(ujfla Uj, Uj+1) Wlth

=2

- (w1 — uj—1)(u; — ug) for j > i

Gy
_ (uj+1_uj—1)(uj_u1) or i < i
I Py Ty m

This finishes the proof since |A;| < 1 for all j, > A\; = 1 and u;,uj_1,ujqq is of
the form n,n — §,,n + pd, so that ¢of(uj_1,u;,ujr1) = ¢of(uj,uj1,uj41) € S by
assumption.
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Theorem 3. ||e,|2 = 0,72 = || 2

Proof.

en(m)—en(m—=aom en(m)—en (m+pcém,
(m)=enlm=dn) y en(m)=en(mp"dn)

Y k5 — m PFom
¢26n(m7m m;m+p m) _(pk + 1)5m

Let m = mo+map + ... +me_1p°" 1 + myp°.

Then m — 0, = Mg +mup + ... +me_ 1+ + (ms — 1)p°
and m + pFé, = mo +map+ ...+ me_1p°" !t + mp® + pFre.
We have to consider the following cases.

1) n<am— oy

1.1) n<am
Then also n < m + p¥d,, and thus ¢se,(m,m — &,,, m + p¥d,,) =0

1.2) n£m
Then n 4 m + p*6,, for all k, so dae,(m,m — 6, m + p*o,,) = m and
|$2en| = (0|72 = [0,]72 for p # 2
since n < m — d,, and n 4 m imply n =m — §,, and mg— 1 #0
thus 6, = p® = 0,,.
(For p = 2, this case does not arise).

2) ndm— oy,

21) n<am

Then also n < m + p*6,, and thus ¢oe,(m, m — d,,,m + p*é,,) = 5 (p;‘il‘l)dm

and |poe,| = [0, 72 = [0n] 2 if £ #£0
since n 4 m — 6, and n < m = n =m.
If k =0 then n £ m + p*é,, and then goe,(m, m — 6, m + p*d,,) = 5 = 5=

22) ndm
2.2.1) n 4 m + pké,, then ¢oe,(m,m — 6, m + p*5,,) =0

2.2.2) n < m+ p*s, then ¢oe,(m,m — b,,,m + p~é,,) = L

PPom (PP +1)0m
and [goe,| = pFlon| 2 =t < 16,7
since n 4 m — 0, n £ m and n < m + pré,, = n =m + pké,,.
So 6, = pkd,, and |6,| = p~*|6,| = p~57F for k #£ 0.

In case k = 0, we have ¢ge,(m, m — 0y, m + p*6,,) = 52

262,

so that |@aen| = [0m| 72 < |6,]72 in case p # 2 since then we have §,, = 6, or
Op = POy,

For p =2, |pae,| = 2+ |6,n] 72 < |0,] 72 since d,, = 2 - 6.

So ||6n||2 = max(||e,|[s, ||¢1€n||87 ||¢26n||8)

= max(1, |0,|7", [0,]7?)
= [0n|72 = |7l
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Theorem 4. ||(z —n)e, ()2 = |6, 7" = |yu| ™

Proof. ||ps(x — i)e;(x)||s

(n—i)e;(n)—(n—bp—1i)e;(n—dn) + (n—i)e; (n)—(n4pFd,—i)e; (n4pFsn)
_ Sup On pkén
neh 1),
1) i<n—90,

1.1) ¢ < n then i < n + p*d, and therefore

(n—i)—(n—¥8n—1) (n—i)—(n+p*d,—i)
on + pkéf

—(p* +1)0,

=0

1.2) i 4 n then i 4 n+ p*d, (2'zn—5)and‘M =0

k+1 52

2) idn—0,
2.1) i < n then i < n+ p*s, for k # 0 (i = n) and therefore

n—i n—i—(n+p®s,—i)
On _I_ pkdn

—(p* +1)d,

B 1 B 1 B 1
_’(pk+1)5n‘_'$‘_’67"

For k=0, ¢ £/ n+ 9, and the valuation is 0.

22) i#n
2.2.1) i 4 n + ptd, then the valuation is 0.

n+p On—1

waz| = 0-

222) i<an+p

Thus v;(z —i)e;(z)|]2 = 1.
Theorem 5. ||(z —n)%e,(z)|]s = 1.

