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Abstract

This paper continues the work done in [3]. We present, besides the
dynamical demand problem, the estimation of self-correlated errors and
the asymptotic distribution of maximal probabilistic estimates in the
self - recessive errors model.

I. The dynamical demand model

The mathematical model can be stated as follows

yt = αo + α1xt + α2st + ut, (1)

where yt is the market demand for the commodity; xt is the relative price
variable (the quotient of the price of the commodity and the price of con-
sumption); ut is the error term, st is the individual stock of this commodity.
The variable st is viewed as ”psyological stock” of the commodity owned by
the consummer; it grows directly with the consumption, but its importance is
time-decreasing. We consider the equation

st − st−1 = βost−1 + β1yt, (2)

where βost−1 is the dissipation component, βo < 0, β1 is sometimes unitary.
Equation (2) expresses the unobservable quantity st in terms of the observ-
able function yt. Equation (1) must be expressed in terms of the observable
quantities (without the error term). We replace (1) in (2) and get:

⇒ st =
α∗o

1− β
+

α∗1I

I − βL
xt +

α∗2I

I − βL
ut (3)

63



64 N. Costea and G. Cârlig

with α∗0 = α0β1/ (1− α2β1), α∗1 = α1β1 (1− α2β1), α∗2 = β1/ (1− α2β1).
Then, puting (3) in (1), we get:

yt =
αo(1− β) + α2α

∗

o

1− β
+

(α1 + α∗1α2)I − α1βL

I − βL
xt+

(1 + α2α
∗

2)I − βL

I − βL
ut. (4)

Now, by applying the inverse operator I − βL, we reduce (4) to

yt = − αoβo

1− β1α2
+

α1

1− β1α2
xt−α1βxt−1 +βyt−1 +

1

1− β1α2
ut−βut−1. (5)

The parameters α2 and β1 appear in the form β1α2 and they cannot be sepa-
rately identified. We take β1 = 1 and α2 6= 1.

II. The estimation of the self-correlated errors of the model

We consider the autoregressive scheme:

ut = ρut−1 + εt, (6)

with the expectation of errors and their covariance taken as

E(εt) = 0, Cov(εt1εt′) = δtt · σ2, ∀ t, t′ and |ρ| < 1.

Let us take a sample of size T on the above model

yt =

k
∑

i=0

βixti
+ ut, t = 1, 2, ..., T, (7)

where xti
, i = 1, n are independent variables on the error term ut.

We admit that xt0 = 1. Then we have

ut = (I − ρL)
−1

εt =

∞
∑

i=0

ρiεt−i (8)

and E(ut) = 0, cov(ut, ut+τ ) = σ2ρ−τ/(1− ρ2).
All the above considerations prove the following result:

Lemma. Let yt =
k
∑

i=0

βixti
+ ut, t = 1, T , be a sample of dimension T of

the above presented model. If ū = (u1, u2, ..., uT ), then E(ū) = 0 and
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cov(ū) = σ2

1−ρ2









1 ρ ... ρT−1

ρ 1 ... ρT−2

−−−−−−−−
ρT−1 ρT−2 ... 1









= σ2V

and we can decompose it as V −1 ≡ M ′M,where

M =













√
1− ρ 0 0 ... 0 0

−ρ 1 0 ... 0 0
0 −ρ 1 ... 0 0
... ... ... ... ... ...
0 0 0 ... −ρ 1













.

For ρ and β we obtain the estimation using the least-squares formulation
method and limT→∞(1− ρ2)

1
T = 1, ρ ∈ (−1, 1), by minimizing

σ̂2(ρ̂)

(1− ρ̂2)
1
T

. (9)

Thus, to globally maximizing the likelihood function is equivalent to glob-
ally minimizing (9). From an asymptotic view point, the two above procedures

are equivalent, ∀ρ ∈ (−1, 1) and limT→∞(1− ρ2)
1
T = 1.

III. The asymptotic distribution of maximal probabilistic

estimations in the self-recessive errors model

Now, we come back at the estimations from Section II and we study
asymptotic distribution.

We firstly introduce the notation γ =
(

σ2ρβ
)
′

, and we observe that the

estimation satisfies the equality ∂L
∂γ = 0.

We extend the probabilistic function concerning the relation upon the vector
γ̄o as follows

∂L

∂γo
(γo) = − ∂2L

∂γ∂γo
(γo)(γ̄ − γo) + the order 3 terms. (10)

Now, we shall ”drop out” the above ”order 3 terms”, because, in this context,
they go to zero. (∂L∂γ) (γ̄o) is the gradient of the probability function.

We can write
∂L

∂ρ
or ∂2∂γ∂γo, (where γ̄o is implicitly understood) and we

then observe that:

∂L

∂σ2
= −1

2

T

σ2
+

1

2σ2
u′V −1u,

∂L

∂ρ
= − ρ

1− ρ2
=
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=
1

σ2

[

T
∑

i=2

(ui − ρui−1) ui−1 + ρu2
1

]

,
∂L

∂β
=

1

σ2
X ′V −1u.

By transforming these relations, we have ∂L
∂σ2 = −T

2
1

σ2 + 1
2σ4 ε′ε,and ∂L

∂β =
1

σ2 X ′M ′ε,because Mu = ε ∼ N(0, σ2I).
We get

ut =
∞
∑

τ=0

ρτεt−T =
N−2
∑

τ=0

ρτεt−τ + ρN−1
∞
∑

τ=0

ρτεt−N+1−τ = uN tρN−1ut−N+1.

As ut−N+1 has the estimation equal to zero and the covariation equal to
σ2

1− ρ2
, it results that ρN−1ut−N+1 has a very small probability for an enough

big N . Using the Chebyshev inequality for δ > 0, we then obtain

P
{∣

∣ρN1ut−N+1

∣

∣ > δ
}

<
V ar(ρN−1ut−N+1)

δ2 = ρ2(N−1)dσtσ2

(1−ρ2)δ2 , which

is very small.We choose an appropriate N and computing

∂L

∂ρ
= ρ

[

u2
1

σ2
− 1

1− ρ2

]

+

T
∑

i=1

εiu
N
i−1 + ρN−1

T
∑

i=2

εiui−N ,

and ∂L
∂γ =

T
∑

t=1
wt +

[

ρN−1
T
∑

i=1

εiui−N+1

]

,

where

w1 = 1
σ2













1

2

{

(ε1

σ

)2

− 1

}

ρσ2

(

u2
1

σ2
− 1

1− ρ2

)

z1ε1 ,













, wt = 1
σ2







1

2

(εt

σ

)2

− 1

εtu
N
t−1

ztεt






, t = 2, ..., T.

are entries of the t-th column from X ′M ′.

The asymptotic distribution of
∂L

∂γ
is given by

T
∑

t=1
wt. The vectors wt are N -

dependents.

Because we are interested in the asymptotic distribution 1

T
1
2

T
∑

t=1
wt ,we can

neglect wt and we get 1

T
1
2

T
∑

t=1
wt = w1

T 1/2 + 1
T 1/2

T
∑

t=2
wt and plimT→∞

w1

T 1/2 = 0,

since E
(

w1/T
1/2

)

= 0.
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