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BL-ALGEBRA OF FRACTIONS RELATIVE
TO AN ∧-CLOSED SYSTEM

Dumitru Buşneag and Dana Piciu
To Professor Silviu Sburlan, at his 60’s anniversary

Abstract

The aim of this paper is to introduce the notion of BL-algebra of
fractions relative to an ∧-closed system. For the case of Hilbert algebras,
MV-algebras and pseudo MV-algebras see [2], [3] and [10].

1 Definitions and first properties

Definition 1.1 A BL-algebra ([7]-[11]) is an algebra

(A,∧,∨,¯,→, 0, 1)

of type (2,2,2,2,0,0) satisfying the following:

(a1) (A,∧,∨, 0, 1) is a bounded lattice,

(a2) (A,¯, 1) is a commutative monoid,

(a3) ¯ and → form an adjoint pair, i.e. c ≤ a → b iff a ¯ c ≤ b for all
a, b, c ∈ A,

(a4) a ∧ b = a¯ (a → b),

(a5) (a → b) ∨ (b → a) = 1, for all a, b ∈ A.

The origin of BL-algebras is in Mathematical Logic; they were invented by
Hájek in [7] in order to study the ,,Basic Logic” (BL, for short) arising from
the continuous triangular norms, familiar in the framework of fuzzy set theory.
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They play the role of Lindenbaum algebras from classical Propositional calcu-
lus. Apart from their logical interest, BL-algebras have important algebraic
properties (see [8]-[11]).

Examples

(E1) Define on the real unit interval I = [0, 1] binary operations ¯ and → by

x¯ y = max{0, x + y − 1}
x → y = min{1, 1− x + y}.

Then (I,≤, min,max,¯,→, 0, 1) is a BL-algebra (called Lukasiewicz struc-
ture).

(E2) Define on the real unit interval I

x¯ y = min{x, y}
x → y = 1 iff x ≤ y and y otherwise.

Then (I,≤, min, max,¯,→, 0, 1) is a BL-algebra (called Gődel struc-
ture).

(E3) Let ¯ be the usual multiplication of real numbers on the unit interval I
and x → y = 1 iff x ≤ y and y/x otherwise. Then (I,≤, min,max,¯,→
, 0, 1) is a BL-algebra (called Products structure or Gaines structure).

Remark 1.1 Not every residuated lattice, however, is a BL-algebra (see [11],
p.16). Consider , for example a residuated lattice defined on the unit interval,
for all x, y, z ∈ I, such that

x¯ y = 0, if x + y ≤ 1
2

and x ∧ y elsewhere,

x → y = 1 if x ≤ y and max{1
2
− x, y} elsewhere.

Let 0 < y < x, x + y < 1
2 . Then y < 1

2 − x and 0 6= y = x ∧ y, but x ¯ (x →
y) = x¯ ( 1

2 − x) = 0. Therefore (a4) does not hold.

(E4) If (A,∧,∨, e, 0, 1) is a Boolean algebra, then (A,∧,∨,¯,→, 0, 1) is a BL-
algebra where the operation ¯ coincide with ∧ and x → y =ex ∨ y for
all x, y ∈ A.

(E5) If (A,∧,∨,→, 0, 1) is a relative Stone lattice (see [1], p.176), then
(A,∧,∨,¯,→, 0, 1) is a BL-algebra where the operation ¯ coincide with
∧ .
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(E6) If (A,⊕,∗ , 0) is a MV-algebra (see [3], [4], [11]), then (A,∧,∨,¯,→, 0, 1)
is a BL-algebra, where for x, y ∈ A :

x¯ y = (x∗ ⊕ y∗)∗,

x → y = x∗ ⊕ y, 1 = 0∗,

x ∨ y = (x → y) → y = (y → x) → x and x ∧ y = (x∗ ∨ y∗)∗.

A BL-algebra is nontrivial if 0 6= 1 . For any BL-algebra A, the reduct
L(A) = (A,∧,∨, 0, 1) is a bounded distributive lattice. For any a ∈ A , we
define a∗ = a → 0 and denote (a∗)∗ by a∗∗. We denote the set of natural
numbers by ω and define a0 = 1 and an = an−1 ¯ a for n ∈ ω\{0}.

