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Abstract

The method used to obtain the minimum-norm solution of a large-

scale system of linear inequalities proceeds by solving a finite number of

smaller unconstrained subproblems. Such a subproblem has the form of

optimizing a quadratic function, which is easily solved. The case when

the vector b is perturbed is also included.

1. INTRODUCTION

Consider the following problem:
{

min 1
2 ‖x‖

2

Ax ≤ b,
(1)

where A ∈ Mm×n, b ∈ <
m, x ∈ <n, ‖.‖ stands for the Euclidean norm in <n.

The constraints of the problem may be also written as

aT
i x ≤ bi, i ∈ {1, 2, ...,m} ,

where aT
i forms the ith row of the matrix A and bi is the ith component of b.

The Lagrangean associated to problem (1) is:

ψ(x, u) =
1

2
xTx+ uT (Ax− b), u ∈ <m. (2)

By the Kuhn-Tucker (K-T) theorem, the necessary and sufficient condition for
x̂ ∈ <n to be the optimal solution of problem (1), is to exist û ∈ <m such
that:

Ax̂ ≤ b (3)
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{
û ≥ 0
x̂+AT û = 0

(3.1)

ûT (Ax̂− b) = 0 (ecart conditions). (3.2)

We will write the dual problem to problem (1), which is also a quadratic
programming problem, but the constraints can be brought to a simpler form, i.
e. to conditions of nonnegativity for dual variables. The Lagrangean (2) is the
objective function of the dual and the K-T conditions (3.1) are its constraints:





max(x,u)ψ(x, u)
x+ATu = 0

u ≥ 0.
(4)

By the duality theorem, if (x̂, û) is an optimal solution for the problem (4)
then x̂ is the optimal solution of the problem (1).Writting the Lagrangean (2)
under the form :

ψ(x, u) = −
1

2
xTx+ xT (x+ATu)− bTu

and substituting
x = −ATu, (5)

it results that the dual problem (4) is transformed into the following :

{
maxϕ(u)
u ≥ 0,

(6)

where

ϕ(u) = −
1

2

〈
u,AATu

〉
− bTu.

(by 〈., .〉 we denote the scalar product in <m).
The m ×m matrix D = AAT is symmetric and nonnegative definite. In-

deed:
uTDu = (ATu)T (ATu) ≥ 0.

It follows that :

ϕ(u) = −
1

2
uTDu− bTu (7)

is a concave continuously differentiable function. The problem (6) with the
objective function (7) may have more solutions, but no matter which one is
replaced in (5), the unique solution of the problem (1) is obtained.
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2. ELIMINATION OF CONSTRAINTS

For any u ∈ <m, we use N(u) to denote the set of indices for which the
corresponding components of the point u are zero. That is

N(u) = {i/ui = 0} .

PROPOSITION 1. Let U ⊂ <m be a convex set and f be a concave
function on the set U. If û is an optimal point for problem

{
max f(u)
u ≥ 0,

(8)

then it is also optimal for “restraint” problem:
{

max f(u)
ui ≥ 0, i ∈ N(û)

(9)

(i.e. the ith constraints for which ûi > 0 may be excluded with no change of
solution).

Proof . We will assume that û wouldn’t be optimal for the problem (9), i.
e. would exist u so that:

ui ≥ 0, i ∈ N(û), (10)

f(u) > f(û). (11)

Let uτ = τu + (1 − τ)û ∈ U, with τ ∈ (0, 1). We will show that for τ small
enough, uτ is a solution of problem (8) better than û and this contradicts the
optimality of û. For i ∈ N(û), uτ

i = τui +(1− τ).0 ≥ 0, for any τ ∈ (0, 1). For
i /∈ N(û) we can find τ0 small enough to have

uτ0

i = τ0ui + (1− τ0)ûi > 0.

