ERRORS ESTIMATION AND THE ASYMPTOTIC DISTRIBUTION OF PROBABILISTIC ESTIMATES

Nicolae Costea and George Cârlig
To Professor Silviu Sburlan, at his 60' anniversary

Abstract

This paper continues the work done in [3]. We present, besides the dynamical demand problem, the estimation of self-correlated errors and the asymptotic distribution of maximal probabilistic estimates in the self - recessive errors model.

I. The dynamical demand model

The mathematical model can be stated as follows

$$
\begin{equation*}
y_{t}=\alpha_{o}+\alpha_{1} x_{t}+\alpha_{2} s_{t}+u_{t}, \tag{1}
\end{equation*}
$$

where y_{t} is the market demand for the commodity; x_{t} is the relative price variable (the quotient of the price of the commodity and the price of consumption); u_{t} is the error term, s_{t} is the individual stock of this commodity. The variable s_{t} is viewed as "psyological stock" of the commodity owned by the consummer; it grows directly with the consumption, but its importance is time-decreasing. We consider the equation

$$
\begin{equation*}
s_{t}-s_{t-1}=\beta_{o} s_{t-1}+\beta_{1} y_{t} \tag{2}
\end{equation*}
$$

where $\beta_{o} s_{t-1}$ is the dissipation component, $\beta_{o}<0, \beta_{1}$ is sometimes unitary. Equation (2) expresses the unobservable quantity s_{t} in terms of the observable function y_{t}. Equation (1) must be expressed in terms of the observable quantities (without the error term). We replace (1) in (2) and get:

$$
\begin{equation*}
\Rightarrow s_{t}=\frac{\alpha_{o}^{*}}{1-\beta}+\frac{\alpha_{1}^{*} I}{I-\beta L} x_{t}+\frac{\alpha_{2}^{*} I}{I-\beta L} u_{t} \tag{3}
\end{equation*}
$$

with $\alpha_{0}^{*}=\alpha_{0} \beta_{1} /\left(1-\alpha_{2} \beta_{1}\right), \alpha_{1}^{*}=\alpha_{1} \beta_{1}\left(1-\alpha_{2} \beta_{1}\right), \alpha_{2}^{*}=\beta_{1} /\left(1-\alpha_{2} \beta_{1}\right)$. Then, puting (3) in (1), we get:

$$
\begin{equation*}
y_{t}=\frac{\alpha_{o}(1-\beta)+\alpha_{2} \alpha_{o}^{*}}{1-\beta}+\frac{\left(\alpha_{1}+\alpha_{1}^{*} \alpha_{2}\right) I-\alpha_{1} \beta L}{I-\beta L} x_{t}+\frac{\left(1+\alpha_{2} \alpha_{2}^{*}\right) I-\beta L}{I-\beta L} u_{t} . \tag{4}
\end{equation*}
$$

Now, by applying the inverse operator $I-\beta L$, we reduce (4) to

$$
\begin{equation*}
y_{t}=-\frac{\alpha_{o} \beta_{o}}{1-\beta_{1} \alpha_{2}}+\frac{\alpha_{1}}{1-\beta_{1} \alpha_{2}} x_{t}-\alpha_{1} \beta x_{t-1}+\beta y_{t-1}+\frac{1}{1-\beta_{1} \alpha_{2}} u_{t}-\beta u_{t-1} \tag{5}
\end{equation*}
$$

The parameters α_{2} and β_{1} appear in the form $\beta_{1} \alpha_{2}$ and they cannot be separately identified. We take $\beta_{1}=1$ and $\alpha_{2} \neq 1$.

II. The estimation of the self-correlated errors of the model

We consider the autoregressive scheme:

$$
\begin{equation*}
u_{t}=\rho u_{t-1}+\varepsilon_{t} \tag{6}
\end{equation*}
$$

with the expectation of errors and their covariance taken as

$$
E\left(\varepsilon_{t}\right)=0, \operatorname{Cov}\left(\varepsilon_{t_{1}} \varepsilon_{t^{\prime}}\right)=\delta_{t t} \cdot \sigma^{2}, \forall t, t^{\prime} \text { and }|\rho|<1
$$

