An. Şt. Univ. Ovidius Constanţa

BL-ALGEBRA OF FRACTIONS RELATIVE TO AN \wedge-CLOSED SYSTEM

Dumitru Buşneag and Dana Piciu
To Professor Silviu Sburlan, at his 60's anniversary

Abstract

The aim of this paper is to introduce the notion of BL-algebra of fractions relative to an \wedge-closed system. For the case of Hilbert algebras, MV-algebras and pseudo MV-algebras see [2], [3] and [10].

1 Definitions and first properties

Definition 1.1 A BL-algebra ([7]-[11]) is an algebra

$$
(A, \wedge, \vee, \odot, \rightarrow, 0,1)
$$

of type (2,2,2,2,0,0) satisfying the following:
$\left(a_{1}\right)(A, \wedge, \vee, 0,1)$ is a bounded lattice,
$\left(a_{2}\right)(A, \odot, 1)$ is a commutative monoid,
$\left(a_{3}\right) \odot$ and \rightarrow form an adjoint pair, i.e. $c \leq a \rightarrow b$ iff $a \odot c \leq b$ for all $a, b, c \in A$,
$\left(a_{4}\right) a \wedge b=a \odot(a \rightarrow b)$,
$\left(a_{5}\right)(a \rightarrow b) \vee(b \rightarrow a)=1$, for all $a, b \in A$.
The origin of BL-algebras is in Mathematical Logic; they were invented by Hájek in [7] in order to study the ,„Basic Logic" (BL, for short) arising from the continuous triangular norms, familiar in the framework of fuzzy set theory.

[^0]They play the role of Lindenbaum algebras from classical Propositional calculus. Apart from their logical interest, BL-algebras have important algebraic properties (see [8]-[11]).

Examples

$\left(E_{1}\right)$ Define on the real unit interval $I=[0,1]$ binary operations \odot and \rightarrow by

$$
\begin{aligned}
& x \odot y=\max \{0, x+y-1\} \\
& x \rightarrow y=\min \{1,1-x+y\}
\end{aligned}
$$

Then $(I, \leq, \min , \max , \odot, \rightarrow, 0,1)$ is a BL-algebra (called Lukasiewicz structure).
$\left(E_{2}\right)$ Define on the real unit interval I

$$
\begin{gathered}
x \odot y=\min \{x, y\} \\
x \rightarrow y=1 \text { iff } x \leq y \text { and } y \text { otherwise. }
\end{gathered}
$$

Then $(I, \leq, \min , \max , \odot, \rightarrow, 0,1)$ is a BL-algebra (called Gődel structure).
$\left(E_{3}\right)$ Let \odot be the usual multiplication of real numbers on the unit interval I and $x \rightarrow y=1$ iff $x \leq y$ and y / x otherwise. Then $(I, \leq, \min , \max , \odot, \rightarrow$ $, 0,1)$ is a BL-algebra (called Products structure or Gaines structure).

Remark 1.1 Not every residuated lattice, however, is a BL-algebra (see [11], p.16). Consider, for example a residuated lattice defined on the unit interval, for all $x, y, z \in I$, such that

$$
\begin{gathered}
x \odot y=0, \text { if } x+y \leq \frac{1}{2} \text { and } x \wedge y \text { elsewhere }, \\
x \rightarrow y=1 \text { if } x \leq y \text { and } \max \left\{\frac{1}{2}-x, y\right\} \text { elsewhere. }
\end{gathered}
$$

