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Abstract

In this paper we give an explicit construction of nonsolvable Lie
algebras, over fields of characteristic zero, in which the ideals are n-
element chain. We present one method whose depend on the radical of
the Lie algebra .

1. Introduction

We will consider finite dimensional Lie algebras over a field K of character-
istic zero. Given such an algebra g,Rad(g) (respectively Nil(g)) denotes the
largest solvable (respectively nilpotent) ideal of g. We denote the terms of the
lower central series of g by g=g1 and gi = [g,gi−1] for i > 1. The center of g is
denoted by Z(g). We define the upper central series of g by letting Z0(g)= 0
and Zi(g) be the ideal of g such that Z(g/Zi−1(g)) = Zi(g)/Zi−1(g) for i ≥ 1.

Algebra direct sums are denoted by ⊕ where as direct sums of vector space
structures are denoted by

·
+ .

The problem of determining the Lie algebras in which the ideals are totally
ordered by set inclusion was first posed in [Be], where a complete classification
was given of the supersolvable algebras in this class; in particular, the solvable
Lie algebras whose ideals are in chain are completely classified when the base
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field is algebraically closed. In the case of nonsolvable algebras of this type, it
was also obtained the following basic structure result:

Theorem 1.1. [Be]. Let g be a nonsolvable Lie algebra over a field of
characteristic zero. Then, the ideals of g are in chain if and only if g is
a simple algebra or a semidirect sum of a nonzero nilpotent ideal N and a
simple algebra S such that N/N 2 is a faithful S-module and Zi(N )/Zi−1(N )
are irreducible S-modules via the adjoint representation.

Moreover, in this case, the terms of the lower central series of N coincide
with the terms of the upper central series and, if n is the nilpotency index of
N , the ideals of g are in the following (n + 1)-element chain 0 < Nn−1 <

.... < N i < ... < N < 1.
The easier constructions -apart from simple algebras - of nonsolvable Lie

algebras in which the ideals are in chain arise from Theorem 1.1. in a very
simple way.

Corollary 1.2. Each nonsolvable Lie algebra over a field of characteristic
zero, whose ideals are in a 3-element chain, is a semi-direct sum of an abelian
ideal N of dimension at least 2 and a simple subalgebra S such that N is an
irreducible S-module. �

The task of this paper is to give an explicit construction of nonsolvable Lie
algebras in which the ideals are 4-element in chain.

2. The construction from the radical

The construction that we will give in this section depends on Lie algebras
in which the derived algebra is one-dimensional and equal to the center. Before
giving the construction, we need some results about this type of algebras.

Lemma 2.1 Let g be a Lie algebra such that dimg2 = 1, g2 = Z(g) and
u be a nonzero element of g2. Then:

i) For every complementary subspace h of g2 in g, the bilinear form fh

defined in h by fh(x, y) = λ[x,y] where [x, y] = λ[x,y] u is skew -symmetric
and nondegenerate. In particular, the dimension of h is even and there exists
a basis {e1, e2, ..., en, l1, l2, ..., ln} of h for which [ei, li] = u and all other
products are zero.

ii) g has a basis r1, r2, ..., r2n+1 with nonzero products [ri, rn+i] = r2n+1,
1 ≤ i ≤ n.

iii) Suppose B = {ri}1≤i≤2n+1 is a basis of g as in ii) and δ :g→g is a
linear transformation such that the matrix of δ with respect to of B is of the
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form ⎛
⎜⎝

0

M
...

α1 .... α2nα

⎞
⎟⎠ ,

where M is a 2n × 2n matrix. Then, δ ∈ Der(g) if and only if M =(
m1 m2

m3 m4

)
, where each mj is an n× n matrix; tm2 = m2,

tm3 = m3 and
tm1 +m4 = αIn.

Proof. The assertion in i) is straightforward (see [Ja]) and the part ii)
follows from i). To prove iii), consider the vector space

h = Kr1 +Kr2 + + ...+Kr2n

and let fh be the skew bilinear form defined in i) when u = r2n+1. We have
that δ ([ri, rj ]) = αfh (ri, rj) r2n+1 and the matrix N = (fh(ri, rj))is N =(

0 In
−In 0

)
. Clearly, δ ∈ Der(g) if δ ([ri, rj ]) = [δ(ri), rj ] + [ri, δ(rj)] for

i, j = 1, ..., 2n. If we denote M = (γij), these conditions are that

αfh(ri, rj) =
∑

1≤k≤2n

fh(ri, rk)γkj +
∑

1≤k≤2n

γkifh(rk, rj)

or in matrix form
αN = NM +t MN. (2.1)

