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Abstract
A general passage connecting smooth and nonsmooth, convexity and
nonconvexity, variational and hemivariational inequalities is sketched
here. The last equations are important for engineering problems be-
cause they concentrate in a single inequality all intrinsic features of a
phenomenon: the governing equations, the boundary conditions and the
constraints. We used the detailed treatment in [4].

AMS Subject Classification : 47H30

We are concerned with differential inclusions of hemivarational in-
equalities type. For the simplicity, let X be a real reflexive Banach space, X*
its dual, < -,- > the duality pairing, and let A : X — X* be a monotone-like
(generally, nonlinear) operator. In a concise form, for a given element, we look
for a solution u € X of the hemivariational inequality

<Au-—f,v—u>+J%(u;v—u) >0,

for all v € X, where J° (u;v) is the generalized directional derivative in the
sense of Clarke of a locally Lipschitz function J : X — R. An equivalent
multivalued formulation is given by

Au+90J(u)> f in X*,

where 0J (u) denotes Clarke’s generalized subdifferential. Its corresponding
dynamic counterpart has the form

%JrAqu&‘J(u)af,
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where is assumed to be a quasilinear elliptic operator of Leray-Lions type.

It is well-known that the monotone operator theory started from the mono-
tonicity of the derivative of convex functions. More general, for a proper con-
vex lower semicontinuos l.s.c. function ¢ : X — RU {400}, it was introduced
the subdifferential dp : X — 2% by

dp(x)={he X |<hy—z><epy) —¢),VyeX} (1)

which is a simple nice pattern of the maximal monotone (multivalued) oper-
ator. In particular, if ¢ is the indicator function of a convex set C of X,
then

Ne(2) =0pc () ={ge X" |<g,y—2x><0,Vy e C}

is the normal cone of C' at x. We mention also that D (0¢) = D (¢) holds.
Let C be a closed convex set of X, f be a given element in X* and A :
C — X* be an operator, nonlinear in general. The problem of finding u € C'
such that
<Au—f,xr—u>0,Vz el (2)

is called a wariational inequality (V.1.). Clearly, when C' = X then z’ range
over a neighborhood of u and the variational inequality reduces to the equation
Au=f.

More general, let ¢ : X — R U {400} be a l.s.c. convex function, with
D(p)={z € X | p(x) < oo} .Finding an element u € D (¢) such that

<Au—fix—u>4p (@) —pu) >0, Ve e D(p) (3)

is also a variational inequality. We note that (3) reduces to (2), when ¢ = ¢¢.
According to the subgradient inequality (1), the V.I. (3) is equivalent to

f € Au+ 0p (u) (4)
and, in particular, the V.I.(2) is equivalent to
f € Au+ N¢ (u). (5)

Making use of the forms (4) and (5), the theory of variational inequali-
ties is extended in connection with various generalizations of the concept of
subdifferential to broader classes of non-convex and nonsmooth functions.

We outline some topological methods for variational inequalities, defining
a Leray-Schauder type degree and extending Szulkin’s solution index method
[7].

Consider first the simpler case of a hemicontinuous strongly monotone
operator A : X — X*, i.e. there are a > 0 and p > 1 such that

<Az —Ay,x —y > alr -yl Y,y € X.
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Let ® : X — R U{+o0} be a proper convex l.s.c. function and define the
mapping
HA7¢> (XY — D((I)),
which associates to f € X* the unique solution v € D (®) of the variational
inequality

<Au-—fix—u>+4+0 () —®(u) >0, Vx € D (D).

Theorem 1. The mapping I14,¢ : X* — D (®) is single-valued continuous
and satisfies |Tas () — e (F)] < 217 = fIl,, VF. f' € X*.

If ® = ¢c, we denote 114 o, =114 c.

Moreover, let F': X — X* be a nonlinear compact operator and consider
the variational inequality: Find u € D (®) such that

<Au—F (u),v—u>+®(v) —®(u) >0, Vv € D (D). (7)

This inequality is equivalent to the fized point problem: Find
u € D (®) such that .

u=14¢ (Fu). (8)

Provided that the inequality (7) does not admits solution such that

lu]l = R, for some R > 0, the integer deg(I —I14 &(F(g)), Br,0),

in the Leray-Schauder sense, is well-defined. Here Bpg is the ball in the
origin of the radius R.