Let $0<y<x, x+y<\frac{1}{2}$. Then $y<\frac{1}{2}-x$ and $0 \neq y=x \wedge y$, but $x \odot(x \rightarrow$ $y)=x \odot\left(\frac{1}{2}-x\right)=0$. Therefore $\left(a_{4}\right)$ does not hold.
$\left(E_{4}\right)$ If $\left.(A, \wedge, \vee\rceil, 0,1,\right)$ is a Boolean algebra, then $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a BLalgebra where the operation \odot coincide with \wedge and $x \rightarrow y=7 x \vee y$ for all $x, y \in A$.
$\left(E_{5}\right)$ If $(A, \wedge, \vee, \rightarrow, 0,1)$ is a relative Stone lattice (see [1], p.176), then $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a BL-algebra where the operation \odot coincide with \wedge.
$\left(E_{6}\right)$ If $\left(A, \oplus,{ }^{*}, 0\right)$ is a $M V$-algebra (see [3], [4], [11]), then $(A, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a BL-algebra, where for $x, y \in A$:

$$
\begin{gathered}
x \odot y=\left(x^{*} \oplus y^{*}\right)^{*}, \\
x \rightarrow y=x^{*} \oplus y, 1=0^{*}, \\
x \vee y=(x \rightarrow y) \rightarrow y=(y \rightarrow x) \rightarrow x \text { and } x \wedge y=\left(x^{*} \vee y^{*}\right)^{*} .
\end{gathered}
$$

A BL-algebra is nontrivial if $0 \neq 1$. For any BL-algebra A, the reduct $L(A)=(A, \wedge, \vee, 0,1)$ is a bounded distributive lattice. For any $a \in A$, we define $a^{*}=a \rightarrow 0$ and denote $\left(a^{*}\right)^{*}$ by $a^{* *}$. We denote the set of natural numbers by ω and define $a^{0}=1$ and $a^{n}=a^{n-1} \odot a$ for $n \in \omega \backslash\{0\}$.

