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FROM VARIATIONAL TO

HEMIVARIATIONAL INEQUALITIES
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Abstract

A general passage connecting smooth and nonsmooth, convexity and
nonconvexity, variational and hemivariational inequalities is sketched
here. The last equations are important for engineering problems be-
cause they concentrate in a single inequality all intrinsic features of a
phenomenon: the governing equations, the boundary conditions and the
constraints. We used the detailed treatment in [4].

AMS Subject Classification : 47H30

We are concerned with differential inclusions of hemivarational in-
equalities type. For the simplicity, let X be a real reflexive Banach space, X∗

its dual, < ·, · > the duality pairing, and let A : X → X∗ be a monotone-like
(generally, nonlinear) operator. In a concise form, for a given element, we look
for a solution u ∈ X of the hemivariational inequality

< Au − f, v − u > +Jo (u; v − u) ≥ 0 ,

for all v ∈ X, where Jo (u; v) is the generalized directional derivative in the
sense of Clarke of a locally Lipschitz function J : X → R. An equivalent
multivalued formulation is given by

Au + ∂J (u) � f in X∗,

where ∂J (u) denotes Clarke’s generalized subdifferential. Its corresponding
dynamic counterpart has the form

∂u

∂t
+ Au + ∂J (u) � f,

Key Words: Variational/Hemivariational inequalities; Subdifferential.
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where is assumed to be a quasilinear elliptic operator of Leray-Lions type.
It is well-known that the monotone operator theory started from the mono-

tonicity of the derivative of convex functions. More general, for a proper con-
vex lower semicontinuos l.s.c. function ϕ : X → R∪{+∞} , it was introduced
the subdifferential ∂ϕ : X → 2X∗

by

∂ϕ (x) = {h ∈ X∗ |< h, y − x >≤ ϕ (y) − ϕ (x) , ∀y ∈ X} (1)

which is a simple nice pattern of the maximal monotone (multivalued) oper-
ator. In particular, if ϕC is the indicator function of a convex set C of X ,
then

NC (x) = ∂ϕC (x) = {g ∈ X∗ |< g, y − x >≤ 0, ∀y ∈ C}
is the normal cone of C at x. We mention also that D (∂ϕ) = D (ϕ) holds.

Let C be a closed convex set of X , f be a given element in X∗ and A :
C → X∗ be an operator, nonlinear in general. The problem of finding u ∈ C
such that

< Au − f, x − u ≥ 0, ∀x ∈ C (2)

is called a variational inequality (V.I.). Clearly, when C = X , then x′ range
over a neighborhood of u and the variational inequality reduces to the equation
Au = f .

More general, let ϕ : X → R ∪ {+∞} be a l.s.c. convex function, with
D (ϕ) = {x ∈ X | ϕ (x) < ∞} .Finding an element u ∈ D (ϕ) such that

< Au − f, x − u > +ϕ (x) − ϕ (u) ≥ 0, ∀x ∈ D (ϕ) (3)

is also a variational inequality. We note that (3) reduces to (2), when ϕ = φC .
According to the subgradient inequality (1), the V.I. (3) is equivalent to

f ∈ Au + ∂ϕ (u) (4)

and, in particular, the V.I.(2) is equivalent to

f ∈ Au + NC (u) . (5)

Making use of the forms (4) and (5), the theory of variational inequali-
ties is extended in connection with various generalizations of the concept of
subdifferential to broader classes of non-convex and nonsmooth functions.

We outline some topological methods for variational inequalities, defining
a Leray-Schauder type degree and extending Szulkin’s solution index method
[7].

Consider first the simpler case of a hemicontinuous strongly monotone
operator A : X → X∗, i.e. there are a > 0 and p > 1 such that

< Ax − Ay, x − y ≥ a ‖x − y‖p
, ∀x, y ∈ X.
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Let Φ : X → R ∪{+∞} be a proper convex l.s.c. function and define the
mapping

ΠA,Φ : X∗ → D (Φ) ,

which associates to f ∈ X∗ the unique solution u ∈ D (Φ) of the variational
inequality

< Au − f, x − u > +Φ (x) − Φ (u) ≥ 0, ∀x ∈ D (Φ) .

