An. Şt. Univ. Ovidius Constanța

LARGE CONSTRUCTION FOR NONSOLVABLE LIE ALGEBRAS

Camelia Ciobanu, Ion Coltescu

To Professor Dan Pascali, at his 70's anniversary

Abstract

In this paper we give an explicit construction of nonsolvable Lie algebras, over fields of characteristic zero, in which the ideals are n-element chain. We present one method whose depend on the radical of the Lie algebra .

1. Introduction

We will consider finite dimensional Lie algebras over a field K of characteristic zero. Given such an algebra \underline{g} , $Rad(\underline{g})$ (respectively $Nil(\underline{g})$) denotes the largest solvable (respectively nilpotent) ideal of \underline{g} . We denote the terms of the lower central series of \underline{g} by $\underline{g}=\underline{g}^1$ and $\underline{g}^i=[\underline{g},\underline{g}^{i-1}]$ for i>1. The center of \underline{g} is denoted by $Z(\underline{g})$. We define the upper central series of \underline{g} by letting $Z_0(\underline{g})=0$ and $Z_i(\underline{g})$ be the ideal of \underline{g} such that $Z(\underline{g}/Z_{i-1}(\underline{g}))=Z_i(\underline{g})/Z_{i-1}(\underline{g})$ for $i\geq 1$.

Algebra direct sums are denoted by \oplus where as direct sums of vector space structures are denoted by $\dot{+}$.

The problem of determining the Lie algebras in which the ideals are totally ordered by set inclusion was first posed in [Be], where a complete classification was given of the supersolvable algebras in this class; in particular, the solvable Lie algebras whose ideals are in chain are completely classified when the base

Key Words: Lie algebra; solvable Lie algebra.

^{*}The first author was partially supported by the grant A CNCSIS 1075/2005

field is algebraically closed. In the case of nonsolvable algebras of this type, it was also obtained the following basic structure result:

Theorem 1.1. [Be]. Let \underline{g} be a nonsolvable Lie algebra over a field of characteristic zero. Then, the ideals of \underline{g} are in chain if and only if \underline{g} is a simple algebra or a semidirect sum of \underline{a} nonzero nilpotent ideal \mathcal{N} and a simple algebra \mathcal{S} such that $\mathcal{N}/\mathcal{N}^2$ is a faithful \mathcal{S} -module and $Z_i(\mathcal{N})/Z_{i-1}(\mathcal{N})$ are irreducible \mathcal{S} -modules via the adjoint representation.

Moreover, in this case, the terms of the lower central series of \mathcal{N} coincide with the terms of the upper central series and, if n is the nilpotency index of \mathcal{N} , the ideals of \underline{g} are in the following (n+1)-element chain $0 < \mathcal{N}^{n-1} < \ldots < \mathcal{N}^i < \ldots < \mathcal{N} < 1$.

The easier constructions -apart from simple algebras - of nonsolvable Lie algebras in which the ideals are in chain arise from Theorem 1.1. in a very simple way.

Corollary 1.2. Each nonsolvable Lie algebra over a field of characteristic zero, whose ideals are in a 3-element chain, is a semi-direct sum of an abelian ideal $\mathcal N$ of dimension at least 2 and a simple subalgebra $\mathcal S$ such that $\mathcal N$ is an irreducible $\mathcal S$ -module. \square

The task of this paper is to give an explicit construction of nonsolvable Lie algebras in which the ideals are 4-element in chain.

2. The construction from the radical

The construction that we will give in this section depends on Lie algebras in which the derived algebra is one-dimensional and equal to the center. Before giving the construction, we need some results about this type of algebras.

Lemma 2.1 Let \underline{g} be a Lie algebra such that $\dim \underline{g}^2 = 1$, $\underline{g}^2 = Z(\underline{g})$ and u be a nonzero element of g^2 . Then:

- i) For every complementary subspace h of \underline{g}^2 in \underline{g} , the bilinear form f_h defined in h by $f_h(x,y) = \lambda_{[x,y]}$ where $[x,y] = \lambda_{[x,y]}$ u is skew-symmetric and nondegenerate. In particular, the dimension of h is even and there exists a basis $\{e_1,e_2,...,e_n,\ l_1,l_2,...,l_n\}$ of h for which $[e_i,l_i] = u$ and all other products are zero.
- ii) \underline{g} has a basis $r_1, r_2, ..., r_{2n+1}$ with nonzero products $[r_i, r_{n+i}] = r_{2n+1}, 1 \le i \le n$.
- iii) Suppose $\mathcal{B} = \{r_i\}_{1 \leq i \leq 2n+1}$ is a basis of \underline{g} as in ii) and $\delta : \underline{g} \rightarrow \underline{g}$ is a linear transformation such that the matrix of δ with respect to of \mathcal{B} is of the

form

$$\left(\begin{array}{ccc} & & 0 \\ & M & \vdots \\ \alpha_1 & \dots & \alpha_{2n}\alpha \end{array}\right),$$

where M is a $2n \times 2n$ matrix. Then, $\delta \in Der(\underline{g})$ if and only if $M = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix}$, where each m_j is an $n \times n$ matrix; ${}^tm_2 = m_2$, ${}^tm_3 = m_3$ and ${}^tm_1 + m_4 = \alpha I_n$.