In [4], [7]-[11] it is proved that if A is a BL-algebra and $a, b, c, b_{i} \in A$, ($i \in I)$ then we have the following rules of calculus:
$\left(c_{1}\right) a \odot b \leq a, b$, hence $a \odot b \leq a \wedge b$ and $a \odot 0=0$,
$\left(c_{2}\right) a \leq b$ implies $a \odot c \leq b \odot c$,
$\left(c_{3}\right) a \leq b$ iff $a \rightarrow b=1$,
$\left(c_{4}\right) 1 \rightarrow a=a, a \rightarrow a=1, a \leq b \rightarrow a, a \rightarrow 1=1$,
$\left(c_{5}\right) a \odot a^{*}=0$,
$\left(c_{6}\right) a \odot b=0$ iff $a \leq b^{*}$,
$\left(c_{7}\right) a \vee b=1$ implies $a \odot b=a \wedge b$,
$\left(c_{8}\right) a \rightarrow(b \rightarrow c)=(a \odot b) \rightarrow c=b \rightarrow(a \rightarrow c)$,
$\left(c_{9}\right)(a \rightarrow b) \rightarrow(a \rightarrow c)=(a \wedge b) \rightarrow c$,
$\left(c_{10}\right) a \rightarrow(b \rightarrow c) \geq(a \rightarrow b) \rightarrow(a \rightarrow c)$,
$\left(c_{11}\right) a \leq b$ implies $c \rightarrow a \leq c \rightarrow b, b \rightarrow c \leq a \rightarrow c$ and $b^{*} \leq a^{*}$,
$\left(c_{12}\right) a \leq(a \rightarrow b) \rightarrow b,((a \rightarrow b) \rightarrow b) \rightarrow b=a \rightarrow b$,
$\left(c_{13}\right) a \odot(b \vee c)=(a \odot b) \vee(a \odot c)$,
$\left(c_{14}\right) a \odot(b \wedge c)=(a \odot b) \wedge(a \odot c)$,
$\left(c_{15}\right) a \vee b=((a \rightarrow b) \rightarrow b) \wedge((b \rightarrow a) \rightarrow a)$,
$\left(c_{16}\right)(a \wedge b)^{n}=a^{n} \wedge b^{n},(a \vee b)^{n}=a^{n} \vee b^{n}$, hence $a \vee b=1$ implies $a^{n} \vee b^{n}=1$ for any $n \in \omega$,
$\left(c_{17}\right) a \rightarrow(b \wedge c)=(a \rightarrow b) \wedge(a \rightarrow c)$,
$\left(c_{18}\right)(b \wedge c) \rightarrow a=(b \rightarrow a) \vee(c \rightarrow a)$,
$\left(c_{19}\right)(a \vee b) \rightarrow c=(a \rightarrow c) \wedge(b \rightarrow c)$,
$\left(c_{20}\right) a \rightarrow b \leq(b \rightarrow c) \rightarrow(a \rightarrow c)$,
$\left(c_{21}\right) a \rightarrow b \leq(c \rightarrow a) \rightarrow(c \rightarrow b)$,
$\left(c_{22}\right) a \rightarrow b \leq(a \odot c) \rightarrow(b \odot c)$,
$\left(c_{23}\right) a \odot(b \rightarrow c) \leq b \rightarrow(a \odot c)$,
$\left(c_{24}\right)(b \rightarrow c) \odot(a \rightarrow b) \leq a \rightarrow c$,
$\left(c_{25}\right)\left(a_{1} \rightarrow a_{2}\right) \odot\left(a_{2} \rightarrow a_{3}\right) \odot \ldots \odot\left(a_{n-1} \rightarrow a_{n}\right) \leq a_{1} \rightarrow a_{n}$,
$\left(c_{26}\right) a, b \leq c$ and $c \rightarrow a=c \rightarrow b$ implies $a=b$,
$\left(c_{27}\right) a \vee(b \odot c) \geq(a \vee b) \odot(a \vee c)$, hence $a^{m} \vee b^{n} \geq(a \vee b)^{m n}$, for any $m, n \in \omega$,
$\left(c_{28}\right)(a \rightarrow b) \odot\left(a^{\prime} \rightarrow b^{\prime}\right) \leq\left(a \vee a^{\prime}\right) \rightarrow\left(b \vee b^{\prime}\right)$,
$\left(c_{29}\right)(a \rightarrow b) \odot\left(a^{\prime} \rightarrow b^{\prime}\right) \leq\left(a \wedge a^{\prime}\right) \rightarrow\left(b \wedge b^{\prime}\right)$,
$\left(c_{30}\right)(a \rightarrow b) \rightarrow c \leq((b \rightarrow a) \rightarrow c) \rightarrow c$,
$\left(c_{31}\right) a \odot\left(\bigwedge_{i \in I} b_{i}\right) \leq \bigwedge_{i \in I}\left(a \odot b_{i}\right)$,
$a \odot\left(\bigvee_{i \in I} b_{i}\right)=\bigvee_{i \in I}\left(a \odot b_{i}\right)$,
$a \rightarrow\left(\bigwedge_{i \in I} b_{i}\right)=\bigwedge_{i \in I}\left(a \rightarrow b_{i}\right)$,
$\left(\bigvee_{i \in I} b_{i}\right) \rightarrow a=\bigwedge_{i \in I}\left(b_{i} \rightarrow a\right)$
$\bigvee_{i \in I}\left(b_{i} \rightarrow a\right) \leq\left(\bigwedge_{i \in I} b_{i}\right) \rightarrow a$,
$\bigvee_{i \in I}\left(a \rightarrow b_{i}\right) \leq a \rightarrow\left(\bigvee_{i \in I} b_{i}\right)$,
$a \wedge\left(\bigvee_{i \in I} b_{i}\right)=\bigvee_{i \in I}\left(a \wedge b_{i}\right)$; if A is an BL-chain then $a \vee\left(\bigwedge_{i \in I} b_{i}\right)=\bigwedge_{i \in I}\left(a \vee b_{i}\right)$,
(whenever the arbitrary meets and unions exist)
$\left(c_{32}\right) a \leq a^{* *}, 1^{*}=0,0^{*}=1, a^{* * *}=a, a^{* *} \leq a^{*} \rightarrow a$,
$\left(c_{33}\right)(a \wedge b)^{*}=a^{*} \vee b^{*}$ and $(a \vee b)^{*}=a^{*} \wedge b^{*}$,
$\left(c_{34}\right)(a \wedge b)^{* *}=a^{* *} \wedge b^{* *},(a \vee b)^{* *}=a^{* *} \vee b^{* *},(a \odot b)^{* *}=a^{* *} \odot b^{* *}$, $(a \rightarrow b)^{* *}=a^{* *} \rightarrow b^{* *}$,
$\left(c_{35}\right)$ If $a^{* *} \leq a^{* *} \rightarrow a$, then $a^{* *}=a$,
$\left(c_{36}\right) a=a^{* *} \odot\left(a^{* *} \rightarrow a\right)$,
$\left(c_{37}\right) a \rightarrow b^{*}=b \rightarrow a^{*}=a^{* *} \rightarrow b^{*}=(a \odot b)^{*}$,
$\left(c_{38}\right)\left(a^{* *} \rightarrow a\right)^{*}=0,\left(a^{* *} \rightarrow a\right) \vee a^{* *}=1$,
$\left(c_{39}\right) b^{*} \leq a$ implies $a \rightarrow(a \odot b)^{* *}=b^{* *}$.
For any BL-algebra $A, B(A)$ denotes the Boolean algebra of all complemented elements in $L(A)$ (hence $B(A)=B(L(A))$).

