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Abstract

In this note we establish an existence and uniqueness result for the
equation u − Au + F (u) = f where A is linear, quasi-positive and the
nonlinear function F is a Lipschitz monotone operator.

Let H be a real Hilbert space endowed with the inner product 〈·, ·〉 and
the norm ‖·‖ and f ∈ H.

We consider the equation

u−Au + F (u) = f, (1)

where A : H −→ H is a linear operator and F : H −→ H is a nonlinear
Lipschitz monotone operator, i.e.

〈F (x)− F (y), x− y〉 ≥ 0 (2)

for all x, y ∈ H and there exists M > 0 such that

‖F (x)− F (y)‖ ≤ M ‖x− y‖ (3)

for all x, y ∈ H. We suppose moreover that A is quasi-positive i.e. there
exists c > 0 such that

〈Ax, x〉 ≥ c ‖Ax‖
2
, (4)

for all x ∈ H. It
′

s clear that

Proposition 1. The linear operator A is bounded and

‖A‖L(H) ≤
1

c
.
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Proof. We have c ‖Ax‖
2
≤ 〈Ax, x〉 = |〈Ax, x〉| ≤ ‖Ax‖ · ‖x‖ for all x ∈ H.

It results that

‖Ax‖ ≤
1

c
‖x‖

for all x ∈ H.

An operator B : H −→ H is called strongly monotone if there exists α > 0
such that

〈Bx−By, x− y〉 ≥ α ‖x− y‖
2

for all x, y ∈ H.
The equation (1) can be written equivalently as

V u = f (5)

where V = I −A + F and I is the identity of H.

Proposition 2 If c > 1, then V is a strongly monotone operator.

Proof. We have

〈(I −A)v, v〉 = ‖v‖
2
− 〈Av, v〉 ≥ ‖v‖

2
− ‖Av‖ · ‖v‖ ≥

‖v‖
2
−

1

c
‖v‖

2
=

c− 1

c
‖v‖

2

for all v ∈ H. Consequently we obtain

〈V x− V y, x− y〉 = 〈(I −A)(x− y), x− y〉+ 〈F (x)− F (y), x− y〉 ≥

〈(I −A)(x− y), x− y〉 ≥
c− 1

c
‖x− y‖

2

for all x, y ∈ H.
It is clear that the operator V is continuous on H. Also, if c > 1, then V

is coercive( i.e. 〈V x,x〉
‖x‖ −→ ∞, when ‖x‖ −→ ∞) and 〈V x− V y, x− y〉 > 0

for all x, y ∈ H with x 6= y, because V is strongly monotone. By the Minty-
Browder theorem, we obtain that the equation (5) has a unique solution in H.
( see [1] , p. 88).

So we obtained the following

Theorem. Let F : H −→ H be a nonlinear Lipschitz monotone operator

and A : H −→ H a linear operator such that

〈Ax, x〉 ≥ c ‖Ax‖
2
,

for all x ∈ H, with c ∈ R, c > 1. Then the equation u − Au + F (u) = f has

a unique solution in H for all f ∈ H.
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