Theorem 1. The mapping ΠA,Φ : X∗ → D (Φ) is single-valued continuous
and satisfies ‖ΠA,Φ (f) − ΠA,Φ (f ′)‖ ≤ 1

a ‖f − f ′‖∗ , ∀f, f ′ ∈ X∗.
If Φ = φC , we denote ΠA,φC ≡ ΠA,C .
Moreover, let F : X → X∗ be a nonlinear compact operator and consider

the variational inequality: Find u ∈ D (Φ) such that

< Au − F (u) , v − u > +Φ (v) − Φ (u) ≥ 0, ∀v ∈ D (Φ) . (7)

This inequality is equivalent to the fixed point problem: Find
u ∈ D (Φ) such that .

u = ΠA,Φ (Fu) . (8)

Provided that the inequality (7) does not admits solution such that
‖u‖ = R, for some R > 0, the integer deg(I − ΠA,Φ(F (g)), BR, 0),
in the Leray-Schauder sense, is well-defined. Here BR is the ball in the

origin of the radius R.
This kind of degree is of particular interest for the study of unilateral

eigenvalue problems. For a compact operator F : R × X → X∗, we look for
eigensolutions (λ, u) ∈ R × X such that

< Au − F (λ, u) , v − u > +Φ (v) − Φ (u) ≥ 0, ∀v ∈ D (Φ) . (9)

For λ ∈ R, this variational inequality is equivalent to the fixed point prob-
lem

u (λ) = ΠA,ΦF (u (λ))

and the integer
deg (I − ΠA,Φ (F (λ, g)) , BR, 0)

is well-defined with respect to the parameter λ if there are no solutions u, with
‖u (λ)‖ = R.

We can remove the strong monotonicity of A by considering maximal mono-
tone operators in Hilbert spaces. In this case, we use the hypothesis

int {D (∂Φ)} ∩ D (A) �= ∅ (10)
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which assures the maximality of the monotone sum A + ∂Φ.

Proposition 2. Let H be a real Hilbert space, Φ : H → R {+∞} be a
proper convex l.s.c. function and A : D (A) ⊆ H → H a maximal monotone
operator, such that the condition (10) holds. Then for each ε > 0 and g ∈ H,
there exists a unique solution uε ∈ D (A) of the variational inequality

< εuε + Auε − g, v − uε > +Φ (v) − Φ (uε) ≥ 0, ∀v ∈ H. (11)

Moreover, the map P ε
A,Φ : H → D (A) : g → P ε

A,Φ (g)is continuous, where
P ε

A,Φ (g) denotes a unique solution of (11).

Of course, the inequality (10) is equivalent to finding

uε ∈ D (A) ∩ D (∂Φ) ,

such that g ∈ εuε + Auε + ∂Φ (uε) .

As (εIH + A + ∂Φ)−1is single-valued, the above set-valued problem has
a unique solution uε = P ε

A,Φ (g) ,whose continuity follows from the estimate
(easily to show)

‖un − u‖ ≤ 1
ε
‖gn − g‖ .

Under some additional conditions on A and ϕ, we may prove the compact-
ness of P ε

A,Φ. For instance, we have:

Proposition 3. Assume the hypotheses of the above proposition are sat-
isfied. Suppose further that is Lipschitz continuous on bounded sets and the
sets of the form

{u ∈ D (A) ‖u‖ ≤ r} and ‖Au‖ ≤ r

are compact for each r > 0. The map P ε
A,Φ is compact.

We remark that the condition on A appears usually in parabolic variational
problems.

Suppose now the hypotheses of Proposition 3 are satisfied and consider
the problem of finding the solutions uε ∈ D (A) ∩ D (∂Φ) of the variational
inequality

< εuε + Auε − F (uε) , v − uε > Φ (uε) − Φ (uε) ≥ 0, ∀v ∈ H, (11′)

where F : H → H is a (nonlinear) continuous operator. As above, this
inequality is equivalent to the fixed point problem

uε = P ε
A,Φ (F (uε)) , uε ∈ H.
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Similarly, provided the variational inequality (12) does not admit solutions
‖u‖ = R > 0, the degree of Leray-Schauder type

deg
(
IH − P ε

A,Φ (F (g)) , BR, 0
)

is well-defined.
Now, we pass from variational to hemivariational inequalities, coming back

to the inclusions (4)-(5). Let F : X → R ∪ {+∞} be Lipschitz of rank K > 0
near a point x ∈ X i.e., for some ε > 0, we have

|F (y) − F (z)| ≤ K ‖y − z‖ , ∀y, z ∈ B (x, ε) .

The generalized directional derivative of F at x in the direction y, denoted
F o (x; y), is defined by

F o (x; y) = lim
v→x,t]

sup
0

F (v + ty) − F (v)
t

,

where v is a vector in X and t is a positive scalar. This definition involves an
upper limit only.

Likewise,

∂F (x) = {f ∈ X∗ | F o (x; y) ≥ < f, y > ∀y ∈ X}

is a Clarke’s generalized subgradient of F at x. We have the following basic
properties [2]:

1) ∂F (x) is a nonempty, convex, and weak*-compact subset of X∗, for
each x ∈ X ;

2) ‖f‖ ≤ K, for each f ∈ ∂F (x) ;
3) ∂F : X → 2X∗

is weak*-closed and upper semi-continuous;
4) For all x ∈ X, F o (x, g) is the support function of ∂F (x), i.e.,

F o (x, g) = max
{
< f, y > |f ∈ ∂F (x)

}
, ∀y ∈ X.