This kind of degree is of particular interest for the study of unilateral
eigenvalue problems. For a compact operator F' : R x X — X*, we look for
eigensolutions (A, u) € R x X such that

<Au—F(MNu),v—u>~+P(v) —®(u) >0, Yv € D(D). 9)

For A\ € R, this variational inequality is equivalent to the fixed point prob-

lem
u(N) =TaaF (u(X)

and the integer
deg (I - HA,<I> (F (>‘a g)) aBRa 0)

is well-defined with respect to the parameter A if there are no solutions u, with
lu (M = R.

We can remove the strong monotonicity of A by considering maximal mono-
tone operators in Hilbert spaces. In this case, we use the hypothesis

int{D(OP)}ND(A)#0 (10)



44 PANAIT ANGHEL AND FLORENTA SCURLA

which assures the maximality of the monotone sum A + 0.

Proposition 2. Let H be a real Hilbert space, ® : H — R{400} be a
proper convezx l.s.c. function and A : D(A) C H — H a maximal monotone
operator, such that the condition (10) holds. Then for each € >0 and g € H,
there exists a unique solution u. € D (A) of the variational inequality

< eus + Aue — g, v —ue > +P (v) — P (u:) >0, Vv € H. (11)

Moreover, the map Pj g : H — D(A):g— Pj 4 (g)is continuous, where
P3 5 (g9) denotes a unique solution of (11).

Of course, the inequality (10) is equivalent to finding
us € D(A)N D (09),

such that g € eus + Auc + 0D (u.) .

As (elg+ A+ 8<I>)_lis single-valued, the above set-valued problem has
a unique solution u. = Pj 4 (g9) ,whose continuity follows from the estimate
(easily to show)

1
l[un —ull < = lgn — gl -
e

Under some additional conditions on A and ¢, we may prove the compact-
ness of P 4. For instance, we have:

Proposition 3. Assume the hypotheses of the above proposition are sat-
isfied. Suppose further that is Lipschitz continuous on bounded sets and the
sets of the form

{ue D(A) [lu] <7} and [[Aul| <r

are compact for each v > 0. The map P} 4 is compact.

We remark that the condition on A appears usually in parabolic variational
problems.

Suppose now the hypotheses of Proposition 3 are satisfied and consider
the problem of finding the solutions u. € D (A) N D (0®) of the variational
inequality

< eue + Aue — F (ug) ,v —ue > @ (u) — ® (ue) >0, Vo € H, (11)

where F' : H — H is a (nonlinear) continuous operator. As above, this
inequality is equivalent to the fixed point problem

ue = Pj ¢ (F (ue)), ue € H.
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Similarly, provided the variational inequality (12) does not admit solutions
|lu|| = R > 0, the degree of Leray-Schauder type

deg (I — P4 4 (F (), Br,0)

is well-defined.

Now, we pass from variational to hemivariational inequalities, coming back
to the inclusions (4)-(5). Let F : X — RU {400} be Lipschitz of rank K > 0
near a point x € X i.e., for some ¢ > 0, we have

[F(y) = F ()| <Klly—zll, Vy,z € B(z,¢).

The generalized directional derivative of F at x in the direction y, denoted
F° (z;y), is defined by

F - F
F°(xz;y) = lim sup (w+1y) )

v—x,t] 0 t ’

where v is a vector in X and ¢ is a positive scalar. This definition involves an
upper limit only.
Likewise,

OF (z) ={f € X* | F°(z;9) > < f,y > Vy € X}

is a Clarke’s generalized subgradient of F at x. We have the following basic
properties [2]:

1) OF (z) is a nonempty, convex, and weak*-compact subset of X*, for
each z € X;

2) |Ifll € K, for each f € OF (x);

3) OF : X — 2%X7 is weak*-closed and upper semi-continuous;

4) For all z € X, F°(z,g) is the support function of OF (x), i.e.,

F°(z,9) =max{< f,y >|f € OF (2)}, Vy € X.