Beside this, from (11) and from the fact that f is concave, it follows:

f(uτ0) ≥ τ0f(u) + (1− τ0)f(û) > f(û).�

If we can determine the set N(û) of indices for which the corresponding
components of the optimal solution û of the problem (8) are zero, we can solve
the “restraint” problem with constraints taken as equalities:

{
max f(u)
ui = 0, i ∈ N(û).

(12)
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The problem (12) has the form of maximizing a concave function f over sub-
space of the free variables <m−q, where q is the number of indices from N(û)
(the set of indices of fixed variables). It is a specialisation of the problem of
maximizing a concave function, over a linear manifold [3].
Remark 1. From practical point of view, (12) is a unconstrained problem, with
m− q free variables, of form:

{
max g(z)
z ∈ <m−q,

where z is the vector with components ui, i /∈ N(û) (the free part of u).

3. THE METHOD

Assume that f is a concave continuously differentiable function. By the
K-T theorem, the necessary and sufficient conditions for û ∈ <m

+ to be an

optimal solution for problem the (8), is to exist multipliers λ̂i ≥ 0, i = 1, ...,m,
such that:

λ̂iûi = 0, i = 1, ...,m, (13)

Of(û) = −
m∑

i=1

λ̂ie
i, (14)

where <m
+ stands for the nonnegative orthant of <m and ei = (0, ...,

i

1, ..., 0)T .

If i /∈ N(û), then ûi > 0 and from (13), λ̂i = 0. Then from (14), it follows that
the necessary and sufficient condition for û ∈ <m

+ to be an optimal solution
for the problem (8) is to exist:

λ̂i ≥ 0, i ∈ N(û) such that: (15)

Of(û) = −
∑

i∈N(û)

λ̂ie
i. (16)

The gradient of f at the optimal solution û has the components:

(Of(û))i = 0, i /∈ N(û),

(Of(û))i = −λ̂i, i ∈ N(û).

The inequality −λ̂i ≤ 0 shows the trend of function f to decrease in a neigh-
bourhood of the optimal point û.
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Let v be optimal for the problem (12). It follows that there are Lagrange
multipliers λi, i ∈ N(û) such that :

vi = 0, i ∈ N(û), (17)

Of(v) = −
∑

i∈N(û)

λie
i. (18)

If conditions

vi ≥ 0, i /∈ N(û),

λi ≥ 0, i ∈ N(û)

are satisfied, then using (15) and (16), v is an optimal solution for the problem
(8).
If, for some i0, λi0 < 0, the function f has the trend to increase in neighbor-
hood of the point v on direction i0 and the greater is the value of −λi0 , the
stronger is this trend.

PROPOSITION 2. Let f be a continuously differentiable function on <m.
Let v be optimal for

{
max f(u)
ui = 0, i ∈ N ⊂ {1, ...,m}

(19)

and λi, i ∈ N, Lagrange multipliers such that:

Of(v) = −
∑

i∈N

λie
i. (20)

Assume for some i0 ∈ N that λi0< 0 . If v′ is optimal for
{

max f(u)
ui = 0, i ∈ N\ {i0}

(21)

then v′ is a better point, i. e.

f(v′) > f(v). (22)

Proof. Because the problem (21) has one constraint less than the problem
(19), the inequality f(v′) ≥ f(v) is obvious. We shall prove that v is not
optimal for the problem





max f(u)
ui = 0, i ∈ N\ {i0}
ui0 ≥ 0.

(23)
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Suppose on the contrary that v is optimal for the problem (23). Then,
from K-T conditions, there are multipliers λ′i, i ∈ N\ {i0} and λ′i0 ≥ 0 such
that:

Of(v) = −
∑

i∈N\{i0}

λ′ie
i − λ′i0e

i0 . (24)

But Of(v) is expressed as a unique linear combination of the unit vectors
ei, i ∈ N. From (20) and (24), it follows that λi = λ′i, i ∈ N\ {i0} and
λi0 = λ′i0 ≥ 0 (contradiction). Therefore v is not optimal for the problem
(23).

