

An. Şt. Univ. Ovidius Constanța

STATISTICAL INFERENCE ON THE TRAFFIC INTENSITY FOR THE M/M/s QUEUEING SYSTEM

Alexei Leahu

To Professor Silviu Sburlan, at his 60's anniversary

Abstract

In the paper it is shown that, for the certain plans of observations on the M/M/s queueing system's performances, there exists a uniformly most powerful test of statistical hypothesis on the traffic intensity.

1. Preliminaries. Let us consider the M/M/s queueing system. That means we have the system with poissonian input with parameter λ , $\lambda > 0$ and exponential output of customers with parameter μ , $\mu > 0$, s ($s \ge 1$) being the number of servers.

Suppose that we observe functioning of our system in the time interval [0, R], where $R = R(\omega)$ is a random variable. In addition, we suppose the outcome (n, m) of the random vector (N_R, M_R) is a point of a pseudomonotone frontier (PM - frontier) in \mathbb{R}^2 , where N_t, M_t are the numbers of up or down jumps, respectively, for birth-death process X_t with birth-death intensities, respectively,

$$\lambda_k = \lambda, k \ge 0, \mu_k = \begin{cases} k \cdot \mu, pentru \ k \le s \\ s \cdot \mu, pentru \ k > s \end{cases}, \quad k \ge 1.$$

Note that the process X_t describes the M/M/s system.

The notion of PM- frontier was introduced in [1] an its definition will be reproduced in our paper.

We suppose also that statistical trials give us the full information about performance of the system. In this conditions for the parameter $\rho = \lambda/\mu$,

Mathematical Reviews subject classification: 60K25; 62F03.

Key Words: Queueing systems, traffic intensity, birth-death process, likelihood function, testing hypothesis, uniformly most powerful criterion.

which for s = 1 is known as a *traffic intensity*, we have to solve the problem of testing hypothesis $\mathbf{H}_0: \rho \leq 1, \mathbf{H}_1: \rho > 1.$

2. Solving the problem. Since the observations give us full information about the M/M/s system's performances, we have, as a result of sampling, the vector $\mathbf{A} = (\tau_{01}^1, ..., \tau_{01}^{k_{01}}, ..., \tau_{q1}^1, ..., \tau_{q1}^{k_{q1}}, \tau_{02}^2, ..., \tau_{02}^{k_{02}}, ..., \tau_{q2}^2, ..., \tau_{q2}^{k_{q2}})$, where $q = \max\{ \text{lenghts of the registrated queues observing system's performances} \};$

 k_{i1} is the number which shows how many times the system (or the process X_t) has reached the state *i* before his jumping up in the state i + 1, $i = X_t$

0, 1, ..., q - 1;

 k_{i2} is the number which shows how many times the system (or the process X_t) has reached the state *i* before his jumping down in the state i - 1, i =1, ..., q;

 τ_{i1}^{\jmath} is the duration of the j-th visit in the state i before system's jumping up in the state i + 1, i = 0, 1, ..., q - 1, $j = 1, 2, ..., k_{i1}$;

 τ_{i2}^{j} is the duration of the j-th visit in the state *i* before system's jumping down in the state $i - 1, i = 1, ..., q, j = 1, 2, ..., k_{i2}$.

Total duration of system's visit in the state
$$i, i = 1, ..., q - 1$$
, is equal to $t_i = \sum_{j=1}^{k_{i1}} \tau_{i1}^j + \sum_{j=1}^{k_{i2}} \tau_{i2}^j$, and, for $i \in \{0, q\}$, we have respectively $t_0 = \sum_{j=1}^{k_{01}} \tau_{j1}^j$, $t_q = \sum_{i=1}^{k_{q2}} \tau_{i2}^j$.

Since the process X_t is a Markovian, from [2] we deduce that likelihood function (probability density function) of the vector **A** is equal to:

case a) $q \leq s$

$$L(\tau_{01}^{1},...,\tau_{01}^{k_{01}},...,\tau_{q1}^{1},...,\tau_{q1}^{k_{q1}},\tau_{02}^{2},...,\tau_{02}^{k_{02}},...,\tau_{q2}^{2},...,\tau_{q2}^{k_{q2}};\lambda,\mu) = \lambda^{n}\mu^{m}\cdot 1^{k_{12}}\cdot 2^{k_{22}}\cdot...\cdot q^{k_{q2}}\exp\{-\lambda T_{1}\}\exp\{-\mu T_{2}\},$$

where $n = \sum_{i=0}^{q-1} k_{i1}, m = \sum_{i=1}^{q} k_{i2}, T_1 = \sum_{i=0}^{q} t_i, T_2 = \sum_{i=0}^{q} it_i;$ case b) q > s

$$L(\tau_{01}^{1},...,\tau_{01}^{k_{01}},...,\tau_{q1}^{1},...,\tau_{q1}^{k_{q1}},\tau_{02}^{2},...,\tau_{02}^{k_{02}},...,\tau_{q2}^{2},...,\tau_{q2}^{k_{q2}};\lambda,\mu) = \lambda^{n}\mu^{m}\cdot 1^{k_{12}}\cdot 2^{k_{22}}\cdot...\cdot(s-1)^{k_{(s-1)2}}\cdot s^{k_{s2}+...+k_{q2}}\exp\{-\lambda T_{1}\}\exp\{-\mu T_{2}\},$$

but in this case $T_2 = \sum_{i=0}^{s-1} it_i + s \sum_{i=s}^{q} t_i$. Looking over likelihood function in the cases a) and b) we deduce that the vector $(n, n + m, T_1, T_2)$ is a vector of sufficient statistics with its likelihood function