In [4], [7]-[11] it is proved that if A is a BL-algebra and a, b, c, bi ∈ A, (
i ∈ I) then we have the following rules of calculus:

(c1) a¯ b ≤ a, b, hence a¯ b ≤ a ∧ b and a¯ 0 = 0,

(c2) a ≤ b implies a¯ c ≤ b¯ c,

(c3) a ≤ b iff a → b = 1,

(c4) 1 → a = a, a → a = 1, a ≤ b → a, a → 1 = 1,

(c5) a¯ a∗ = 0,

(c6) a¯ b = 0 iff a ≤ b∗,

(c7) a ∨ b = 1 implies a¯ b = a ∧ b,

(c8) a → (b → c) = (a¯ b) → c = b → (a → c),

(c9) (a → b) → (a → c) = (a ∧ b) → c,

(c10) a → (b → c) ≥ (a → b) → (a → c),

(c11) a ≤ b implies c → a ≤ c → b, b → c ≤ a → c and b∗ ≤ a∗,

(c12) a ≤ (a → b) → b , ((a → b) → b) → b = a → b,

(c13) a¯ (b ∨ c) = (a¯ b) ∨ (a¯ c),

(c14) a¯ (b ∧ c) = (a¯ b) ∧ (a¯ c),

(c15) a ∨ b = ((a → b) → b) ∧ ((b → a) → a),

(c16) (a∧ b)n = an ∧ bn, (a∨ b)n = an ∨ bn, hence a∨ b = 1 implies an ∨ bn = 1
for any n ∈ ω,
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(c17) a → (b ∧ c) = (a → b) ∧ (a → c),

(c18) (b ∧ c) → a = (b → a) ∨ (c → a),

(c19) (a ∨ b) → c = (a → c) ∧ (b → c),

(c20) a → b ≤ (b → c) → (a → c),

(c21) a → b ≤ (c → a) → (c → b),

(c22) a → b ≤ (a¯ c) → (b¯ c),

(c23) a¯ (b → c) ≤ b → (a¯ c),

(c24) (b → c)¯ (a → b) ≤ a → c,

(c25) (a1 → a2)¯ (a2 → a3)¯ ...¯ (an−1 → an) ≤ a1 → an,

(c26) a, b ≤ c and c → a = c → b implies a = b,

(c27) a∨(b¯c) ≥ (a∨b)¯(a∨c), hence am∨bn ≥ (a∨b)mn, for any m, n ∈ ω,

(c28) (a → b)¯ (a
′ → b

′
) ≤ (a ∨ a

′
) → (b ∨ b

′
),

(c29) (a → b)¯ (a
′ → b

′
) ≤ (a ∧ a

′
) → (b ∧ b

′
),

(c30) (a → b) → c ≤ ((b → a) → c) → c,

(c31) a¯ (
∧
i∈I

bi) ≤
∧
i∈I

(a¯ bi),

a¯ (
∨
i∈I

bi) =
∨
i∈I

(a¯ bi),

a → (
∧
i∈I

bi) =
∧
i∈I

(a → bi),

(
∨
i∈I

bi) → a =
∧
i∈I

(bi → a)

∨
i∈I

(bi → a) ≤ (
∧
i∈I

bi) → a,

∨
i∈I

(a → bi) ≤ a → (
∨
i∈I

bi),

a∧ (
∨
i∈I

bi) =
∨
i∈I

(a∧ bi); if A is an BL-chain then a∨ (
∧
i∈I

bi) =
∧
i∈I

(a∨ bi),

(whenever the arbitrary meets and unions exist)

(c32) a ≤ a∗∗ , 1∗ = 0 , 0∗ = 1, a∗∗∗ = a, a∗∗ ≤ a∗ → a,

(c33) (a ∧ b)∗ = a∗ ∨ b∗ and (a ∨ b)∗ = a∗ ∧ b∗,
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(c34) (a ∧ b)∗∗ = a∗∗ ∧ b∗∗ , (a ∨ b)∗∗ = a∗∗ ∨ b∗∗, (a ¯ b)∗∗ = a∗∗ ¯ b∗∗ ,
(a → b)∗∗ = a∗∗ → b∗∗,

(c35) If a∗∗ ≤ a∗∗ → a, then a∗∗ = a,

(c36) a = a∗∗ ¯ (a∗∗ → a),

(c37) a → b∗ = b → a∗ = a∗∗ → b∗ = (a¯ b)∗,

(c38) (a∗∗ → a)∗ = 0, (a∗∗ → a) ∨ a∗∗ = 1,

(c39) b∗ ≤ a implies a → (a¯ b)∗∗ = b∗∗.

For any BL-algebra A, B(A) denotes the Boolean algebra of all comple-
mented elements in L(A) (hence B(A) = B(L(A))).

Proposition 1.1 ([7]-[11])For e ∈ A, the following are equivalent:

(i) e ∈ B(A),

(ii) e¯ e = e and e = e∗∗,

(iii) e¯ e = e and e∗ → e = e,

(iv) e ∨ e∗ = 1.

Remark 1.2 If a ∈ A, and e ∈ B(A), then e¯ a = e∧ a, a → e = (a¯ e∗)∗ =
a∗∨ e; if e ≤ a∨ a∗, then e¯ a ∈ B(A).