If v is optimal for the problem (23), then f(v) > f (v) . On the other hand,
the problem (21) has one constraint less than the problem (23). It follows:

f(v′) ≥ f(v) > f (v) .�

The method is briefly the following: suppose the starting point u1 ≥ 0 is
given; then we solve the subproblem

{
max f(u)
ui = 0, i ∈ N(u1)

(25)

and let v1 be an optimal point for the problem (25). We distinguish between
two possibilities.

The first case: v1 ≥ 0 (v1 is feasible for the problem (8)), then u2 = v1.
If v1 is also optimal for the problem (8) (i. e. λi ≥ 0, i ∈ N(u1)), the

procedure stops. If there exists λi < 0, then a subspace of a large dimension
is considered, by releasing a constraint (according to Proposition 2, a fixed
variable becomes free) and we repeat this process.

The second case: if there exists i /∈ N(u1) such that v1
i < 0 (v1 is not

feasible for the problem (8)), then let u2 be the feasible point closest to v1 on
the line segment between u1 and v1 : u2 = u1 + τ(v1 − u1),where the scalar
τ ∈ (0, 1) is determined such that u2 ≥ 0 and u2 is closest to v1. At least one
additional component r /∈ N(u1) of u2 is zero.
Then we solve the subproblem:

{
max f(u)
ui = 0, i ∈ N(u2).

The dimension of the subspace used in this subproblem decreases due to the
appearance of at least one constraint more: N(u2) ⊃ N(u1) ∪ {r} .

Remark 2. The second case can occur at most a finite number of times
in succession without an occurrence of the first case, namely at most until all
components ui are zero. But the null vector is a feasible point for the problem
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(8), therefore the first case will appear.

ALGORITHM (suboptimization algorithm)

1. Initialisation: u1 ∈ <m
+ arbitrary and N1 = N(u1).

2. Typical step: Determine vp optimal for subproblem:

{
max f(u)
ui = 0, i ∈ Np.

(26)

Case 1 : vp ≥ 0. Determine:
λi0 = mini∈Np {λi}
If λi0 ≥ 0, STOP; vp is optimal for problem (8).
If λi0 < 0,define

Np+1 = Np\ {i0}

up+1 = vp.

Go to 2 with p+1 replacing p.
Case 2 : vp � 0. Determine up+1 the feasible point closest to vp

on the line between up and vp. Define

Np+1 = N
(
up+1

)

Go to 2 with p+1 replacing p.
Assumption 1 : The optimal solutions of the subproblem (26) exist.
Remark 3. According to Remark 1, the subproblems (26) may be solved

using a unconstrained maximization technique. Such a technique is applied
only in the subspace of the free variables, while the fixed variables remain by
definition, zero. By starting the unconstrained technique from up (as initial
feasible point), the optimal point vp of the subproblem (26) should be near up

and therefore it may be easily obtained.

4. FINITE CONVERGENCE

The algorithm terminates in a finite number of steps. To prove this, it is
enough, according to Remark 2, to establish that Case 1 can only occurs a
finite number of times without termination.

PROPOSITION 3. Let f be a concave continuously differentiable function.
Under Assumption 1, the Case 1 from the statement of the Suboptimization
Algorithm can only occur a finite number of times without termination.
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Proof. Suppose Case 1 occurs, i. e. vp ≥ 0, and vp is not optimal for the
problem (8). According to the algorithm, up+1 = vp and the problem

{
max f (u)
ui = 0, i ∈ Np\ {i0}

(27)

is solved, obtaining the optimal solution vp+1. We distinguish between two
posibilities:

a) vp+1 ≥ 0; then up+2 = vp+1 and according to Proposition 2

f
(
up+2

)
> f

(
up+1

)
.

b) vp+1 � 0; then up+2 = up+1 + τ
(
vp+1 − up+1

)
. Proposition 2 does

provide that f
(
vp+1

)
> f

(
up+1

)
, but by concavity of f

f
(
up+2

)
= f

(
τvp+1 + (1− τ)up+1

)
≥ τf

(
vp+1

)
+ (1− τ) f

(
up+1

)
>

> τf
(
up+1

)
+ (1− τ) f

(
up+1

)
= f

(
up+1

)
.