Proposition 1.1 ([7]-[11])For $e \in A$, the following are equivalent:
(i) $e \in B(A)$,
(ii) $e \odot e=e$ and $e=e^{* *}$,
(iii) $e \odot e=e$ and $e^{*} \rightarrow e=e$,
(iv) $e \vee e^{*}=1$.

Remark 1.2 If $a \in A$, and $e \in B(A)$, then $e \odot a=e \wedge a, a \rightarrow e=\left(a \odot e^{*}\right)^{*}=$ $a^{*} \vee e$; if $e \leq a \vee a^{*}$, then $e \odot a \in B(A)$.

Proposition 1.2 ([4]) For $e \in A$, the following are equivalent:
(i) $e \in B(A)$,
(ii) $(e \rightarrow x) \rightarrow e=e$, for every $x \in A$.

Lemma 1.1 If $e, f \in B(A)$ and $x, y \in A$, then:
$\left(c_{40}\right) e \vee(x \odot y)=(e \vee x) \odot(e \vee y)$,
$\left(c_{41}\right) e \wedge(x \odot y)=(e \wedge x) \odot(e \wedge y)$,
$\left(c_{42}\right) e \odot(x \rightarrow y)=e \odot[(e \odot x) \rightarrow(e \odot y)]$,
$\left(c_{43}\right) x \odot(e \rightarrow f)=x \odot[(x \odot e) \rightarrow(x \odot f)]$,
$\left(c_{44}\right) e \rightarrow(x \rightarrow y)=(e \rightarrow x) \rightarrow(e \rightarrow y)$.

Proof. $\left(c_{40}\right)$. We have
$(e \vee x) \odot(e \vee y) \stackrel{c_{13}}{=}[(e \vee x) \odot e] \vee[(e \vee x) \odot y]=[(e \vee x) \odot e] \vee[(e \odot y) \vee(x \odot y)]$
$=[(e \vee x) \wedge e] \vee[(e \odot y) \vee(x \odot y)]=e \vee(e \odot y) \vee(x \odot y)=e \vee(x \odot y)$.
$\left(c_{41}\right)$. We have
$(e \wedge x) \odot(e \wedge y)=(e \odot x) \odot(e \odot y)=(e \odot e) \odot(x \odot y)=e \odot(x \odot y)=e \wedge(x \odot y)$.
$\left(c_{42}\right)$. By $\left(c_{22}\right)$ we have

