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Abstract

Our aim is to present a numerical method for solving elliptical prob-
lems by theoretical discretization. In order to do it, a complete system
of eigenfunctions of the Laplacean and the compact imbedding of H

1(Ω)
in L

2(Ω) are used in the paper.

Let Ω be a bounded domain in RM , with a quite smooth boundary such
that we can apply the Green’s formula and the Sobolev-Kondrashov imbedding
theorem (see [PS]). Consider the following mixed problem:

Lu = f in Ω,

u = u0 on Γ ⊆ ∂Ω,meas(Γ) > 0 (1)

∂u

∂ν
=

M
∑

i=1

∂u

∂xi

νi = g on ∂Ω \ Γ,

where L is a linear elliptic operator of divergence form:

Lu (x) := −
M
∑

i,j=1

∂

∂xj

(

aij (x) · ∂u

∂xi

(x)

)

+ c (x) · u (x) , x ∈ Ω,

and ν is the versor of the exterior normal to ∂Ω.
Suppose that L satisfies the conditions:

aij ∈ C1(Ω̄), c ∈ C(Ω̄), c ≥ 0,
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M
∑

i,j=1

αij (x) ξiξj ≥ λ |ξ|2 , λ > 0, ξ ∈ RM , x ∈ Ω,

where by |·| we denote the euclidean norm on RM .
We want to find the weak solution of the problem (1), namely a function

u ∈ V such that

∫

Ω





M
∑

i,j=1

αij (x)
∂u

∂xi

(x)
∂ϕ

∂xj

(x) + c (x)u (x) ϕ (x)



 dx = (f, ϕ)L2(Ω) , ∀ϕ ∈ V,

(2)
where V := {u ∈ H1(Ω)|u = 0 on Γ ⊆ ∂Ω}.

We have supposed, without losing the generality, that u0 = 0, because
making the translation u− u0, we arrive to homogeneous conditions on Γ.

Also, we have supposed that g = 0 on ∂Ω− Γ, since in the contrary case,
we define f̂ ∈ V ∗ by (f̂ , ϕ) := (f, ϕ)L2(Ω) +

∫

∂Ω\Γ
gϕds,∀ϕ ∈ V .

It is known that this problem has a unique solution in V (see [SM]).
We shall find this solution using a discretization of the problem. For this,

we need the following result (see [SM]):

Theorem 1. Let V and H be two real Hilbert spaces, V being compactly
imbedded in H. Then there exist the sequences {ϕn} in V and {λn} in (0,∞)
such that:
(i) {ϕn} is an orthogonal basis in V ;
(ii)

{√
λnen

}

is an orthogonal basis in H;
(iii) {λnen} is an orthogonal basis in V ∗;
(iv) {λn} is a monotone increasing sequence that diverges to +∞.

From the proof of this theorem (see [SM]), we know that λn are the eigen-
values of the duality mapping J : V → V ∗, and ϕn are the corresponding
eigenfunctions.

We denote by < ·, · >V and ‖·‖V the inner product and respectively the
norm on V.

Remember the following well-known results:

Lemma 1. If Vn is a finite dimensional subspace of V with the basis
ϕ1, ..., ϕn, then for any u ∈ V , there exists an unique un ∈ Vn satisfying:

< u− un, ϕ >V = 0, ∀ϕ ∈ Vn. (3)

un is called the orthogonal projection of u on Vn.
Equivalently, we say that un is the best approximation of u in Vn in the

norm of V , i.e.
‖u− un‖V = inf

ϕ∈Vn

‖u− ϕ‖V . (4)
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Taking H = L2 (Ω) and V = {u ∈ H1(Ω)|u = 0 on Γ ⊆ ∂Ω}, we obtain
the system {ϕn} from the Theorem 1, formed by the eigenfunctions of the
Laplacean.

