An. Şt. Univ. Ovidius Constanţa

VARIANT OF LAX-MILGRAM LEMMA FOR BANACH SPACES

Gheorghe Doboş
To Professor Silviu Sburlan, at his 60's anniversary

Abstract

In the paper, it is shown that, by taking a condition on the difference $|a(u, v)-a(v, u)|$ in the Lax-Milgram Lemma, we may apply it to the same problem in a Banach space.

We recall the Lax-Milgram Lemma:
Let X be a real Hilbert space, let $a(\cdot, \cdot)$ be a continuous, coercitive, bilinear form defined on X, and let f be a continuous linear form on X. Then there exists one and only one element $u \in X$ which satisfies

$$
(\forall) v \in X, a(u, v)=f(v) .
$$

We establish the conditions of our work.
Let X be a Banach space, $a: X \times X \rightarrow \mathbb{R}$ be a bilinear form and $f: X \rightarrow \mathbb{R}$ be a linear continuous function.

Assume that:

1) $\exists M>0$ a.i. $|a(u, v)| \leq M\|u\| \cdot\|v\|$ (boundness);
2) $\exists K^{2}>0$ a.i. $a(u, u) \geq K^{2}\|u\|^{2}$ (coercitivity).

Let

$$
\alpha=\sup _{u, v \neq 0} \frac{|a(u, v)-a(v, u)|}{\|u\|\| \| \|}
$$

From $|a(u, v)| \leq M\|u\| \cdot\|v\|$ we get $|a(u, v)-a(v, u)| \leq$ $2 M\|u\|\|v\|$ and therefore there exists α and $\alpha \leq 2 M$.

We denote $b(u, v)=a(u, v)+a(v, u)$ and for all $x \in X$ we denote
$g_{x}(v)=f(v)+a(v, x)$

Obviously b becomes a bilinear form which is symmetric, continuous, and coercitive on X and g_{x} is linear and continuous.

Denoting

$$
J_{x}(u)=\frac{1}{2} b(u, u)-g_{x}(u)=a(u, u)-g_{x}(u)
$$

and using Ritz method, there exists a unique $u_{x} \in X$ which satisfies $J_{x}\left(u_{x}\right)=$ $\inf _{u \in X} J_{x}(u)$ and in addition satisfies a variational equation

$$
\begin{gathered}
b\left(u_{x} v\right)=g_{x}(v),(\forall) v \in X \text { i.e. } \\
a\left(u_{x}, v\right)+a\left(v, u_{x}\right)=f(v)+a(v, x),(\forall) v \in X
\end{gathered}
$$

By starting with $u_{0} \in X$, we define the sequence $\left(u_{n}\right)_{n \in N}$ given by

$$
a\left(u_{n}, v\right)+a\left(v, u_{n}\right)=f(v)+a\left(v, u_{n-1}\right) .
$$

We prove that:

$$
\left\|u_{n}-u_{n-1}\right\| \leq\left(\frac{\alpha}{4 K^{2}}+\frac{1}{2}\right)\left\|u_{n-1}-u_{n-2}\right\|, n \geq 2
$$

where α and K are the nonsymmetry constant and, respectively the coercitivity constant for a.

Remark 1. The following inequality holds:

$$
\begin{aligned}
a\left(u_{n}-u_{n-1}\right. & \left.-\frac{1}{2}\left(u_{n-1}-u_{n-2}\right), u_{n}-u_{n-1}-\frac{1}{2}\left(u_{n-1}-u_{n-2}\right)\right) \geq \\
& \geq K^{2}\left\|u_{n}-u_{n-1}-\frac{1}{2}\left(u_{n-1}-u_{n-2}\right)\right\|^{2}
\end{aligned}
$$

From $a\left(u_{n}, v\right)+a\left(v, u_{n}\right)-f(v)-a\left(v, u_{n-1}\right)=0$, and

$$
a\left(u_{n-1}, v\right)+a\left(v, u_{n-1}\right)-f(v)-a\left(v, u_{n-2}\right)=0
$$

we get

$$
a\left(u_{n}-u_{n-1}, v\right)+a\left(v, u_{n}-u_{n-1}\right)=a\left(v, u_{n-1}-u_{n-2}\right) .
$$