If we partion M in the same way as N , M =
(
m1 m2

m3 m4

)
where each mi

is an n× n matrix, a simple computation shows that (2.1) holds if and only if
tm2 = m2,

tm3 = m3 and tm1 +m4 = αIn. �

In the sequel, for each n ≥ 1, we shall denote by g(n) the Lie algebra with
basis {r1, r2, ..., r2n+1} and nonzero products as it is described in ii) of Lemma
2.1. Let us consider the symplectic Lie algebra sp(2p,K), which by definition

consists of all matrices M =
(
m1 m2

m3 m4

)
where each mi is an n× n matrix,

tm2 = m2,
tm3 = m3 and tm1+m4 = 0 (see [Hu]). This algebra is simple split

of type Cn and (2n2+n) dimensional-for n = 1,it coincides with the split simple
3-dimensional, algebra sl(2,K).By means of the homomorphism M → Mρ of
sp(2n,K) into gl(g(n)), where Mρ denotes the linear transformation in g(n)
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with matrix (relatively to the basis {r1, r2, ..., r2n+1}) :

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

M
...
0

0 ... 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

.

The algebra g(n) can be considered as an sp(2n,K)-module. Now let us
denote by L(n) the direct sum of the two vector spaces g(n) and sp(2n,K).
We introduce in L(n) a multiplication [a, b] by means of the formula

[x+M, y +N ] = [x, y] +Mρ(y) −Nρ(x) + [M,N ].

We have the following result:

Theorem 2.2. Let g(n), sp(2n,K) and L(n) =g(n)
·
+ sp(n,K) be as in

the preceding paragraph. Then:
i) L(n) is a Lie algebra whose ideals are the following 4-element chain:

0 < g(n)2 < g(n) < L(n).

ii) Suppose p is a nonsolvable Lie algebra such that Rad(p) ∼=g(n). If the
ideals of p are in chain, there exists a monomorphism embedding p in L(n).
In particular the semisimple Levi factors of p are isomorphic to a simple
subalgebra of sp(2n,K).

Proof. i) From Lemma 2.1., it is immediate that Mρ ∈ Der(g(n)), for
each M ∈ sp(2n,K) and therefore g(n) is a Lie algebra. Now denote by h the
subspace spanned by r1, ..., r2n. If n = 1, it is clear that h is an adg(n)sp(2n,K)-
irreducible module. Suppose then n ≥ 2 and consider fh the bilinear form in
h described in Lemma 2.1, (i) for u = r2n+1. The Lie algebra of the linear
transformations f ′ in h which are skew with respect to fh, that is fh(f ′(x), y) =
−fh(x, f ′(y)), coincides with the set {Mρ|h : M ∈ sp(2n,K)}.
Then, from [Ja], we get that h is adg(n)sp(2n,K)-irreducible and therefore

g(n) = h
·
+ Kr2n+1 is a decomposition of g(n) into sp(2n,K)-irreducible

modules via the adjoint representation. Now the result follows from Theorem
1.1.

ii) Since the ideals of p are in chain, Theorem 1.1 implies that

p= Rad(p)
·
+ S where S is simple and Rad(p)/Rad2(p), Rad(p)2 are irre-

ducible adp S-modules.
Write Rad(p)2 = Ku and note that [Rad(p)2,S] = 0. Moreover, there

exists an S-irreducible module h such that Rad(p) = h
·
+ Ku.
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From Lemma 2.1, i) we can take {e1, e2, ..., en, l1, l, ..., ln} as a basis of
h such that [ei, li] = u and all other products are zero. For each s ∈ S, the
linear transformation adps : x → [s, x] belongs to Der(Rad(p)) thus applying
iii) of Lemma 2.1, we have that the matrix of adps with respect to the basis
{e1, ..., en, l1, ..., ln, u} is of the form:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0

Ps

...
0

0 ... 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where Ps =
(
p1 p2

p3 p4

)
and each pi is an n×n - matrix with tp2 = p2,

tp3 = p3

and tp1 + p4 = 0. Then, the mapping ψ : p→ L(n) defined by:

ψ(α1e1 + α2e2 + ...+ αnen + αn+1l1 + ...+ α2nl2n + α2n+1u+ s) =

= α1r1 + ...+ α2n+1r2n+1 + Ps

is a monomorphism, which proves the result. �
Corollary 2.3. Up to isomorphism, the unique nonsolvable Lie algebra

whose radical is isomorphic to g(1) and such that the ideals are in chain is
g = Kr1 +Kr2 +Kr3 +Ka+Kb+Kc, with nonzero products [r1, r2] = r3;
[a, r2] = r1; [b, r1] = r2; [c, r1] = r1; [c, r2] = −r2; [a, b] = c; [c, a] = 2a and
[c, b] = −2b. �
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