Denote by

a (u, v) =

∫

Ω





M
∑

i,j=1

αij (x)
∂u

∂xi

(x)
∂v

∂xj

(x) + c (x)u (x) v (x)



 dx, u, v ∈ V.

(5)
We easily see that a (u, v) is a scalar product on V , and denote this product

by (·, ·)V , and the induced norm by ||| · |||V .
Let N ∈ N∗ and SN (Ω) be the space generated by the functions ϕ1, ϕ2, ..., ϕN .
Consider now instead of VN from the above theorem, the space SN (Ω).

In this case, the matrix A = (Aij), Aij =< ϕi, ϕj >V is the unity matrix,
because {ϕi}i=1,2,...,N form an orthonormal system.

Denote by TN : V → SN (Ω) the operator which satisfies:

(u− TNu, ϕ)V = 0, ∀ϕ ∈ SN (Ω) (6)

or equivalently,
|‖u− TNu‖|V = inf

ϕ∈SN (Ω)
|‖u− ϕ‖|V . (7)

Now we state the approximation problem corresponding to the problem
(1):

Find uN ∈ SN (Ω) such that:

(uN , ϕ)V = (f, ϕ)L2 for any ϕ ∈ SN (Ω) . (8)

Because uN ∈ SN (Ω), we have that

uN =

N
∑

i=1

aiϕi (9)

and the relations (8) and (9) lead us to the algebraic system:

N
∑

i=1

ai (ϕi, ϕj)V
= (f, ϕj)L2 , j = 1, 2, ..., N,

where ai are not known and must be determined.
Further, we shall prove the existence, the uniqueness and the estimation

of the errors for the approximation problem (8).

Theorem 2. In the above conditions, we have that
(i) For any f ∈ L2 (Ω), there exists an unique uN ∈ SN (Ω) satisfying (8);
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(ii) If u satisfies (1) and uN ∈ SN (Ω) satisfies (8), then u− uN satisfies the
relation (6), i. e. uN = TNu and we have:

|‖u− uN‖| = inf
ϕ∈SN (Ω)

|‖u− ϕ‖| . (10)

Proof. (i) As SN (Ω) ⊂ V , (·, ·) is also a scalar product on SN (Ω). For a

fixed f in L2 (Ω), f̂ (ϕ) := (f, ϕ)L2(Ω) is a linear and continous functional on

SN , and by the Riesz-Frechet theorem, it results that the equation (8) has a
unique solution in SN (Ω), for any f ∈ L2 (Ω).

(ii) By (1) and (8), uN satisfies:

(u− uN , ϕ) = 0 , ∀ϕ ∈ SN (Ω) (11)

We have that
|‖u− uN‖|2 = (u− uN , u− uN ) .

From (11), for any ϕ ∈ SN (Ω) , we have:

|‖u− uN‖|2 = (u− uN , u− ϕ + ϕ− uN ) = (u− uN , u− ϕ)+(u− uN , ϕ− uN ) .

But (u− uN , ϕ− uN ) = 0, because ϕ − uN ∈ SN (Ω) (see relation (10) ).
So,

|‖u− uN‖|2 = (u− uN , u− ϕ) ≤ |‖u− uN‖| · |‖u− ϕ‖| ,
from the Cauchy-Buniakowski-Schwartz inequality. From this it results that

|‖u− uN‖| ≤ |‖u− ϕ‖|

i.e. (10), so uN = TNu.

Now we can estimate the error as follows:

Theorem 3. For any ε > 0, there exists Nε ∈ N∗ such that for any
N ≥ Nε, then

‖u− TNu‖2L2(Ω) ≤ ε · ‖u‖2H1(Ω) .

Proof. From the Theorem 1, we have

Jϕn = λnϕn, J : V → V ∗. (12)

We have that
{√

λnϕn

}

is an orthonormal basis in H := L2 (Ω), so in
L2 (Ω) we can write:

u =

∞
∑

n=1

cn

√

λnϕn,
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where cn =< u,
√

λnϕn >L2(Ω)=
√

λn < u,ϕn >L2(Ω) .