Proof. The assertion in i) is straightforward (see [Ja]) and the part ii) follows from i). To prove iii), consider the vector space

$$h = Kr_1 + Kr_2 + + \dots + Kr_{2n}$$

and let f_h be the skew bilinear form defined in i) when $u=r_{2n+1}$. We have that $\delta\left([r_i,r_j]\right)=\alpha f_h\left(r_i,r_j\right)r_{2n+1}$ and the matrix $N=(f_h(r_i,r_j))$ is $N=\begin{pmatrix} 0 & I_n \\ -I_n & 0 \end{pmatrix}$. Clearly, $\delta\in Der(\underline{g})$ if $\delta\left([r_i,r_j]\right)=[\delta(r_i),r_j]+[r_i,\delta(r_j)]$ for i,j=1,...,2n. If we denote $M=(\gamma_{ij})$, these conditions are that

$$\alpha f_h(r_i,r_j) = \sum_{1 \leq k \leq 2n} f_h(r_i,r_k) \gamma_{kj} + \sum_{1 \leq k \leq 2n} \gamma_{ki} f_h(r_k,r_j)$$

or in matrix form

$$\alpha N = NM + {}^{t}MN. \tag{2.1}$$

If we partion M in the same way as N, $M = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix}$ where each m_i is an $n \times n$ matrix, a simple computation shows that (2.1) holds if and only if ${}^tm_2 = m_2$, ${}^tm_3 = m_3$ and ${}^tm_1 + m_4 = \alpha I_n$. \square

In the sequel, for each $n \geq 1$, we shall denote by $\underline{g}(n)$ the Lie algebra with basis $\{r_1, r_2, ..., r_{2n+1}\}$ and nonzero products as it is described in ii) of Lemma 2.1. Let us consider the symplectic Lie algebra sp(2p, K), which by definition consists of all matrices $M = \begin{pmatrix} m_1 & m_2 \\ m_3 & m_4 \end{pmatrix}$ where each m_i is an $n \times n$ matrix, ${}^tm_2 = m_2, \; {}^tm_3 = m_3$ and ${}^tm_1 + m_4 = 0$ (see [Hu]). This algebra is simple split of type C_n and $(2n^2 + n)$ dimensional-for n = 1, it coincides with the split simple 3-dimensional, algebra sl(2, K). By means of the homomorphism $M \to M^\rho$ of sp(2n, K) into gl(g(n)), where M^ρ denotes the linear transformation in g(n)

with matrix (relatively to the basis $\{r_1, r_2, ..., r_{2n+1}\}$):

$$\left(\begin{array}{cccc} & & & 0 \\ & M & & \vdots \\ & & & 0 \\ 0 & \dots & 0 & 0 \end{array}\right).$$

The algebra $\underline{g}(n)$ can be considered as an sp(2n, K)-module. Now let us denote by $\mathcal{L}(n)$ the direct sum of the two vector spaces $\underline{g}(n)$ and sp(2n, K). We introduce in $\mathcal{L}(n)$ a multiplication [a, b] by means of the formula

$$[x + M, y + N] = [x, y] + M^{\rho}(y) - N^{\rho}(x) + [M, N].$$

We have the following result:

Theorem 2.2. Let $\underline{g}(n)$, sp(2n, K) and $\mathcal{L}(n) = \underline{g}(n) + sp(n, K)$ be as in the preceding paragraph. Then:

i) $\mathcal{L}(n)$ is a Lie algebra whose ideals are the following 4-element chain:

$$0 < \underline{g}(n)^2 < \underline{g}(n) < \mathcal{L}(n).$$

ii) Suppose \underline{p} is a nonsolvable Lie algebra such that $Rad(\underline{p}) \cong \underline{g}(n)$. If the ideals of \underline{p} are in chain, there exists a monomorphism embedding \underline{p} in $\mathcal{L}(n)$. In particular the semisimple Levi factors of \underline{p} are isomorphic to a simple subalgebra of sp(2n, K).