$$
x \rightarrow y \leq(e \odot x) \rightarrow(e \odot y),
$$

hence

$$
e \odot(x \rightarrow y) \leq e \odot[(e \odot x) \rightarrow(e \odot y)]
$$

Conversely,

$$
e \odot[(e \odot x) \rightarrow(e \odot y)] \leq e
$$

and

$$
(e \odot x) \odot[(e \odot x) \rightarrow(e \odot y)] \leq e \odot y \leq y
$$

so

$$
e \odot[(e \odot x) \rightarrow(e \odot y)] \leq x \rightarrow y
$$

Hence

$$
e \odot[(e \odot x) \rightarrow(e \odot y)] \leq e \odot(x \rightarrow y)
$$

$\left(c_{43}\right)$. We have $x \odot[(x \odot e) \rightarrow(x \odot f)]=x \odot[(x \odot e) \rightarrow(x \wedge f)] \stackrel{c_{31}}{=}$ $x \odot[(x \odot e \rightarrow x) \wedge(x \odot e \rightarrow f)]=x \odot[1 \wedge(x \odot e \rightarrow f)]=x \odot(x \odot e \rightarrow f) \stackrel{c_{8}}{=}$ $x \odot[x \rightarrow(e \rightarrow f)]=x \wedge(e \rightarrow f)=x \odot(e \rightarrow f)$.
$\left(c_{44}\right)$. Follows from $\left(c_{8}\right)$ and $\left(c_{9}\right)$ since $e \wedge x=e \odot x$.
Definition 1.2 ([7]-[11])Let A and B be $B L$-algebras. A function $f: A \rightarrow B$ is a morphism of $B L$-algebras iff it satisfies the following conditions, for every $x, y \in A$:
$\left(a_{6}\right) f(0)=0$,
$\left(a_{7}\right) f(x \odot y)=f(x) \odot f(y)$,
$\left(a_{8}\right) f(x \rightarrow y)=f(x) \rightarrow f(y)$.
Remark 1.3 ([7]-[11]) It follows that:

$$
\begin{gathered}
f(1)=1, \\
f\left(x^{*}\right)=[f(x)]^{*} \\
f(x \vee y)=f(x) \vee f(y), \\
f(x \wedge y)=f(x) \wedge f(y),
\end{gathered}
$$

for every $x, y \in A$.

2 BL-algebra of fractions relative to an \wedge-closed system

Definition 2.1 A nonempty subset $S \subseteq A$ is called \wedge-closed system in A if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

We denote by $S(A)$ the set of all $\wedge-$ closed system of A (clearly $\{1\}, A \in$ $S(A)$).

For $S \in S(A)$, on the $B L$-algebra A we consider the relation θ_{S} defined by

$$
(x, y) \in \theta_{S} \text { iff there exists } e \in S \cap B(A) \text { such that } x \wedge e=y \wedge e
$$

Lemma $2.1 \theta_{S}$ is a congruence on A.
Proof. The reflexivity (since $1 \in S \cap B(A)$) and the symmetry of θ_{S} are immediately. To prove the transitivity of θ_{S}, let $(x, y),(y, z) \in \theta_{S}$. Thus there exists $e, f \in S \cap B(A)$ such that $x \wedge e=y \wedge e$ and $y \wedge f=z \wedge f$. If denote $g=e \wedge f \in S \cap B(A)$, then $g \wedge x=(e \wedge f) \wedge x=(e \wedge x) \wedge f=(y \wedge e) \wedge f=$ $(y \wedge f) \wedge e=(z \wedge f) \wedge e=z \wedge(f \wedge e)=z \wedge g$, hence $(x, z) \in \theta_{S}$.

To prove the compatibility of θ_{S} with the operations \wedge, \vee, \odot and \rightarrow, let $x, y, z, t \in A$ such that $(x, y) \in \theta_{S}$ and $(z, t) \in \theta_{S}$. Thus there exists $e, f \in S \cap B(A)$ such that $x \wedge e=y \wedge e$ and $z \wedge f=t \wedge f ;$ we denote $g=e \wedge f \in S \cap B(A)$.