In the case of lack of convexity of the underlying stress-strain or reaction-
displacement conditions, the weak formulations like

−S ∈ ∂J (u)

are called roughly hemivariational inequalities. For instance, Ω is a bounded
domain in R

3 occupied by a deformable body, Γ is its boundary, S is the locally
Lipschitz stress vector on Γ and J is a so called ”nonconvex superpotential”.
The last concept has been introduced by P.D. Panagiotopoulos (1985) to study
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nonmonotone semipermeability problems, composite structures, etc. For re-
cent applications of variational and hemivariational inequalities, we mention
[5] and [7].

Later, we specify the subdifferentiation of integral functionals called also
the generalized gradients of type Chang [1]. For a function

β ∈ L∞
loc (R) ,

we set

j (t) =
∫ 1

0

β (s) ds, t ∈ R,

which is clearly locally Lipschitz. Let us calculate its generalized gradients.
For any δ > 0 and t ∈ R we put

β
δ
(t) = ess

|τ −t|<δ

inf β (τ)
.

and
βδ (t) = ess

|τ −t|<δ

sup β (τ)
.

For t fixed, β
δ

is decreasing in δ while βδ is increasing in δ. Thus, the limits

β (t) = lim
δ→0+

β
δ
(t)

and
β (t) = lim

δ→0+
βδ (t)

exist.

Proposition 4. With the above notations, the following relation holds
∂j (t) =

[
β (t) , β (t)

]
, ∀t ∈ R.

In particular, if the left limit β (t − 0) and the right limit β (t + 0) exist at
some t ∈ R, then

∂j (t) = [min {β (t − 0) , β (t + 0)} , max {β (t − 0) , β (t + 0)}] .
Roughly speaking ∂j results from the generally discontinuous function β

by filling the gaps.
Consider now a bounded smooth domain Ω in R

N and j (·, y) : Ω → R

measurable for y ∈ R
m, j (·, y) ∈ L1 (Ω) , j (·, y) : R

m → R is locally Lipschitz
for all x ∈ Ω and satisfies thegrowth condition

|z| ≤ c
(
1 + |y|p−1

)
, ∀x ∈ Ω, y ∈ R

m, z ∈ ∂yj (x, y) (12)
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with a constant c > 0 and p ∈ (1, +∞) . Here |0| is the Euclidean norm in R
m,

while ∂yj (x, y) means the generalized gradient of j with respect to the second
variable y ∈ R

m, i.e., ∂j (x, g) (y) .
We are in position to handle the integral

J (v) =
∫

Ω

j (x, v (x)) dx, ∀v ∈ Lp (Ω) .

Theorem 5. The functional J : Lp (Ω, Rm) → R is Lipschitz continuous
on bounded sets, satisfies the inequality

Jo (u; v) ≤
∫

Ω

jo
y (x, u (x) ; v (x)) dx, ∀u, v ∈ Lp (Ω, Rm)

and ∂J (u) ⊆ ∫
Ω ∂j (x, u (x)) dx, ∀u ∈ Lp (Ω, Rm) ,in the sense that, for each

z ∈ ∂J (u) and x ∈ Ω there is z (x) ∈ R
m such that z (t) ∈ ∂y (t, u (t)) for a.e.

t ∈ Ω, z (·) ξ ∈ L1 (Ω), whenever ξ ∈ L1 (Ω) and

< z, v >=
∫

Ω

z (x) v (x) dx, ∀v ∈ Lp (Ω, Rm) .

Corollary 6. If β ∈ L∞
loc (R), verify the growth condition

|β (t)| ≤ c
(
1 + |t|p−1

)
, ∀t ∈ R for constants c > 0 and p ≥ 1, then the

functional J : Lp (Ω) → R described by the integral

J (v) =
∫

Ω

∫ v(x)

0

β (t) dtdx, ∀v ∈ Lp (Ω) ,

is Lipschitz continuous on bounded sets in Lp (Ω) and satisfies at any
u ∈ Lp (Ω) the relation ∂J (u) (x) ⊆ [

β (u (x)) , β (u (x))
]
, for a.e. x ∈ Ω.

Corollary 7. For any function j : Ω × R → R, consider the jump
∂yj (x, y) =

[
j (x, y) , j (x, y)

]
for a.e. x ∈ Ω and y ∈ R, and suppose that

j, j that are measurable. Then, for any u ∈ Lp (Ω), the following formula
holds: ∂J (u) (x) ⊆ [

j (x, u (x)) , j (x, u (x))
]
, for a.e. x ∈ Ω..

Regarding the subdifferentiation of composite maps and restrictions,we will
the fol-lowing result due to Chang [1].