We have, using (12):

< u,ϕn >L2(Ω)=

∫

Ω

u (x) ϕn (x) dx =
1

λn

∫

Ω

u (x) λnϕn (x) dx =

=
1

λn

∫

Ω

u (x) Jϕn (x) dx =
1

λn

∫

Ω

Ju (x) · ϕn (x) dx

< u, ϕn >L2(Ω)=
1

λn

∫

Ω

Ju (x) · ϕn (x) dx,

so

u =

∞
∑

n=1

1

λn





∫

Ω

Ju (x)
√

λnϕn (x) dx





√

λnϕn =

∞
∑

n=1

1

λn

< Ju,
√

λnϕn >L2(Ω) ·ϕn .

Because TNu =
N
∑

n=1
cn

√
λnϕn, we obtain:

u− TNu =

∞
∑

n=N+1

1

λn

· < Ju,
√

λnϕn >L2(Ω) ·
√

λnϕn.

It results from this that:

‖u− TNu‖2L2(Ω) =

∞
∑

n=N+1

1

λ2
n

· < Ju,
√

λnϕn >2
L2(Ω) .

Let now be ε > 0 arbitrary fixed. Because λn ↗ ∞, we have that there
exists Nε ∈ N such that 1

λn
<
√

ε, ∀n ≥ Nε.

If N ≥ Nε, then:

‖u− TNu‖2L2(Ω) ≤ ε

∞
∑

n=N+1

< Ju,
√

λnϕn >2
L2(Ω)≤

≤ ε

∞
∑

n=1

< Ju,
√

λnϕn >2
L2(Ω)= ε ‖Ju‖L2(Ω) ,

so

‖u− TNu‖2L2(Ω) ≤ ε ‖Ju‖2L2(Ω) = ε ‖u‖2H1(Ω) .
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Remark. This method can easily be generalized to the case where u is
a vectorial function, u = (u1, u2, ..., up) and belongs to the space V := {u ∈
[H1(Ω)]p|ui = 0 on Γ ⊆ Ω,meas(Γ) > 0}.

Application - The linear system of elasticity in the static case.

The deformation of a body that occupies a bounded region Ω in the space
Rp, (p = 2 or 3), is characterized by the displacement vector u : Ω → Rp and
the strain tensor ε = ε(u). In the case of small (infinitesimal) deformation,

ε(u) has the form: ε(u) := {εij(u)}1≤i,j≤p, where εij(u) = 1
2 ( ∂ui

∂xj
+

∂uj

∂xi
).

The constitutive relation that characterizes the elasticity in the static case
is a dependence of the stress tensor

σ := {σij}1≤i,j≤p, σij = σji,

namely:

σij =

p
∑

k,l=1

aijklεkl(u) in Ω,

p
∑

j=1

∂σij

∂xj

+ fi = 0, 1 ≤ i ≤ p. (13)

The coefficients aijkl satisfy the symmetry conditions

aijkl = ajikl = aklij ,

and the ellipticity conditions

p
∑

k,l=1

aijklξkξl ≥ λ|ξ|2, λ > 0, ξ ∈ Rp, 1 ≤ i, j ≤ p.

The boundary conditions are:

ui = Ui on Γ ⊆ ∂Ω,

p
∑

j=1

σijνj = Fi on ∂Ω \ Γ,meas(Γ) > 0.

Here f = {fi}1≤i≤p is the vector of the density of the volume forces given on
Ω, U is the field of the displacement given on Γ, and F is the vector of the
surface forces, given on ∂Ω \ Γ.

Denote by

Lu := −
p

∑

j=1

∂σij

∂xj

(u) = − ∂

∂xj

[

p
∑

k,l=1

aijklεkl(u)].
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Then, the system (13) becomes: Lu = f in Ω,where L is an elliptic
operator of divergential form, and we can apply the above theory, and find the
weak solution.
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