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ON SOLVING A FORMAL HYPERBOLIC

PARTIAL DIFFERENTIAL EQUATION IN

THE COMPLEX FIELD
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Abstract

Several papers of K. W. Tomantschger deals with the solving of linear

partial differential equations of second order in complex field by using

the Bergman integral operator. The Bergman operator contains the

Bergman kernel. To determine the Bergman kernel, is not an easy work.

This paper contains an approach to construct an algorithm to find the

Bergman kernel for a formal hyperbolic partial differential equation with

two independent complex variables.

1. Mathematical Background

In [7] a list of integral operators is given: J. Le Roux (1895), I.N. Vekua
(1937), St. Bergman (1937), M. Eichler (1942), U. Stessel (1992). The Stessel
operator comprises all these operators as special cases. Nevertheless the most
useful integral operator is Bergman operator [1]. By this operator can be
obtained a solution of the linear partial differential equation of second order
in the complex field.

In this paper we deal with the following formal hyperbolic pde:

∂2v

∂z∂ζ
− zp−1ζq−1v = 0, v = v (z, ζ) , p, q ∈ Z, z, ζ - complex variables.

(1)
Notation 1. Let L denote the differential operator

L =
∂2

∂z∂ζ
− zp−1ζq−1, Lv (z, ζ) = 0. (2)
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A solution of the equation Lv = 0 has the form [1], [6]

v (z, ζ) = (Tf) (z, ζ) =

∫ 1

−1

E (z, ζ, t) f
(z

2

(

1− t2
)

) 1√
1− t2

dt , (3)

where E (z, ζ, t) is a solution of the pde

(

1− t2
) ∂2E

∂z∂t
− 1

t
· ∂E

∂ζ
+ 2tLE = 0 (4)

and f (z) is any holomorphic function in a neighborhood of z = 0.

Definition 2. E (z, ζ, t) is named Bergman kernel and (Tf) (z, ζ) given
by (3) is called the Bergman operator.

Remark 3. The function f is independent of the equation Lv = 0 while
the Bergman kernel depends upon this equation.

The most useful Bergman kernels are polynomial kernels. The Bergman
kernel of first type has the form:

E (z, ζ, t) = 1 +
∞
∑

n=1

znP ∗

n (z, ζ) tn, E (0, ζ, t) = 1, (5)

where the functions P ∗

n (z, ζ) have to determined.

Remark 4. The first problem of solving the pde (2) is to find the kernel (5)
i.e. to find the functions P ∗

n (z, ζ) which verify the equation (4). The second
problem is to compute the integral (3) for any holomorfic function f (z) .

Now we are interested in finding the Bergman kernel.

Proposition 5. The functions P ∗

n (z, ζ) satisfy the system of equations

2n + 1

2
· ∂P ∗

n+1

∂ζ
+ LP ∗

n = 0, P ∗

o (z, ζ) = 1, n ≥ 0. (6)

Proof. We introduce (5) in equation (4) and follow the coefficient of t2n+1.

The system (5) is called a Bergman recurrence system. By solving this
system one obtains the functions P ∗

n (z, ζ) and the kernel E (z, ζ, t) .

2. Bergman Recurrence System Properties

There are at least two methods to solve the Bergman recurrence system.

Method 1. One uses the system (6) for n = 0, 1, 2, 3, and the general
solution P ∗

n (z, ζ) is obtained by induction.
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Method 2. We choose a particular form of the functions P ∗

n (z, ζ). This
form depends on the pde2 we have to solve. In the case of equation (2) we
choose a polynomial form in ζ

P ∗

n (z, ζ) = ζnPn (zζ) ,

E (z, ζ, t) = 1 +
∞
∑

n=1

(zζ)
n

Pn (zζ) . (7)

If we denoted zζ = u, then the Bergman kernel becomes:

E (z, ζ, t) = 1 +

∞
∑

n=1

unPn (u) , Po (u) = 1 (8)

where Pn (u) , n ≥ 1 are unknown functions. We denote N = {1, 2, 3, ...} .

Remark 6. For the equation (2) there are the following cases: p = q = 0;

p = q, p, q ∈ N; p 6= q, p, q ∈ N;

p = q, p, q ∈ Z−{0} ; p 6= q, p, q ∈ Z−{0} .

Now we deal with the case p = q ∈ N and we denote p = q = m, m ≥ 1.
The equation (2) becomes

Lv = 0, L =
∂2

∂z∂ζ
− (zζ)

m−1
, v = v (z, ζ) .