Proposition 1.2 ([4]) For e ∈ A, the following are equivalent:

(i) e ∈ B(A),

(ii) (e → x) → e = e, for every x ∈ A.

Lemma 1.1 If e, f ∈ B(A) and x, y ∈ A, then:

(c40) e ∨ (x¯ y) = (e ∨ x)¯ (e ∨ y),

(c41) e ∧ (x¯ y) = (e ∧ x)¯ (e ∧ y),

(c42) e¯ (x → y) = e¯ [(e¯ x) → (e¯ y)],

(c43) x¯ (e → f) = x¯ [(x¯ e) → (x¯ f)],

(c44) e → (x → y) = (e → x) → (e → y).
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Proof. (c40). We have

(e∨x)¯ (e∨ y) c13= [(e∨x)¯ e]∨ [(e∨x)¯ y] = [(e∨x)¯ e]∨ [(e¯ y)∨ (x¯ y)]

= [(e ∨ x) ∧ e] ∨ [(e¯ y) ∨ (x¯ y)] = e ∨ (e¯ y) ∨ (x¯ y) = e ∨ (x¯ y).
(c41). We have

(e∧x)¯(e∧y) = (e¯x)¯(e¯y) = (e¯e)¯(x¯y) = e¯(x¯y) = e∧(x¯y).

(c42). By (c22) we have

x → y ≤ (e¯ x) → (e¯ y),

hence
e¯ (x → y) ≤ e¯ [(e¯ x) → (e¯ y)].

Conversely,
e¯ [(e¯ x) → (e¯ y)] ≤ e

and
(e¯ x)¯ [(e¯ x) → (e¯ y)] ≤ e¯ y ≤ y

so
e¯ [(e¯ x) → (e¯ y)] ≤ x → y.

Hence
e¯ [(e¯ x) → (e¯ y)] ≤ e¯ (x → y).

(c43). We have x ¯ [(x ¯ e) → (x ¯ f)] = x ¯ [(x ¯ e) → (x ∧ f)] c31=
x¯ [(x¯ e → x) ∧(x¯ e → f)] = x¯ [1 ∧ (x¯ e → f)] = x¯ (x¯ e → f) c8=
x¯ [x → (e → f)] = x ∧ (e → f) = x¯ (e → f).

(c44). Follows from (c8) and (c9) since e ∧ x = e¯ x.¥
Definition 1.2 ([7]-[11])Let A and B be BL−algebras. A function f : A → B
is a morphism of BL−algebras iff it satisfies the following conditions, for every
x, y ∈ A :

(a6) f(0) = 0,

(a7) f(x¯ y) = f(x)¯ f(y),

(a8) f(x → y) = f(x) → f(y).

Remark 1.3 ([7]-[11]) It follows that:

f(1) = 1,

f(x∗) = [f(x)]∗

f(x ∨ y) = f(x) ∨ f(y),
f(x ∧ y) = f(x) ∧ f(y),

for every x, y ∈ A.



BL-algebra of fractions relative to an ∧-closed system 37

2 BL-algebra of fractions relative to an ∧−closed system

Definition 2.1 A nonempty subset S ⊆ A is called ∧−closed system in A if
1 ∈ S and x, y ∈ S implies x ∧ y ∈ S.

We denote by S(A) the set of all ∧−closed system of A (clearly {1}, A ∈
S(A)).

For S ∈ S(A), on the BL-algebra A we consider the relation θS defined by

(x, y) ∈ θS iff there exists e ∈ S ∩B(A) such that x ∧ e = y ∧ e.

Lemma 2.1 θS is a congruence on A.

Proof. The reflexivity (since 1 ∈ S ∩ B(A)) and the symmetry of θS are
immediately. To prove the transitivity of θS , let (x, y), (y, z) ∈ θS . Thus there
exists e, f ∈ S ∩ B(A) such that x ∧ e = y ∧ e and y ∧ f = z ∧ f. If denote
g = e ∧ f ∈ S ∩ B(A), then g ∧ x = (e ∧ f)∧ x = (e ∧ x) ∧ f = (y ∧ e) ∧ f =
(y ∧ f) ∧ e = (z ∧ f)∧ e = z ∧ (f ∧ e) = z ∧ g, hence (x, z) ∈ θS .

To prove the compatibility of θS with the operations ∧,∨,¯ and → ,
let x, y, z, t ∈ A such that (x, y) ∈ θS and (z, t) ∈ θS . Thus there exists
e, f ∈ S ∩ B(A) such that x ∧ e = y ∧ e and z ∧ f = t ∧ f ; we denote
g = e ∧ f ∈ S ∩B(A).