Proof. ||go(x — )% - e;(2)]]s =

(n—i)zei(n)—(n—(5n—i)26i(n—5 ) + (n— z) ei(n)— (n+p On—1) ei(n—&-pkén)
on pkSy

sup
neN

1) i<n—90,

1.1) i < n then i < n + p*3, and therefore

(n—i)2—(n—08,—1)2 (n—i)2—(n4+p*8,—1)? 26, (n—i)—62 —2pF 8, (n—1i)—p3k 52
On + pkéf _ On + = pFon
—(pk +1)6, — (P + 1),

- _5n_pk6n o
B —(pF +1)d, a
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1.2) i #n then i 4 n+ p*s, (i =n — d,) and the valuation is 0.
2) idn—9,
2.1) i <n then i <n + p*s, for k # 0 (i = n) and thus

2k 52
po,
| = P S L
pF(p* + 1)o7
For k=0, ¢ 4 n+ 9, and the valuation is 0.
2.2) i 4n
2.2.1) i 4 n + pkd, then the valuation is 0.
2.2.2) i < n+ pkd, then i = n + p*§, and the valuation is 0.
Thus ||(z —i)%e;(x)|]2 = 1.

3 Characterization of (C2-functions

Theorem 6. Let f(x Zanen + Zb (z) € C*(z, — K).
2 an bn b
f € C*(z, — K) if and only if l1m—2 and lim— exist for all a € Z,, and lim— =
ays n—any, n—asy,
2lim 1
TL—)(L"}/n

Proof. Suppose f is C?, then there exists a continuous function Ry : Z, x Z, — K
such that f(z) = f(y) + (z — y)f'(y) + (x — y)*Ra(z,y) for all z,y € Z,.
f) = fly) — (@ —y)['(y)

Thus lim = Rs(a,a) exists for all a € Z,.
(z.9)—(a.0) (x—y)? 2(@0) g
_ _ _ /
In particular, lim f() = fn) = (n 5 no)f(n-) = Rs(a,a) exists for all
(nyn—)—(a,a) (n—n_)

a € Z,, and hm—2 = Ry(a,a) exists for all a € Z,.

n—>a/yn
We also have that f(y) = f(z) + (y — 2)f'(x) + (y — 2)?Ra(y, x). Hence, f(z) +

) +
fy) = fly) + f(@) + (@ = y)(f'(y) = (@) + (& = y)*(Ral2,y) + Ra(y, x)). This
is equivalent to: (z — y) (f’(x) - f’(y)) = (z — y)Z(RQ(x, y) + Ra(y, x)) Therefore
o) - 1)

= 2Ry(a,a) exists for all a € Z,.
(Ivy)ﬁ(aﬂ’) r — y 2( ) P

/ ol
In particular, ( li)m( )f (n) = fi(n) = 2Rs(a,a) exists for all a € Z, and thus
n,n_)—(a,a n—n_—
b,
lim— = 2Ry(a,a) exists for all a € Z,.
n—ﬂl’y

It follows also that hmb— = 211m%
n—)afy n—>afyn
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Now assume this to be the case.
/ gl
If lim>r = fim W =S

f'(x) = ['(y)

= 2¢(a) exists for all a € Z, then also

(x,y%gr%a,a) pr— = 2¢(a) exists ([3], lemma 63.1).
And if lima—g = limf<n> —fl) = (n—n)f(n) = g(a) exists for all a € Z,,
Mg T (0
flx) = fly) — (@ —y)['(y)

then also  lim
(x,y)—(a,a) (x —vy)

It suffices to prove this for z,y € N since N is dense in Z,.

5 = g(a) exists.

f(@) = fly) — (@ —y) [ (y) f@%—ﬂ@—%x—@f@)(x—Zf

(x — y)? N (x - 2)? T—y

_ﬂw—f@%%y—@fk)(y—zy+fﬁ0—fwxz—y
(y —2) T =y y—=2 T—y

Let z be the common initial part of x and y. Then

‘fu%—ﬂz:é;—wf@)_ﬂw‘
flx)—f(z)—(x—2)f(z T — 2|2
§max(‘ €] ((z—iﬂ ) ()_g(a)Hx—y 7
fly)—fz) —(y—2)f'(z —z2 f'(y) = f(z z—
‘(y) ((y)_i)yz )<)_9(“)Hy_y’ (y;_z(>_2'g<a)Hx—zD'
f@) = fly) — (@ —y)['(y)

So it suffices to prove that  lim = g(a) for y < z,

(@,y)—(a,a) (x —y)?