Proposition 7. Using (7), the Bergman recurrence system (6) becomes:

2n + 1

2

[

uP ′

n+1 (u) + (n + 1) Pn+1 (u)
]

= um−1Pn (u)− (n + 1) P ′

n (u)−

−uP ′′

n (u) , u = zζ, m ∈ N. (9)

We call (9), Bergman particular system.

Proof. The system (6) has the form:

2n + 1

2
· ∂P ∗

n+1

∂ζ
+

∂2P ∗

n

∂z∂ζ
− (zζ)

m−1
P ∗

n = 0,

P ∗

n+1 (z, ζ) = ζn+1Pn+1 (zζ) . (10)

From (10), by computing all partial derivatives, one obtains (9).
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Proposition 8. The Bergman particular system (9) yields the recurrence
formula:

Pn+1 (u) =
2

n + 1
· 1

un+1

∫

un+1

(

um−2Pn −
n + 1

u
P ′

n − P ′′

n

)

du, n ≥ 0,

Po (u) = 1 (11)

Proof. One writes the general solution differential linear equation (9) with
unknown function Pn+1.

3. Solution of the Bergman Particular System

We look for the solution Pn (u) of the Bergman particular system, (11).
One starts with n = 0, 1, 2, 3, 4 and then we propose the general form of
unknown functions Pn (u).

a) The particular values of n yield particular functions

P0(u) = 1,

P1(u) =
2

m
· 1

u
um = − 22·11!

(2 · 1)! ·
1

u
· −(m)1

1!m2
um,

P2 (u) =
22·22!

(2 · 2)! ·
1

u2

[

− (m− 1)2
1!m2

um +
(m)1
2!m3

u2m

]

,

P3 (u) =
22·33!

(2 · 3)! ·
1

u3

[

− (m− 2)3
1!m2

um +
3 (m− 1)2

2!m3
u2m − (m)1

3!m4
u3m

]

,

P4 (u) =
22·44!

(2 · 4)! ·
1

u4

[

− (m− 3)4
1!m2

um +
(m− 2)2 (7m− 11)

2!m3
u2m−

−6 (m− 1)2
3!m4

u3m − (m)1
4!m5

u4m

]

, (12)

where (C)n = C (C + 1) (C + 2) ... (C + n− 1) = An
C+n−1. All functions are

written in the same form in order to obtain the generalization. The quantity
in brackets is a polynomial in u.

b) We propose the general form of unknown functions

Pn (u) = (−1)
n 22nn!

(2n)!
· 1

un

n
∑

k=1

bn,k

k!mk+1
ukm, n ≥ 1 (13)

where bn,k are unknown coefficients which depend on n and k.
c) We’ll find some particular values for these coefficients.
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Proposition 9. The first coefficients bn,k n ≥ 1, 1 ≤ k ≤ n have the
values:

n = 1, b1,1 = −m;
n = 2, b2,1 = − (m− 1) m, b2,2 = m;
n = 3, b3,1 = − (m− 2) (m− 1) m, b3,2 = 3 (m− 1) m, b3,3 = m;
n = 4, b4,1 = − (m− 3) (m− 2) (m− 1) m, b4,2 = (m− 1) m (7m− 11) ,
b4,3 = −6 (m− 1) m, b4,4 = m.

Proof. One identifies the relation (12) and (13).

d) We find recurrence relations for the coefficients bn,k.

Proposition 10. For n ≥ 1 coefficients bn,k verify the recurrence rela-
tions:

bo,o = 1, bn+1,1 = (m− n) bn,1 (14)

bn+1,n+1 = −bn,n, (15)

bn+1,k = (km− n) bn,k − bn,k−1, k = 2, n. (16)

Proof. We introduce the general form (13) into Bergman particular system
(9) and we put u−n, u−n−1 in the sum. In the first equality which we obtain,
one changes u(k+1)m−n−1 in ukm−n−1 by index removals. One obtains an
equality having three sums. We isolate k = 1, k = n + 1 in the first sum,
k = n + 1 in the second sum, k = 1 in the third sum.

um−n−1 ⇒ −bn+1,1

m2
m = −bn,1

m2
m (m− n)

u(n+1)m−n−1 ⇒ − bn+1,n+1

(n + 1)!mn+2
(n + 1) m =

bn,n

n!mn+1

ukm−n−1 ⇒ − bn+1,k

k!mk+1
km =

bn,k−1

(k − 1)!mk
− bn,k

k!mk+1
km (km− n) , k = 2, n.

Corollary 11. By index removal n+1 → n for n ≥ 1, m ≥ 1, one obtains:

(14) ⇒ bn,1 = − (m− n + 1)n = −An
m = −n!Cn

m = −n!