We obtain:
$(x \wedge z) \wedge g=(x \wedge z) \wedge(e \wedge f)=(x \wedge e) \wedge(z \wedge f)=(y \wedge e) \wedge(t \wedge f)=(y \wedge t) \wedge g$, hence $(x \wedge z, y \wedge t) \in \theta_{S}$ and
$(x \vee z) \wedge g=(x \vee z) \wedge(e \wedge f)=[(e \wedge f) \wedge x] \vee[(e \wedge f) \wedge z]=[(e \wedge x) \wedge f] \vee[e \wedge(f \wedge z)]$
$=[(e \wedge y) \wedge f] \vee[e \wedge(f \wedge t)]=[(e \wedge f) \wedge y] \vee[(e \wedge f) \wedge t]=(y \vee t) \wedge(e \wedge f)=(y \vee t) \wedge g$,
hence $(x \vee z, y \vee t) \in \theta_{S}$.
By Remark 1.2 we obtain:
$(x \odot z) \wedge g=(x \odot z) \odot g=(x \odot e) \odot(z \odot f)=(y \odot e) \odot(t \odot f)=(y \odot t) \odot g=(y \odot t) \wedge g$,
hence $(x \odot z, y \odot t) \in \theta_{S}$ and by $\left(c_{42}\right)$:

$$
\begin{gathered}
(x \rightarrow z) \wedge g=(x \rightarrow z) \odot g=g \odot[(g \odot x) \rightarrow(g \odot z)]= \\
g \odot[(g \odot y) \rightarrow(g \odot t)]=(y \rightarrow t) \odot g=(y \rightarrow t) \wedge g
\end{gathered}
$$

hence $(x \rightarrow z, y \rightarrow t) \in \theta_{S}$

For x we denote by x / S the equivalence class of x relative to θ_{S} and by

$$
A[S]=A / \theta_{S}
$$

By $p_{S}: A \rightarrow A[S]$ we denote the canonical map defined by $p_{S}(x)=x / S$, for every $x \in A$. Clearly, in $A[S], \mathbf{0}=0 / S, \mathbf{1}=1 / S$ and for every $x, y \in A$,

$$
\begin{aligned}
x / S \wedge y / S & =(x \wedge y) / S \\
x / S \vee y / S & =(x \vee y) / S \\
x / S \odot y / S & =(x \odot y) / S \\
x / S \rightarrow y / S & =(x \rightarrow y) / S
\end{aligned}
$$

So, p_{S} is an onto morphism of $B L$-algebras.
Remark 2.1 Since for every $s \in S \cap B(A), s \wedge s=s \wedge 1$ we deduce that $s / S=1 / S=\mathbf{1}$, hence $p_{S}(S \cap B(A))=\{\mathbf{1}\}$.

Proposition 2.1 If $a \in A$, then $a / S \in B(A[S])$ iff there exists $e \in S \cap B(A)$ such that $e \wedge a \in B(A)$. So, if $e \in B(A)$, then $e / S \in B(A[S])$.

Proof. For $a \in A$, we have $a / S \in B(A[S]) \Leftrightarrow a / S \odot a / S=a / S$ and $(a / S)^{* *}=a / S$.

From $a / S \odot a / S=a / S$ we deduce that $(a \odot a) / S=a / S \Leftrightarrow$ there exists $g \in S \cap B(A)$ such that $(a \odot a) \wedge g=a \wedge g \Leftrightarrow(a \odot a) \odot g=a \wedge g \Leftrightarrow$ $(a \odot g) \odot(a \odot g)=a \wedge g \Leftrightarrow(a \wedge g) \odot(a \wedge g)=a \wedge g$.