Z:Z‘ are less than or equal to 1.

since "LZ ‘ and
T—y T

There exist t; <ty <... < t, so that y =t;, z =t, and (t;)—- =t;_1.

Fo) = f0) = @ F ) o F) = ) — (b — ) F ()
CETE — 2 bt

SO 0)

Jj=2 ’ tr— 1
n n—1
, N2 —y 4,
with \; = (%) and p; = % and Z;)\j + ZX;MJ =1
j= j=
(This may be shown using induction on n). Now
f@) = fly) = (@ = y)f'(y)
| —g(a)| <

(z —y)?



94 S. De Smedt

f(t5) = f(t=1) = (& — -0) (L)
oy, s o,
mX\w — 2 g(a)||])
which tends to zero by assumption.
Furthermore,
G2 f(2,y,2) = fla) = W) - -y fyz—y_

(x —y)? y—z

f@) - f@) - -)f(H)r -2 fly) = Fz)
(x — 2)? y—z y—z

Because of the symmetry in the variables of ¢of we may assume that |y — a| >
|z —al > |z —al.

Therefore ( l)lrr(l )gbg f(z,y, 2) exists for all a € 7, and f is a C*-function since
z,y,2)—(a,a,a

sl < ([P LD 0T 0)

|¢2f($,y,2) (x_y)Z

flx)—f(z)—(z—2)f'(z T —z f’ f’
‘() ((93_2)2 )()_g(aH H (y) — f'(2) ~2-g(a))).

Generalization. Let f(z) = Y ajoe;i(z) + > ain(z — iefz) + ... +

q:—z) ~—¢i(x) € C"(z, — K), then f € C"(z, — K) if and only if

Zaz n

a ,n Z’ﬂ
m = = 21 im =t = 31 lim P2 = = (n 4 1)! lim—
1—a 71 1—a ’}/1/ 1—a ’}/1/ zaa"y

exist for all a € Z,,.

+1

4 An orthonormal base for (C2-functions

Before we prove our main theorem, we prove one more proposition that we will
use in the proof of our final theorem.

2
Proposition 7. If f(x Zanen ) then PP, f( Zan ) en(x).
Proof. Pre,(x Z en(Tm) - (Tmi1 = Tm) = en(2) Y (Tmi1 — ) = (z—1) - ().

Indeed, e, (z) =1 1f and only if there exist an s € N such that n = z, or equivalently,
if there exist an s € N such that e,(z,,) = 0 for all m < s and e,(x,,) = 1 for all
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m > S.
In a similar way, we have for P:

P, () = (x —n) - e,(x)

and

PQ((JJ —n) - en(a:))

o .1'2 ) 12
= €n<£L'> Z (.Tm - .1'3) : (xm+1 - -Tm) + mt + 7m — TmTm+1

2

_ en(a) x —2n)
Finally,
PP f(z) = P2<Z%an(x ) Z " (z — n) en(T).

Theorem 8. {+2e,(x), vu(z — n)e,(z), (x — n)?e,(x) | n € N} is an orthonormal
base for C*(z, — K).

Proof. We know that {e,(z) | n € N} is an orthonormal base for C'(z, — K). Let
T = 2RP : Cz, — K) — C¥z, — K) : Sawen(z) — Xa,
(x — n)?e,(z). For all elements f(z) = Y anen(z) of C(z, — K) we now have
T fll2 < max|a,| = ||fl|ls = H(TTf)“ (see [2] p. 89). So T is an isometry

and thus (z —n)? - e,(z) (n € N) is orthonormal in C?*(z, — K).
W. Schikhof ([2]) proved that for every f € C'(z, — K), ¢of can be extended to a
continuous function ¢, f on Z2\{(x,...,z) € Z2*' | x € 2,} with

¢1f( ) _(be(ya Z)
r—y

¢2f($ Y,z )

for © # y. Let us take z = y, then

oLf(x,y) — o1 f(y,y)

bof (x,y,y) = p—
_ Sz - ')
T —y
fl@) = fly) — (@ —y)f' )
(z —y)? '