(

m
n

)

(17)

(15) ⇒ bn,n = (−1)
n

m (18)

(16) ⇒ bn,k = (km− n + 1) bn−1,k − bn−1,k−1, n ≥ 2, k ≥ 2, n. (19)

e) Using (19) we have to obtain the non-recurence relation for coefficiens
bn,k. We try to obtain the simplest form for each coefficient. At the beginning
we evaluate the particular cases k = 2, 3, 4 (because bn,1 is known).
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Proposition 12. I.1) k = 2; for n ≥ 2, bn,2 has the equivalent expressions

bn,2 = −
n−1
∑

j=1

(2m− n + 1)n−j−1 bj,1 (20)

bn,2 = −
n−1
∑

j=1

An−j−1
2m−j−1A

j
m, n ≥ 2. (21)

I.2) The simplest form is

bn,2 =
n!

m

(

1

2
Cn

2m − Cn
m

)

, n ≥ 2. (22)

Proof. From (19), we express bn,2 with b2,2 = −m and bj,1. We obtain:

bn,2 = (2m− n + 1)n−2 b2,2−(2m− n + 1)n−3 b2,1−...−(2m− n + 1)1 bn−2,1−bn−1,1.

The result is (20). For (21), one takes into account that:

(2m− n + 1)n−j−1 = An−j−1
2m−j−1, bj,1 = −Aj

m.

For (22), one proves the equality:

n−1
∑

j=1

An−j−1
2m−j−1 =

n!

m

(

1

2
Cn

2m − Cn
m

)

, n ≥ 2.

Proposition 13. II.1). k = 3; for n ≥ 3, bn,3 has the equivalent expres-
sions

bn,3 = −
n−1
∑

j=2

(3m− n + 1)n−j−1 bj,2, (23)

i.e.

bn,3 =
(m− 1)! (2m− 1)!

(3m− n)!





n−1
∑

j=2

C2m−1
3m−j−1 −

n−1
∑

j=2

Cm−1
3m−j−1



 . (24)

II.2) The simplest form is:

bn,3 =
(m− 1)! (2m− 1)!

(3m− n)!

[

C2m
3m−2 − C2m

3m−n − Cm
3m−2 + Cm

3m−n

]

, (25)
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i.e.

bn,3 =
n!

m2

[

−1

6
Cn

3m +
1

2
Cn

2m − 1

2
Cn

m

]

. (26)

Proof. From (19), we express bn,3 with b3,3 = −b2,2 and bj,2 in the form:

bn,3 = (3m− n + 1)n−3 b3,3−(3m− n + 1)n−4 b3,2−...−(3m− n + 1)1 bn−2,2−bn−1,2.

The result is (23). For (24), in (23) one uses (c)n and bj,2 given by (22).

Then one writes all the terms with k! and we try to obtain Cj
i .

Using a trick, we get:

bn,3 =
(m− 1)!

(3m− n)!

n−1
∑

j=2

(2m− 1)! (3m− j − 1)!

(m− j)! (2m− 1)!
−

− (2m− 1)!

(3m− n)!

n−1
∑

j=2

(m− 1)! (3m− j − 1)!

(2m− j)! (m− 1)!
.

Using Cj
i and Cj

i = Ci−j
i (∗), one obtain (24). For (25) we use Cj−1

i−1 =

Cj
i − Cj

i−1 (∗∗) . For (25), we simplify (25), and the coefficients become:

bn,3 = − (3m)!

6m2 (3m− n)!
+

(2m)!

2m2 (2m− n)!
− m!

2m2 (m− n)!
.

By multiplication with n!/n! one obtains the desired formula (26).

Proposition 14. III.1) k = 4; for n ≥ 4, bn,4 has the equivalent expres-
sions

bn,4 = −
n−1
∑

j=3

(4m− n + 1)n−j−1 bj,3 (27)

bn,4 =
1

2m
· (3m− 1)! (m− 1)!

(4m− n)!

n−1
∑

j=3

Cm−1
4m−j−1 −

− 1

m
· (2m− 1)! (2m− 1)!

(4m− n)!

n−1
∑

j=3

C2m−1
4m−j−1 +

+
1

2m
· (m− 1)! (3m− 1)!

(4m− n)!

n−1
∑

j=3

C3m−1
4m−j−1. (28)
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III.2) The simplest form is:

bn,4 =
1

2m
· (3m− 1)! (m− 1)!

(4m− n)!