In the case of lack of convexity of the underlying stress-strain or reaction-
displacement conditions, the weak formulations like

—S € dJ (u)

are called roughly hemivariational inequalities. For instance, ) is a bounded
domain in R? occupied by a deformable body, I is its boundary, S is the locally
Lipschitz stress vector on I' and J is a so called " nonconvezr superpotential”.
The last concept has been introduced by P.D. Panagiotopoulos (1985) to study
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nonmonotone semipermeability problems, composite structures, etc. For re-
cent applications of variational and hemivariational inequalities, we mention
[5] and [7].

Later, we specify the subdifferentiation of integral functionals called also
the generalized gradients of type Chang [1]. For a function

B € L. (R),
we set .
i (1) = ds, t € R,
i) /06(5) s te

which is clearly locally Lipschitz. Let us calculate its generalized gradients.
For any 6 > 0 and ¢t € R we put

B, (t)= ess infﬂ. (1)

|7 —t|<d
and
Bs(t) = €58 sup@ (1)

|7 —t|]<d

For ¢ fixed, 8 s is decreasing in ¢ while Ba is increasing in 6. Thus, the limits

B(t) = lim 3 (t)

6—>O+_
and _ _
F(t) = Jim By (1
exist.

Proposition 4. With the above notations, the following relation holds
9j(t)=[B8(),B(1)], vt eR.

In particular, if the left limit 5 (t — 0) and the right limit (5 (t + 0) exist at
some t € R, then

95 (t) = [min {5 (t = 0), 5 (¢t + 0)} ,max {3 (t —0),5(t +0)}].

Roughly speaking 0j results from the generally discontinuous function 3
by filling the gaps.

Consider now a bounded smooth domain Q in RY and j(,y) : @ — R
measurable for y € R™, j (-,y) € L* (Q), j (-,y) : R™ — R is locally Lipschitz
for all z € Q) and satisfies thegrowth condition

Al <e(1 P ) Ve ey €R™ 2 €3, (x.y) (12)
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with a constant ¢ > 0 and p € (1, +00). Here |0] is the Euclidean norm in R™,
while 5y j (x,y) means the generalized gradient of j with respect to the second
variable y € R™, i.e., 95 (x,9) (y).

We are in position to handle the integral

J(v):/gj(:n,v(:c))dx, Yo e LP (Q).

Theorem 5. The functional J : L? (Q,R™) — R is Lipschitz continuous
on bounded sets, satisfies the inequality

J° (u;0) < /Q J2 (@0 (@) 50 (2)) do, Vu,v € LP (2, R™)

and 0J (u) C [, 07 (z,u(x))dz, Yu € LP (Q,R™) in the sense that, for each
z € 0J (u) and x € Q) there is z (x) € R™ such that z (t) € 0y (t,u (t)) for a.e.
teQ, z(-) € € LY (Q), whenever £ € L' (Q) and

< z,v >:/z(:c)v(:£)dx, Yo e LP (Q,R™).
Q

Corollary 6. If 8 € L2 (R), verify the growth condition

loc

B) <c (1 + |t|p71) , Yt € R for constants ¢ > 0 and p > 1, then the
functional J : LP (Q) — R described by the integral

v(x)
J(v):/Q/O B (t) dtdz, Yv € LP (),

is Lipschitz continuous on bounded sets in LP () and satisfies at any
u € LP (Q) the relation dJ (u) (z) C [B(u(x)),B (u(z))], for a.e. €.

Corollary 7. For any function j : @ x R — R, consider the jump
Oyj (z,y) = [j (z,y),] (@,y)] for a.e. = € Q and y € R, and suppose that
1,3 that are measurable. Then, for any u € LP (Q), the following formula

holds: 8J (u) (x) C [j (z,u(2)),j (z,u(x))], for a.e. z € Q..

Regarding the subdifferentiation of composite maps and restrictions,we will
the fol-lowing result due to Chang [1].