Hence, when Case 1 occurs

f
(
up+2

)
> f

(
up+1

)
(28)

and up+2 is set equal to the solution vp+1 of the subproblem (27). From
(28) the subproblem cannot repeat. Due to their form, there are only a finite
number of them, so the conclusion follows.�

5. APPLICATION OF THE METHOD TO QUADRATIC

PROGRAMMING PROBLEM

In what follows we apply the suboptimization algorithm to solve the quadratic
programming problem: {

maxϕ (u)
u ≥ 0,

where ϕ (u) = − 1
2u

TDu− bTu and D = AAT .
The gradient of ϕ is Oϕ (u) = −AATu− b.

Consider the subproblem:

{
maxϕ (u)
ui = 0, i ∈ Np ⊂ {1, ...,m} .

(29)

Assume that F p is the complement of Np, that is, the set of free variables at
p iteration. We also assume without loss of generality, that

F p = {1, ...,m− q} ,
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where q is the number of indices from N p. Then we have the following parti-
tion:

u =

(
z
0

)
,

where the vector z contains the first m − q components of u (the free part).
The subproblem then reduces to finding a vector zp ∈ <m−q by solving

maxz∈<m−q

{
−

1

2
zTCz − dz

}
,

where C ∈ M(m−q)×(m−q), d ∈ <m−q. Then, returning to the m-dimensional
space, the optimal point for the subproblem (29) is:

vp =

(
zp

0

)
.

Let λi, i ∈ N
p, be Lagrange multipliers such that:

Oϕ (vp) = −
∑

i∈Np

λie
i.

It results that
λi = − (Oϕ (vp))i , i ∈ N

p.

For j ∈ Np we have vp
j = 0. It follows that

λi =
∑

j∈F p

dijv
p
j + bi, i ∈ N

p,

where dij =
∑n

k=1aikajk.

In view of having as few unconstrained subproblems to solve, as it is pos-
sible, it is very important how the feasible starting point u1 is chosen.

In order to find this point, a number (not very large) of iterations from the
primal-dual algorithm of Lent and Censor [1] can be used. This is an easily
programmable and low storage demanding method.

Starting from initial values u(0) = 0 and x(0) = 0, the primal-dual algo-
rithm generates simultaneously primal iterates x(k) which converge (unfortu-
nately slow) to the solution of (1) and dual iterates u(k) with u(k) ≥ 0. The
sequence of dual vectors

{
u(k)

}
is feasible for the problem (6) and the values

of ϕ
(
u(k)

)
increase monotonically and converge:

a)ϕ
(
u(k+1)

)
≥ ϕ

(
u(k)

)
,
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b)limk→∞[ϕ
(
u(k+1)

)
− ϕ

(
u(k)

)
] = 0.

For dual variables the algorithm is analogous with the relaxation method.
The transition from u(k) to u(k+1) consists in parallel displacement on axis
Ouik

where ik = k (modm) + 1, such that for each displacement the greatest
increase of function ϕ to be obtained, under the condition that u(k+1) ≥ 0 (see
[2])

u(k+1) = u(k) + α(k)eik
,

where eik
=

(
0, ...,

ik

1 , ..., 0

)T

. The step size α(k) of displacement at iteration

k is:

α(k) = −min

(
u

(k)
ik
,
bik
− < aik

, x(k) >

‖aik
‖
2

)
,

where

x(k) = x(k−1) − α(k−1)aik−1
.

6. b (θ) − LINEAR FUNCTION IN PARAMETER θ.