We obtain:

(x∧ z)∧ g = (x∧ z)∧ (e∧ f) = (x∧ e)∧ (z∧ f) = (y∧ e)∧ (t∧ f) = (y∧ t)∧ g,

hence (x ∧ z, y ∧ t) ∈ θS and

(x∨z)∧g = (x∨z)∧(e∧f) = [(e∧f)∧x]∨[(e∧f)∧z] = [(e∧x)∧f ]∨[e∧(f∧z)]

= [(e∧y)∧f ]∨[e∧(f∧t)] = [(e∧f)∧y]∨[(e∧f)∧t] = (y∨t)∧(e∧f) = (y∨t)∧g,

hence (x ∨ z, y ∨ t) ∈ θS .
By Remark 1.2 we obtain:

(x¯z)∧g = (x¯z)¯g = (x¯e)¯(z¯f) = (y¯e)¯(t¯f) = (y¯t)¯g = (y¯t)∧g,

hence (x¯ z, y ¯ t) ∈ θS and by (c42):

(x → z) ∧ g = (x → z)¯ g = g ¯ [(g ¯ x) → (g ¯ z)] =

g ¯ [(g ¯ y) → (g ¯ t)] = (y → t)¯ g = (y → t) ∧ g,

hence (x → z, y → t) ∈ θS .¥
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For x we denote by x/S the equivalence class of x relative to θS and by

A[S] = A/θS .

By pS : A → A[S] we denote the canonical map defined by pS(x) = x/S, for
every x ∈ A. Clearly, in A[S], 0 = 0/S, 1 = 1/S and for every x, y ∈ A,

x/S ∧ y/S = (x ∧ y)/S

x/S ∨ y/S = (x ∨ y)/S

x/S ¯ y/S = (x¯ y)/S

x/S → y/S = (x → y)/S.

So, pS is an onto morphism of BL-algebras.

Remark 2.1 Since for every s ∈ S ∩ B(A), s ∧ s = s ∧ 1 we deduce that
s/S = 1/S = 1, hence pS(S ∩B(A)) = {1}.

Proposition 2.1 If a ∈ A, then a/S ∈ B(A[S]) iff there exists e ∈ S ∩B(A)
such that e ∧ a ∈ B(A). So, if e ∈ B(A), then e/S ∈ B(A[S]).

Proof. For a ∈ A, we have a/S ∈ B(A[S]) ⇔ a/S ¯ a/S = a/S and
(a/S)∗∗ = a/S .

From a/S ¯ a/S = a/S we deduce that (a ¯ a)/S = a/S ⇔ there exists
g ∈ S ∩ B(A) such that (a ¯ a) ∧ g = a ∧ g ⇔ (a ¯ a) ¯ g = a ∧ g ⇔
(a¯ g)¯ (a¯ g) = a ∧ g ⇔ (a ∧ g)¯ (a ∧ g) = a ∧ g.

From (a/S)∗∗ = a/S we deduce that exists f ∈ S∩B(A) such that a∗∗∧f =
a ∧ f. If denote e = g ∧ f ∈ S ∩B(A), then

(a ∧ e)¯ (a ∧ e) = (a ∧ g ∧ f)¯ (a ∧ g ∧ f) ⇔ (a¯ g)¯ f ¯ (a¯ g)¯ f =

a¯ g ¯ f = a ∧ g ∧ f = a ∧ e

and
a∗∗ ∧ e = a∗∗ ∧ g ∧ f = (a∗∗ ∧ f) ∧ g = (a ∧ f) ∧ g = a ∧ e,

hence a ∧ e ∈ B(A).
If e ∈ B(A), since 1 ∈ S ∩ B(A) and 1 ∧ e = e ∈ B(A) we deduce that

e/S ∈ B(A[S]). ¥

Theorem 2.1 If A′ is a BL-algebra and f : A → A′ is a morphism of BL-
algebras such that f(S ∩B(A)) = {1}, then there exists a unique morphism of
BL-algebras f ′ : A[S] → A′ such that the diagram
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A A[S]

A′

pS

@
@

@
@R

-
¡

¡
¡

¡ª
f f ′

is commutative (i.e. f ′ ◦ pS = f).

Proof. If x, y ∈ A and pS(x) = pS(y), then (x, y) ∈ θS , hence there exists
e ∈ S ∩ B(A) such that x ∧ e = y ∧ e. Since f is morphism of BL-algebras,
we obtain that f(x ∧ e) = f(y ∧ e) ⇔ f(x) ∧ f(e) = f(y) ∧ f(e) ⇔ f(x) ∧ 1 =
f(y) ∧ 1 ⇔ f(x) = f(y).

From this observation we deduce that the map f ′ : A[S] → A′ defined for
x ∈ A by f ′(x/S) = f(x) is correctly defined. Clearly, f ′ is an morphism of
BL-algebras. The unicity of f ′ follows from the fact that pS is a onto map.¥

Remark 2.2 Theorem 2.1 allows us to call A[S] the BL-algebra of fractions
relative to the ∧−closed system S.
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