Proposition 8. Let X and Y be two Banach spaces such that X is
continuously imbedded in Y and X is dense in Y. Let G :Y — R be a locally
Lipschitz function and let i : X — Y denote the imbedding operator. The
restriction G|x : X — R is defined by

x (u) = G%(u), Vu € X.
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Then, for each point u € X, one has the formula
Giy (w;v) = G (i(u);i(v), Ywe X
and
9 (Gx ) (w) = 9G (i (w) 01 = {21x | 2 € G (i (w))} = IG (),
in the sense that each element z of 0 (G|X) (u) admits a unique extension to

an element of 0G (u).

Definition 9. An element v € X is said to be a substationary (critical)
point of a locally Lipschitz function I : X — R on a Banach space if

0€dI(u).
An alternate formulation is the condition that
I° (u;v) > 0, Yo € X.

By means of these preliminaries, we give a typical existence result.

Let V be a real Banach space, densely and continuously imbedded

L?(Q) = L? (Q,R™), m > 1 for a bounded domain € in RY.

Let a : V x V — Rbe continuous, symmetric bilinear form on V, f € V*
and j : 2 x R™ — R be a measurable function in the first variable such that
j(-,0) € L' (Q)and satisfying the condition (12).

We consider the hemivariational inequality: find v € V such that

a(u,v)+ < f,o> +/ Jy (@,u(z),v(x))dr >0, Vv e V. (13)
Q
The result reveals the relationship between the above concept of critical

point and the solution of the inequality (13).

Theorem 10. Let I : V — R be the locally Lipschitz functional defined by
I(v) =3a(uv)+ < foo>+Jy (v), Y eV, with

J(v):/gj(:c,v(:c))dx, Yo e L2 ().

Then any substationary (critical) point w € V' is a solution of the hemi-
variational inequality (13).

Indeed, the functional I (-) being locally Lipschitz, the substationary points
u € V from Definition 10 make sense and

0€al(u,g)+f+0Jy (u).
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Using the second relation in Theorem 5, we infer that there exists
z € L? () such that

a(u,v)+ < f,v> Jr/ z(x)v(r)de =0, YveV,
Q
and z (z) € 9yj (z,u (z)) for a.e. x € Q.

According to the support property 4) of generalized subgradients, it follows
that u € V' is a solution of the hemivariational inequality (13).

In this setting, it is worth mentioning Palais-Smale condition variant.

Remark 11. For a local Lipschitz function F : X — R, the extreme
A(z) =min {||f||, | f € OF (z)} exists, and it is L.s.c., i.e., A (o) < limg .z, A (2).
Consequently, we can apply the variational techniques to the above functional
I:V — R using the following Palais-Smale condition: every sequence {u,} C
V' for which {I (x,)} is bounded and ming, cor(z,) | fullx, — 0

as n — oo contains a convergent subsequence in V.

On the other part, a (multivalued) operator A : V. — V* is called pseu-
domonotone [3] if for any sequence {u,} C V with u, — u, and a correspond-
ing sequence u), € T'u,, with u); — u* and

limsup < Uy, Uy —u >< 0,

it follows that u* € Tw and < u), up, >—< u*,u > .

Proposition 12. If the subgradient of a locally Lipschitz function is pseu-
domonotone, then the function is weakly l.s.c.

The pseudomonotonicity of generalized gradients is useful in the pointwise
minimum problems of a finite number of convex locally Lipschits functions.

Within this framework, we can formulate an existence result for hemivari-
ational inequalities of the form

<Au—fiv—u>+J% (us;v—u) >0, Vo eV. (15)

Assume further that the following Condition (C) holds:
For any sequence {u,} CV weakly converging to u € V with

lim < u®, u, —u ><0,

for some u} € 0J (uy,), the corresponding sequence {J (upn)} possesses a sub-
sequence converging to J(u).
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Theorem 13. Let A:V — V* be a bounded pseudomonotone operator
and let J :V — R satisfy the condition (C). Suppose moreover that

A+0J

is coercive. Then, for any f € V*, the hemivariational inequality (15) admits
at least one solution.
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