Since in real life the numeric data for the problem(1) are not exactly deter-
mined, they are known by approximation. Consider the following parametric
programming problem: {

min 1
2 ‖x‖

2

Ax ≤ b(θ),
(30)

where θ is a real valued parameter, b(θ) = b+ θb1 and b, b1 ∈ <m are given.
The dual to the problem (30) is the parametric quadratic programming prob-
lem and will denote it by P (θ) :

{
max

{
− 1

2u
TDu− bT (θ)u

}

u ≥ 0.
(31)

For θ = 0, the quadratic programming problem (6) is obtained.
We assume that, applying the suboptimization algorithm to the problem P (0),
we have been obtained an optimal solution û ∈ <m and the dual variables
λ̂ ∈ <m which verifies the K-T conditions:





−Dû+ λ̂ = b

û ≥ 0, λ̂ ≥ 0

(û)T λ̂ = 0.

(32)
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Consider the ”restraint” problem:




max
{
− 1

2v
TDv − (b1)T v

}

λ̂T v = 0
vi ≥ 0, i ∈ N(û).

(33)

We assume now that the ”restraint” problem has an optimal solution,
let’s say v̂. Then using again the K-T conditions, it follows that there exist
multipliers ηi ≥ 0, i ∈ N(û) and η0 ∈ < such that





−Dv̂ + η0λ̂+ η = b1

λ̂T v̂ = 0
v̂i ≥ 0, i ∈ N(û)
ηT v̂ = 0,

(34)

where for i /∈ N(û) we have defined ηi = 0.

PROPOSITION 4. If the problems (6) and (33) have the optimal solutions
û and respectively v̂, then there exists θ0 > 0 such that u(θ) = û + θv̂ is an
optimal solution of P (θ), for any 0 ≤ θ ≤ θ0.

Proof. Let λ (θ) = λ̂+ θ
(
η + η0λ̂

)
. Now define

I1 = {i/v̂i < 0}

I2 =
{
i/ηi + η0λ̂i < 0

}

θ1 =

{
mini∈I1

{
− ûi

v̂i

}
if I1 6= φ

+∞ if I1 = φ

θ2 =

{
mini∈I2

{
−λ̂i

ηi+η0λ̂i

}
if I2 6= φ

+∞ if I2 = φ

θ0 = min {θ1, θ2} .

By definition θ1 ≥ 0. In fact θ1 > 0. Indeed, if ûi = 0, it results that i ∈ N(û)
and therefore v̂ ≥ 0, i.e. i /∈ I1. Analogously, it is proved that θ2 > 0. Indeed,
if λ̂i = 0 then ηi + η0λ̂i = ηi ≥ 0, i. e. i /∈ I2. It follows that θ0 > 0. We will
prove now that u(θ) and λ (θ) , 0 ≤ θ ≤ θ0, satisfy the K-T conditions for the
problem P (θ) , i. e.





−D (û+ θv̂) + λ̂+ θ(η + η0λ̂) = b+ θb1

û+ θv̂ ≥ 0, λ̂+ θ(η + η0λ̂) ≥ 0

(û+ θv̂)
T

(λ̂+ θ(η + η0λ̂) = 0.
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From the definition of θ0, the vector u(θ) is feasible for P (θ) and λ (θ) ≥ 0,
for any 0 ≤ θ ≤ θ0. The other conditions result from (32) and (34) and from
the relation

(û)
T
η = 0.

The last one is equivalent to ûiηi = 0, 1 ≤ i ≤ m, what is true, because
i ∈ N (û) we have ûi = 0 and for i /∈ N (û) , ηi = 0, by definition.�

If u (θ) is replaced in (5), the solution of the problem (30) is obtained:

x (θ) = −AT û− θAT v̂

or

x (θ) = x̂− θAT v̂,

where x̂ is the optimal solution of problem (1) and v̂ is a solution of ”restraint”
problem (33).
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