From $(a / S)^{* *}=a / S$ we deduce that exists $f \in S \cap B(A)$ such that $a^{* *} \wedge f=$ $a \wedge f$. If denote $e=g \wedge f \in S \cap B(A)$, then

$$
\begin{gathered}
(a \wedge e) \odot(a \wedge e)=(a \wedge g \wedge f) \odot(a \wedge g \wedge f) \Leftrightarrow(a \odot g) \odot f \odot(a \odot g) \odot f= \\
a \odot g \odot f=a \wedge g \wedge f=a \wedge e
\end{gathered}
$$

and

$$
a^{* *} \wedge e=a^{* *} \wedge g \wedge f=\left(a^{* *} \wedge f\right) \wedge g=(a \wedge f) \wedge g=a \wedge e
$$

hence $a \wedge e \in B(A)$.
If $e \in B(A)$, since $1 \in S \cap B(A)$ and $1 \wedge e=e \in B(A)$ we deduce that $e / S \in B(A[S])$.

Theorem 2.1 If A^{\prime} is a $B L$-algebra and $f: A \rightarrow A^{\prime}$ is a morphism of $B L$ algebras such that $f(S \cap B(A))=\{\mathbf{1}\}$, then there exists a unique morphism of $B L$-algebras $f^{\prime}: A[S] \rightarrow A^{\prime}$ such that the diagram

is commutative (i.e. $f^{\prime} \circ p_{S}=f$).
Proof. If $x, y \in A$ and $p_{S}(x)=p_{S}(y)$, then $(x, y) \in \theta_{S}$, hence there exists $e \in S \cap B(A)$ such that $x \wedge e=y \wedge e$. Since f is morphism of $B L$-algebras, we obtain that $f(x \wedge e)=f(y \wedge e) \Leftrightarrow f(x) \wedge f(e)=f(y) \wedge f(e) \Leftrightarrow f(x) \wedge \mathbf{1}=$ $f(y) \wedge 1 \Leftrightarrow f(x)=f(y)$.

From this observation we deduce that the map $f^{\prime}: A[S] \rightarrow A^{\prime}$ defined for $x \in A$ by $f^{\prime}(x / S)=f(x)$ is correctly defined. Clearly, f^{\prime} is an morphism of $B L$-algebras. The unicity of f^{\prime} follows from the fact that p_{S} is a onto map.

Remark 2.2 Theorem 2.1 allows us to call $A[S]$ the BL-algebra of fractions relative to the \wedge-closed system S.

References

[1] R. Balbes, Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974
[2] D. Buşneag: Hilbert algebra of fractions relative to an $\underline{\vee}$-closed system, Analele Universităţii din Craiova, Seria Matematica-Fizica-Chimie, vol. XVI, (1998), 34-38
[3] D. Buşneag, D. Piciu: MV-algebra of fractions relative to an \wedge-closed system, Analele Universităţii din Craiova, Seria Matematica-Informatica, vol. XXXI, (2003), 1-5
[4] D. Buşneag, D. Piciu: On the lattice of deductive systems of a BL-algebra, Central European Journal of Mathematics, Volume 1, Number 2, April 2003, 221-238
[5] C. C. Chang: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88(1958), 467-490
[6] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic foundation of many -valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000
[7] P. Hájek: Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998
[8] A. Iorgulescu: Iséki algebras. Connections with BL-algebras (to appear in Soft Computing)
[9] A. Di Nola, G. Georgescu, A. Iorgulescu: Pseudo-BL-algebras (to appear in Multiple Valued Logic)
[10] D. Piciu: Pseudo MV-algebra of fractions relative to an \wedge-closed system, Analele Universităţii din Craiova, Seria Matematica-Informatica, vol. XXXI, (2003), 6-11
[11] E. Turunen: Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999

University of Craiova,
Faculty of Mathematics and Computer Science,
13, Al.I. Cuza st.,
1100, Craiova,
Romania
Tel/Fax: 40-251412673
e-mail: busneag@central.ucv.ro, danap@central.ucv.ro

[^0]: Key Words: BL-algebra, BL-algebra of fractions, \wedge-closed system.
 Mathematical Reviews subject classification: 06D35, 03G25.