Let f(x) = Y anvien(r) + X buyn(z — n)en(r) € C*(z, — K) C CY(z, — K).
We know ([2], p. 89) that |[f]]> > ||<;52f|]3 > |pof(n,n_,n_)| = |a,| and also
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that || f]l2 > [lo1f'lls = |o1f (n,n_)| = |by| for all n # 0. Furthermore, we have
that [[f[[2 = [[f]ls = [f(0)] = fao| and [|f|l2 = |Iflls = [f'(0)] = [bo|. Therefore
| fll2 > max(|a,],|b,|) and it follows that v2e,(z), y.(z — n) - e,(z) (n € N) are
orthonormal in C*(z, — K). Let

N*(z, » K) = {feC*z,— K)|f' =0} and
N;(z, — K) = {f € C*(z, — K)|f" = 0}.

For f € N3(z, — K) and g € C(z, — K) we have:

f+ Tg) Tg

1+ Tglle = ||

=2 = llglls = 11Tglle.

Also [[f +Tgll2 = [[f|]2, since
1flls = 11 + Tg — Tglls < max((l + Tollo.|[Toll2) = IIf + Tll»
It follows that N3(z, — K)L Im T (the image of T'). In particular
lleo(z), e1(x), ..., xeo(), (z — Vey(z),.. .|| L][z%eo(x), (z — 1)2ei(z), .. ]].

So, the set {72e, (), u(z — n)en (), (x — n)?e,(z) | n € N} is orthonormal. It is
also a base for C*(7, — K). Indeed, for every f = f — Pof' + Pof' € C*(z, — K) :

f'(x) = f'(0)-eo(x) + i(f’(n) —f'(n-) = (n—=n_)f"(n-))-en(x)+ f*(0) - z-eo(x) +

i(f”(n)—f”(n))'(I—n)'en(x) and P f'(x) = f'(0)-z-eo(x i n-)—

z’ / (Z B n)2

(n—n_)f"(n-))-(z=n)-en(x)+f"(0) = +Z “( (n-))—

Consider ¢ = f — Bf € NQ(Zp — K) and let g(x) = g(0) - eox) +

en(x).

> (9(n) — g(n_)) - en(z) be its representation in C*(z, — K) C C(z, — K).

n=1
This is also an identity in C?(z, — K), since » _ane,(z) € C(Z, — K) belongs to
n=0

N%*(z, — K) if and only if nh_)rgo|an| -n? =0 ([3], p. 195) or equivalently lim ()

We have therefore shown that f can be written as a convergent linear combination

of eg(x),e1(x), ..., xeo(x), (x — 1)ey(z), .. ., “’2—260(@, (x_21)261(5(3), .
This finishes the proof of theorem 8.

Corollary 9. For every f € C*(7, — K) we have

o) 2
:Zanen +Zb (x —n)e,(x —I—ch ) en(T)
n=0

n=0
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with
ap = f(0) )
an = f(n) — f(n_) —(n—n_)- f'(n) = “2=Lf"(n_) forn+#0
bg = f/(0>
by = f(n) — F'(n_) — (n—n_) - "(n) for n 40
co = f"(0)
cn=f"(n)—f"(n-) forn # 0

Proof. Let f =g+ P,f" with g = f — P> f’, then

f(x) = g(0) - eolx) + 2(9(71) —g(n-)) - enf(x) + f(0) - z - eo(x) + i(f'(N)

Fn)- (@ =) -eafa) 4 (0)- - eala) + 307 n) = £ () - 5

9(0) = £(0) = P»f'(0) = f(0)
g(n) —g(n-) = f(n) = f(n-) = Pof'(n) + Pof'(n-).

For n =ng+np+ ...+ ngp®, we have

Pof'(n) = f'(0)ng + f'(no)nip+ ... + f'(ng +nip+ ... +ne_1p* Hngp® + £7(0)
2.9 2, 2
1( 0)n12p +.o " no+mp+...+ ns,lpsfl)%

and

Pof'(n_) = f'(0)ng + f'(no)mp + ...+ f'(ng +mp+ ... +neop®* e 1p* *+

2 2p? 2 25—2
f”(())% + fﬁ(”o)nép +.+ o +mp+.+ ns_2p5—2)%
So
/ , , " n2p28
Poyf'(n) = Pof'(n-) = fl(n_)ngp® + f (nf)s?
_ 2
= (n—n_)-f’(n_)q_%.f”(n_)_

n
24
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