Let us take a sample of size T on the above model

$$
\begin{equation*}
y_{t}=\sum_{i=0}^{k} \beta_{i} x_{t_{i}}+u_{t}, t=1,2, \ldots, T \tag{7}
\end{equation*}
$$

where $x_{t_{i}}, i=\overline{1, n}$ are independent variables on the error term u_{t}.
We admit that $x_{t_{0}}=1$. Then we have

$$
\begin{equation*}
u_{t}=(I-\rho L)^{-1} \varepsilon_{t}=\sum_{i=0}^{\infty} \rho^{i} \varepsilon_{t-i} \tag{8}
\end{equation*}
$$

and $E\left(u_{t}\right)=0, \operatorname{cov}\left(u_{t}, u_{t+\tau}\right)=\sigma^{2} \rho^{-\tau} /\left(1-\rho^{2}\right)$.
All the above considerations prove the following result:
Lemma. Let $y_{t}=\sum_{i=0}^{k} \beta_{i} x_{t_{i}}+u_{t}, t=\overline{1, T}$, be a sample of dimension T of the above presented model. If $\bar{u}=\left(u_{1}, u_{2}, \ldots, u_{T}\right)$, then $E(\bar{u})=0$ and

$$
\operatorname{cov}(\bar{u})=\frac{\sigma^{2}}{1-\rho^{2}}\left[\begin{array}{llll}
1 & \rho & \ldots & \rho^{T-1} \\
\rho & 1 & \ldots & \rho^{T-2} \\
-- & ------ \\
\rho^{T-1} & \rho^{T-2} & \ldots & 1
\end{array}\right]=\sigma^{2} V
$$

and we can decompose it as $V^{-1} \equiv M^{\prime} M$, where

$$
M=\left[\begin{array}{llllll}
\sqrt{1-\rho} & 0 & 0 & \ldots & 0 & 0 \\
-\rho & 1 & 0 & \ldots & 0 & 0 \\
0 & -\rho & 1 & \ldots & 0 & 0 \\
\ldots & \ldots & \ldots & \ldots & \ldots & \ldots \\
0 & 0 & 0 & \ldots & -\rho & 1
\end{array}\right]
$$

For ρ and β we obtain the estimation using the least-squares formulation method and $\lim _{T \rightarrow \infty}\left(1-\rho^{2}\right)^{\frac{1}{T}}=1, \rho \in(-1,1)$, by minimizing

$$
\begin{equation*}
\frac{\hat{\sigma}^{2}(\hat{\rho})}{\left(1-\hat{\rho}^{2}\right)^{\frac{1}{T}}} . \tag{9}
\end{equation*}
$$

Thus, to globally maximizing the likelihood function is equivalent to globally minimizing (9). From an asymptotic view point, the two above procedures are equivalent, $\forall \rho \in(-1,1)$ and $\lim _{T \rightarrow \infty}\left(1-\rho^{2}\right)^{\frac{1}{T}}=1$.

III. The asymptotic distribution of maximal probabilistic

 estimations in the self-recessive errors modelNow, we come back at the estimations from Section II and we study asymptotic distribution.

We firstly introduce the notation $\gamma=\left(\sigma^{2} \rho \beta\right)^{\prime}$, and we observe that the estimation satisfies the equality $\frac{\partial L}{\partial \gamma}=0$.
We extend the probabilistic function concerning the relation upon the vector $\bar{\gamma}_{o}$ as follows

$$
\begin{equation*}
\frac{\partial L}{\partial \gamma_{o}}\left(\gamma_{o}\right)=-\frac{\partial^{2} L}{\partial \gamma \partial \gamma_{o}}\left(\gamma_{o}\right)\left(\bar{\gamma}-\gamma_{o}\right)+\text { the order } 3 \text { terms. } \tag{10}
\end{equation*}
$$

Now, we shall "drop out" the above " order 3 terms", because, in this context, they go to zero. $(\partial L \partial \bar{\gamma})\left(\bar{\gamma}_{o}\right)$ is the gradient of the probability function.

We can write $\frac{\partial L}{\partial \rho}$ or $\partial^{2} \partial \bar{\gamma} \partial \bar{\gamma}_{o}$, (where $\bar{\gamma}_{o}$ is implicitly understood) and we then observe that:

$$
\frac{\partial L}{\partial \sigma^{2}}=-\frac{1}{2} \frac{T}{\sigma^{2}}+\frac{1}{2 \sigma^{2}} u^{\prime} V^{-1} u, \frac{\partial L}{\partial \rho}=-\frac{\rho}{1-\rho^{2}}=
$$

$$
=\frac{1}{\sigma^{2}}\left[\sum_{i=2}^{T}\left(u_{i}-\rho u_{i-1}\right) u_{i-1}+\rho u_{1}^{2}\right], \frac{\partial L}{\partial \beta}=\frac{1}{\sigma^{2}} X^{\prime} V^{-1} u
$$