$$L(n, n+m, T_1, T_2; \lambda, \mu) = \lambda^n \mu^m \exp\{-(\lambda T_1 + \mu T_2)\} \cdot \mathbf{C}(n, m) =$$

$$= \mathbf{C}(n,m) \exp\{-(\lambda T_1 + \mu T_2) + n \ln \frac{\lambda}{\mu} + (n+m) \ln \mu\}$$

where

$$\mathbf{C}(n,m) = \begin{cases} \sum_{q=1}^{s} \sum_{S_{qm}} 2^{k_{22}} \cdot \dots \cdot q^{k_{q^2}} + \\ + \sum_{q=s+1}^{s} \sum_{S_{qm}} 2^{k_{22}} \cdot \dots \cdot (s-1)^{k_{(s-1)2}} \cdot s^{k_{s^2}+\dots+k_{q^2}}, \text{ for } n > s \\ \sum_{q=1}^{n} \sum_{S_{qm}} 2^{k_{22}} \cdot \dots \cdot q^{k_{q^2}}, \text{ for } n \le s, \end{cases}$$
(1)

and $S_{qm} = \{(k_{12}, ..., k_{q2}) \mid k_{12} + ... + k_{q2} = m, k_{i2} = 0, 1, 2, ..., i = \overline{1, q} \}.$ From (1), we have that conditioned likelihood function

$$\mathbf{P}\{N_R = n, M_R = m, T_{1=}t_1, T_{2=}t_2/N_R + M_R = n + m\} =$$

$$=\frac{\mathbf{C}(n,k-n)\lambda^{n}\mu^{k-n}}{\sum_{i=[k/2]}^{k} \mathbf{C}(i,k-i)\lambda^{i}\mu^{k-i}} = \frac{\mathbf{C}(n,k-n)\rho^{n}}{\sum_{i=[k/2]}^{k} \mathbf{C}(i,k-i)\rho^{i}} = W_{\rho}(n,k-n),(2)$$

that means it is not depend ant on $t_1 {\rm and} \ t_2$, but that it depends only on ρ, n and k=n+m.

Let's consider PM-frontier $\Gamma_{\mathcal{D}}$ of the stopping points for the process of observations as a subset of the domain $\mathcal{D} = \{(N, M) \mid N, M = 0, 1, 2, ...\}$. According to [1], the points $Q \in \Gamma_{\mathcal{D}}$ may be ordered in this way: if $Q_1 = (n_{Q_1}, m_{Q_1})$, $Q_2 = (n_{Q_2}, m_{Q_2})$ belong to $\Gamma_{\mathcal{D}}$, then, by definition, Q_1 precedes Q_2 ($Q_1 \leq Q_2$) if $k_{Q_1} = n_{Q_1+}m_{Q_1} \leq n_{Q_2+}m_{Q_2} = k_{Q_2}$, and Q_2 follows immediately after Q_1 if $k_{Q_2} = k_{Q_1} + 1$ or $k_{Q_2} = k_{Q_1}$. In the subset $S_k = \{(n, m) = Q \mid n + m = k\}$, the numbering depends on n_Q . More exactly, for $Q_1, Q_2 \in S_k$ we consider that $Q_1 \leq Q_2$ if $n_{Q_1} \leq n_{Q_2}$.

From the main theorem proved in [1] we have the following

Proposition. If the frontier $\Gamma_{\mathcal{D}}$ of the stopping points for the process of observations on the M/M/s system's performances is a PM – frontier, then the family of the conditioned likelihood functions $\{W_{\rho}(n, k-n)\}$, which depend on the parameter ρ , possesses the monotony propriety for the likelihood ratio, on the $\Gamma_{\mathcal{D}}$.

So, according to paper [3], on the base of conditioned likelihood functions $W_{\rho}(n, k-n)$ and of the given significance level α , $\alpha \in (0, 1)$, we may construct the uniformly most powerful criterion to test hypothesis $\mathbf{H}_0 : \rho \leq 1$, $\mathbf{H}_1 : \rho > 1$.

The critical function which corresponds to the above mentioned (randomized) criterion will be

$$\varphi(Q) = \begin{cases} 1, & if \ Q \succ Q^*, \\ \gamma, & if \ Q = Q^*, \\ 0, & if \ Q \prec Q^*, \end{cases}$$

where Q^* and γ are such that the mean value of the random variable φ calculated for $\rho = 1$ coincides with α .

This result may be applied particularly to the stopping frontiers which correspond to the following stopping times $R = R(\omega)$: a) $R = T_N^{"}$, where $T_N^{"}$ coincides with the moment when the N - th customer arrives in the system; b) $R = T_M^{"}$, where $T_M^{"}$ coincides with the moment when the M - th customer finishes his service; c) $R = \min(T_N^{"}, T_M^{"})$.

It may be verified directly that the above described frontiers are PM - frontiers.

References

- Tchepourin E.V., Testing hypotheses on the intensities ratio of the birth-death process, Bull. Acad. Sci. USSR, Ser. Engeneering Cibernetics, Nr.1, 1971, pp. 111-131 (rus.).
- [2] Billingsley P., Statistical inference for Markov processes, Univ. Chicago Press, 1961.
- [3] Lehmann E., Testing statistical hypothesis . John Willey, N.-Y, 1959.

"Ovidius" University of Constantza, Department of Mathematics & Informatics , Bld. Mamaia 124, 8700 Constantza, Romania e-mail: aleahu@univ-ovidus.ro