Proof. i) From Lemma 2.1., it is immediate that $M^{\rho} \in Der(\underline{g}(n))$, for each $M \in sp(2n, K)$ and therefore $\underline{g}(n)$ is a Lie algebra. Now denote by h the subspace spanned by $r_1, ..., r_{2n}$. If n = 1, it is clear that h is an $ad_{\underline{g}(n)}sp(2n, K)$ -irreducible module. Suppose then $n \geq 2$ and consider f_h the bilinear form in h described in Lemma 2.1, (i) for $u = r_{2n+1}$. The Lie algebra of the linear transformations f' in h which are skew with respect to f_h , that is $f_h(f'(x), y) = -f_h(x, f'(y))$, coincides with the set $\{M^{\rho}|_h : M \in sp(2n, K)\}$.

Then, from [Ja], we get that h is $ad_{\underline{q}(n)}sp(2n,K)$ -irreducible and therefore

- $\underline{g}(n) = h + Kr_{2n+1}$ is a decomposition of $\underline{g}(n)$ into sp(2n, K)-irreducible modules via the adjoint representation. Now the result follows from Theorem 1.1.
- ii) Since the ideals of \underline{p} are in chain, Theorem 1.1 implies that $\underline{p} = Rad(\underline{p}) + \mathcal{S}$ where \mathcal{S} is simple and $Rad(\underline{p})/Rad^2(\underline{p})$, $Rad(\underline{p})^2$ are irreducible $ad_p \mathcal{S}$ -modules.

Write $\overline{Rad}(\underline{p})^2 = Ku$ and note that $[Rad(\underline{p})^2, \mathcal{S}] = 0$. Moreover, there exists an \mathcal{S} -irreducible module h such that Rad(p) = h + Ku.

From Lemma 2.1, i) we can take $\{e_1, e_2, ..., e_n, l_1, l, ..., l_n\}$ as a basis of h such that $[e_i, l_i] = u$ and all other products are zero. For each $s \in \mathcal{S}$, the linear transformation $ad_{\underline{p}}s : x \to [s, x]$ belongs to $Der(Rad(\underline{p}))$ thus applying iii) of Lemma 2.1, we have that the matrix of $ad_{\underline{p}}s$ with respect to the basis $\{e_1, ..., e_n, l_1, ..., l_n, u\}$ is of the form:

$$\begin{pmatrix} & & & & 0 \\ & P_s & & \vdots \\ & & & 0 \\ 0 & \dots & 0 & 0 \end{pmatrix},$$

where $P_s = \begin{pmatrix} p_1 & p_2 \\ p_3 & p_4 \end{pmatrix}$ and each p_i is an $n \times n$ - matrix with ${}^tp_2 = p_2, {}^tp_3 = p_3$ and ${}^tp_1 + p_4 = 0$. Then, the mapping $\psi : \underline{p} \to \mathcal{L}(n)$ defined by:

$$\psi(\alpha_1 e_1 + \alpha_2 e_2 + \dots + \alpha_n e_n + \alpha_{n+1} l_1 + \dots + \alpha_{2n} l_{2n} + \alpha_{2n+1} u + s) =$$

$$= \alpha_1 r_1 + \dots + \alpha_{2n+1} r_{2n+1} + P_s$$

is a monomorphism, which proves the result. \Box

Corollary 2.3. Up to isomorphism, the unique nonsolvable Lie algebra whose radical is isomorphic to $\underline{g}(1)$ and such that the ideals are in chain is $\underline{g} = Kr_1 + Kr_2 + Kr_3 + Ka + \overline{Kb} + Kc$, with nonzero products $[r_1, r_2] = r_3$; $[a, r_2] = r_1$; $[b, r_1] = r_2$; $[c, r_1] = r_1$; $[c, r_2] = -r_2$; [a, b] = c; [c, a] = 2a and [c, b] = -2b. \square

REFERENCES

- [Be] Benito, M.P., Lie algebras in which the lattice formed by the ideals is a chain, Comm. Alg. 20 (1992), 93-108.
- [Di] Dixmier, J., Enveloping Algebras, Akademie-Verlag, Berlin, 1977.
- [FH] Fulton, W. and Harris, J., Representation Theory, Springer-Verlag, 1991.
- [HS] Hilton, P.J. and Stammbach, U., A Course in Homological Algebra, Springer-Verlag, 1971.
- [Hu] Humphreys, J.E., Introduction to Lie Algebras and Representation Theory, Springer -Verlag, 1072.
- [Ja] Jacobson, N., Lectures in Abstract Algebras, Springer-Verlag, 1975.

"Mircea cel Bătrân" Naval Academy Department of Mathematics, 900218 Constanta, Fulgerului 1 Romania e-mail:cami_ro@yahoo.com