(

Cm
4m−3 − Cm

4m−n

)

−

− 1

m
· [(2m− 1)!]

2

(4m− n)!

(

C2m
4m−3 − C2m

4m−n

)

+

+
1

2m
· (m− 1)! (3m− 1)!

(4m− n)!

(

C3m
4m−3 − C3m

4m−n

)

(29)

bn,4 =
n!

m3

[

1

24
Cn

4m − 1

6
Cn

3m +
1

4
Cn

2m − 1

6
Cn

m

]

. (30)

Proof is done in the same way as for the previous Proposition.

Remark 15. The simplest form determined for each particular coefficient
was obtained in many steps, generally four steps.

Our main purpose is to find the non-recurrence form of bn.k from (19),
using the particular coefficients bn.k , k = 1, 2, 3, 4 given by their simplest
form (17), (22), (26), (30) respectively. We’ll do it in the next proposition.

Proposition 16. The general form of coefficients bn,k from (13) is:

bn,k =
n!

k!mk−1

k
∑

j=1

(−1)
j
Cj

kCn
jm , n ≥ k, m ≥ 1, n ≥ 0, m ≥ n. (31)

Proof. We introduce (31) in (19) and obtain

k
∑

j=1

(−1)
j
Cj

kCn
jm =

km− n + 1

n

k
∑

j=1

(−1)
j
Cj

kCn−1
jm − km

n

k−1
∑

j=1

(−1)
j
Cj

k−1C
n−1
jm .

We isolate terms for j = k and it results:

k−1
∑

j=1

(−1)
j
Cj

kCn
jm =

km− n + 1

n

k−1
∑

j=1

(−1)
j
Cj

kCn−1
jm − km

n

k−1
∑

j=1

(−1)
j
Cj

k−1C
n−1
jm .

Here we use some known formulas as: Cj
k−1 =

k − j

k
Cj

k , and Cn−1
jm =

=
n

jm− n + 1
Cn

m , and we get
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k−1
∑

j=1

(−1)
j
Cj

kCn
jm =

km− n + 1

n
·

k−1
∑

j=1

(−1)
j
Cj

k

n

jm− n + 1
Cn

jm −

−km

n
·

k−1
∑

j=1

(−1)
j k − j

k
Cj

k

n

jm− n + 1
Cn

jm,

therefore, we get:

k−1
∑

j=1

(−1)
j
Cj

kCn
jm =

k−1
∑

j=1

(−1)
j
Cj

k

km− n + 1

jm− n + 1
Cn

jm −

−
k−1
∑

j=1

(−1)
j
Cj

k

m (k − j)

jm− n + 1
Cn

jm.

The last equality is an identity. Hence (31) satisfies (19).

Remark 17. The whole work was done to find the relation (31). The
function Pn (u) becomes

Pn (u) = (−1)
n 22nn!

(2n)!
· 1

un

n
∑

k=1

1

k!mk+1
ukm · n!

k!mk−1

n
∑

j=1

(−1)
j
Cj

kCn
jm

Pn (u) = (−1)
n 22nn!n!

(2n)!
· 1

un

n
∑

k=1





k
∑

j=1

(−1)
j
Cj

kCn
jm





1

k!k!m2k
ukm. (32)

4. Algorithm to Find Bergman Kernel of First Type

1) Choose the Bergman kernel of first type E (z, ζ, t) having the form (5).
The functions P ∗

n (z, ζ) are unknown functions.
2) Choose the functions P ∗

n (z, ζ) having the form (7). The Pn (z, ζ) are
unknown functions.

3) Use the Bergman particular recurrence system (11) and find several
functions Pn for the particular values n = 0, 1, 2, 3, 4. All functions Pn should
be written in the same aspect, to be possible the generalization (13).

4) Using the particular functions Pn one finds the particular values of the
coefficients bn,k , 1 ≤ k ≤ n.

5) Find bn,1 and the recurrence relation for bn,k , n ≥ 2 (19).
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6) Find the non-recurrence relation for bn,k , n ≥ 2 and obtain the simplest
form for each coefficient.

6.1). Find the equivalent expressions for bn,2 and obtain the simplest forms.
6.2). Find the equivalent expressions for bn,3 and obtain the simplest forms.
6.3). Find the equivalent expressions for bn,4 and obtain the simplest forms.
7) Write the coefficients bn,k , k = 1, 2, 3, 4 in the same simplest form (31).
8) Write the coefficients form of the coefficients bn,k (31).
9) Write the general form of the function Pn (32).
10) Write the general form of the function P ∗

n and the Bergman kernel
E (z, ζ, t) (7).
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