Proposition 8. Let X and Y be two Banach spaces such that X is
continuously imbedded in Y and X is dense in Y. Let G : Y → R be a locally
Lipschitz function and let i : X → Y denote the imbedding operator. The
restriction G|X : X → R is defined by

Go
|X (u) = Goi (u) , ∀u ∈ X.
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Then, for each point u ∈ X, one has the formula

Go
|X (u; v) = Go (i (u) ; i (v)) , ∀v ∈ X

and

∂
(
Go

|X
)

(u) = ∂G (i (u)) ◦ i =
{
z|X | z ∈ ∂G (i (u))

}
= ∂G (u) ,

in the sense that each element z of ∂
(
G|X

)
(u) admits a unique extension to

an element of ∂G (u) .

Definition 9. An element u ∈ X is said to be a substationary (critical)
point of a locally Lipschitz function I : X → R on a Banach space if

0 ∈ ∂I (u) .

An alternate formulation is the condition that

Io (u; v) ≥ 0, ∀v ∈ X.

By means of these preliminaries, we give a typical existence result.
Let V be a real Banach space, densely and continuously imbedded
L2 (Ω) = L2 (Ω, Rm) , m ≥ 1,for a bounded domain Ω in R

N .
Let a : V × V → Rbe continuous, symmetric bilinear form on V, f ∈ V ∗,

and j : Ω × R
m → R be a measurable function in the first variable such that

j (·, 0) ∈ L1 (Ω)and satisfying the condition (12).
We consider the hemivariational inequality: find u ∈ V such that

a (u, v)+ < f, v > +
∫

Ω

jo
y (x, u (x) , v (x)) dx ≥ 0, ∀v ∈ V. (13)

The result reveals the relationship between the above concept of critical
point and the solution of the inequality (13).

Theorem 10. Let I : V → R be the locally Lipschitz functional defined by
I (v) = 1

2a (u, v)+ < f, v > +J|V (v) , ∀v ∈ V, with

J (v) =
∫

Ω

j (x, v (x)) dx, ∀v ∈ L2 (Ω) .

Then any substationary (critical) point u ∈ V is a solution of the hemi-
variational inequality (13).

Indeed, the functional I (·) being locally Lipschitz, the substationary points
u ∈ V from Definition 10 make sense and

0 ∈ a (u, g) + f + ∂J|V (u) .
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Using the second relation in Theorem 5, we infer that there exists
z ∈ L2 (Ω) such that

a (u, v)+ < f, v > +
∫

Ω

z (x) v (x) dx = 0, ∀v ∈ V,

and z (x) ∈ ∂yj (x, u (x)) for a.e. x ∈ Ω.

According to the support property 4) of generalized subgradients, it follows
that u ∈ V is a solution of the hemivariational inequality (13).

In this setting, it is worth mentioning Palais-Smale condition variant.

Remark 11. For a local Lipschitz function F : X → R, the extreme
∧ (x) = min

{‖f‖∗ | f ∈ ∂F (x)
}

exists, and it is l.s.c., i.e., ∧ (xo) ≤ limx→xo ∧ (x) .
Consequently, we can apply the variational techniques to the above functional
I : V → R using the following Palais-Smale condition: every sequence {un} ⊂
V for which {I (xn)} is bounded and minfn∈∂I(xn) ‖fn‖X∗ → 0

as n → ∞ contains a convergent subsequence in V.

On the other part, a (multivalued) operator A : V → V ∗ is called pseu-
domonotone [3] if for any sequence {un} ⊂ V with un ⇀ u, and a correspond-
ing sequence u∗

n ∈ Tun with u∗
n ⇀ u∗ and

lim sup < u∗
n, un − u >≤ 0,

it follows that u∗ ∈ Tu and < u∗
n, un >−→< u∗, u > .

Proposition 12. If the subgradient of a locally Lipschitz function is pseu-
domonotone, then the function is weakly l.s.c.

The pseudomonotonicity of generalized gradients is useful in the pointwise
minimum problems of a finite number of convex locally Lipschits functions.

Within this framework, we can formulate an existence result for hemivari-
ational inequalities of the form

< Au − f, v − u > +Jo (u; v − u) ≥ 0, ∀v ∈ V. (15)

Assume further that the following Condition (C) holds:
For any sequence {un} ⊂ V weakly converging to u ∈ V with

lim < u∗
n, un − u >≤ 0,

for some u∗
n ∈ ∂J (un) , the corresponding sequence {J (un)} possesses a sub-

sequence converging to J(u).



50 Panait Anghel and Florenta Scurla

Theorem 13. Let A : V → V ∗ be a bounded pseudomonotone operator
and let J : V → R satisfy the condition (C). Suppose moreover that

A + ∂J

is coercive. Then, for any f ∈ V ∗, the hemivariational inequality (15) admits
at least one solution.
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