By transforming these relations, we have $\frac{\partial L}{\partial \sigma^{2}}=-\frac{T}{2} \frac{1}{\sigma^{2}}+\frac{1}{2 \sigma^{4}} \varepsilon^{\prime} \varepsilon$, and $\frac{\partial L}{\partial \beta}=$ $\frac{1}{\sigma^{2}} X^{\prime} M^{\prime} \varepsilon$, because $M u=\varepsilon \sim N\left(0, \sigma^{2} I\right)$.
We get

$$
u_{t}=\sum_{\tau=0}^{\infty} \rho^{\tau} \varepsilon_{t-T}=\sum_{\tau=0}^{N-2} \rho^{\tau} \varepsilon_{t-\tau}+\rho^{N-1} \sum_{\tau=0}^{\infty} \rho^{\tau} \varepsilon_{t-N+1-\tau}=u^{N}{ }_{t} \rho^{N-1} u_{t-N+1} .
$$

As u_{t-N+1} has the estimation equal to zero and the covariation equal to $\frac{\sigma^{2}}{1-\rho^{2}}$, it results that $\rho^{N-1} u_{t-N+1}$ has a very small probability for an enough big N. Using the Chebyshev inequality for $\delta>0$, we then obtain

$$
P\left\{\left|\rho^{N_{1}} u_{t-N+1}\right|>\delta\right\}<\frac{\operatorname{Var}\left(\rho^{N-1} u_{t-N+1}\right)}{\delta^{2}}=\frac{\rho^{2(N-1)} d \sigma t \sigma^{2}}{\left(1-\rho^{2}\right) \delta^{2}}, \text { which }
$$ is very small.We choose an appropriate N and computing

$$
\begin{aligned}
& \frac{\partial L}{\partial \rho}=\rho\left[\frac{u_{1}^{2}}{\sigma^{2}}-\frac{1}{1-\rho^{2}}\right]+\sum_{i=1}^{T} \varepsilon_{i} u_{i-1}^{N}+\rho^{N-1} \sum_{i=2}^{T} \varepsilon_{i} u_{i-N} \\
& \quad \frac{\partial L}{\partial \gamma}=\sum_{t=1}^{T} w_{t}+\left[\rho^{N-1} \sum_{i=1}^{T} \varepsilon_{i} u_{i-N+1}\right]
\end{aligned}
$$

and
where
$w_{1}=\frac{1}{\sigma^{2}}\left[\begin{array}{l}\frac{1}{2}\left\{\left(\frac{\varepsilon_{1}}{\sigma}\right)^{2}-1\right\} \\ \rho \sigma^{2}\left(\frac{u_{1}^{2}}{\sigma^{2}}-\frac{1}{1-\rho^{2}}\right) \\ z_{1} \varepsilon_{1},\end{array}\right], w_{t}=\frac{1}{\sigma^{2}}\left[\begin{array}{l}\frac{1}{2}\left(\frac{\varepsilon_{t}}{\sigma}\right)^{2}-1 \\ \varepsilon_{t} u_{t-1}^{N} \\ z_{t} \varepsilon_{t}\end{array}\right], t=2, \ldots, T$.
are entries of the t-th column from $X^{\prime} M^{\prime}$.
The asymptotic distribution of $\frac{\partial L}{\partial \gamma}$ is given by $\sum_{t=1}^{T} w_{t}$. The vectors w_{t} are N dependents.
Because we are interested in the asymptotic distribution $\frac{1}{T^{\frac{1}{2}}} \sum_{t=1}^{T} w_{t}$, we can neglect w_{t} and we get $\frac{1}{T^{\frac{1}{2}}} \sum_{t=1}^{T} w_{t}=\frac{w_{1}}{T^{1 / 2}}+\frac{1}{T^{1 / 2}} \sum_{t=2}^{T} w_{t}$ and $p \lim _{T \rightarrow \infty} \frac{w_{1}}{T^{1 / 2}}=0$, since $E\left(w_{1} / T^{1 / 2}\right)=0$.

References

[1] P.S. Dhrymes, Distributed lags. Problems of estimation and formulation, NortHolland, Amsterdam, 1987.
[2] N. Costea, The mathematical model and errors estimation for the decay distribution problem, paper presented at PAMM Conference, PC 125, 12-16 May, 1999, Balatonalmadi, Hungary.
[3] N. Costea, S. Fulina, G. Cârlig, Consideraţii privind studiul erorilor în metoda verosimilităţii maximale şi erori mutual independente, A VI-a Conferinţă a Societăţii de Probabilităţi şi Statistică din România, 21-22 februarie, 2003.
,"Ovidius" University of Constantza,
Faculty of Mathematics and Informatics ,
Bd. Mamaia 124,
8700 Constantza,
Romania
e-mail:
ncostea@univ-ovidius.ro
cgeorge@univ-ovidius.ro