Denoting $v_{n}=u_{n}-u_{n-1}, n \geq 1$, we have

$$
\begin{aligned}
a\left(v_{n}, v\right)+a\left(v, v_{n}\right) & =a\left(v, v_{n-1}\right)=\frac{1}{2}\left(a\left(v, v_{n-1}\right)+a\left(v_{n-1}, v\right)\right)+ \\
+ & \frac{1}{2}\left(a\left(v, v_{n-1}\right)-a\left(v_{n-1}, v\right)\right) .
\end{aligned}
$$

We deduce immediately:

$$
\begin{gathered}
a\left(v_{n}-\frac{1}{2} v_{n-1}, v\right)+a\left(v, v_{n}-\frac{1}{2} v_{n-1}\right)=\frac{1}{2}\left[a\left(v, v_{n-1}\right)-a\left(v_{n-1}, v\right)\right] \\
a\left(v_{n}-\frac{1}{2} v_{n-1}, v_{n}-\frac{1}{2} v_{n-1}\right)= \\
=\frac{1}{4}\left[a\left(v_{n}-\frac{1}{2} v_{n-1}, v_{n-1}\right)-a\left(v_{n-1}, v_{n}-\frac{1}{2} v_{n-1}\right)\right] \leq \\
\leq \frac{\alpha}{4}\left\|v_{n-1}\right\| \cdot\left\|v_{n}-\frac{1}{2} v_{n-1}\right\|
\end{gathered}
$$

and, from Remark 1, we get the inequalities:

$$
\begin{gathered}
K^{2}\left\|v_{n}-\frac{1}{2} v_{n-1}\right\| \leq \frac{\alpha}{4}\left\|v_{n-1}\right\| \cdot\left\|v_{n}-\frac{1}{2} v_{n-1}\right\|, \\
\left\|v_{n}-\frac{1}{2} v_{n-1}\right\| \leq \frac{\alpha}{4 K^{2}}\left\|v_{n-1}\right\|, \\
\left\|v_{n}\right\| \leq\left\|v_{n}-\frac{1}{2} v_{n-1}\right\|+\frac{1}{2}\left\|v_{n-1}\right\| \leq\left(\frac{\alpha}{4 K^{2}}+\frac{1}{2}\right)\left\|v_{n-1}\right\| .
\end{gathered}
$$

Proposition 2. If $\Lambda=\frac{\alpha}{4 K^{2}}+\frac{1}{2}<1$, for $\alpha<2 K^{2}$, the sequence $\left(X_{n}\right)_{n}$ is convergent.

Proof. We give the calculation for showing that $\left(u_{n}\right)_{n \in \mathbb{N}}$ is a fundamental sequence in the Banach space. First, we have:

$$
\left\|u_{n}-u_{n-1}\right\| \leq \Lambda\left\|u_{n-1}-u_{n-2}\right\| \leq \ldots \leq \Lambda^{n-1}\left\|u_{1}-u_{0}\right\| ;
$$

therefore

$$
\begin{gathered}
\left\|u_{n+p}-u_{n}\right\| \leq\left\|u_{n+p}-u_{n+p-1}\right\|+\ldots+\left\|u_{n+1}-u_{n}\right\| \leq \\
\leq\left(\Lambda^{n+p-1}+\ldots+\Lambda^{n}\right)\left\|u_{1}-u_{0}\right\| \leq \frac{\Lambda^{n}}{1-\Lambda}\left\|u_{1}-u_{0}\right\|, \Lambda \in(0,1)
\end{gathered}
$$

and $\left(u_{n}\right)_{n}$ is fundamental
As X is complete, it folows that $\left(u_{n}\right)_{n}$ is convergent.
Let $u^{*}=\lim u_{n}$. As $a\left(u_{n}, v\right)+a\left(v, u_{n}\right)=f(v)+a\left(v, u_{n-1}\right)$ we have $a\left(u^{*}, v\right)=$ $f(v),(\forall) v \in V$, therefore, by weakining the nonsymmetry of the bilinear form, we may extend the Lax-Milgram Lemma to a Banach space. In addition, the solution is the limit of a recurrence sequence obtained by minimizing the energy functional J.

References

[1] Ciarlet Ph., Numerical analysis of the finite element method, Les Presses de L'Université de Montreal, 1976.
[2] Dincă Gh., Metode variaţionale şi aplicaţii, Ed. Tehnică, 1980.
"Ovidius" University of Constantza,
Faculty of Mathematics and Informatics,
Mamaia Bd., 124,
8700 Constantza,
Romania

