

An. Şt. Univ. Ovidius Constanța

Vol. 11(1), 2003, 31–40

BL-ALGEBRA OF FRACTIONS RELATIVE TO AN \wedge -CLOSED SYSTEM

Dumitru Buşneag and Dana Piciu

To Professor Silviu Sburlan, at his 60's anniversary

Abstract

The aim of this paper is to introduce the notion of BL-algebra of fractions relative to an \wedge -closed system. For the case of Hilbert algebras, MV-algebras and pseudo MV-algebras see [2], [3] and [10].

1 Definitions and first properties

Definition 1.1 A BL-algebra ([7]-[11]) is an algebra

$$(A, \land, \lor, \odot, \rightarrow, 0, 1)$$

of type (2,2,2,2,0,0) satisfying the following:

- (a_1) $(A, \land, \lor, 0, 1)$ is a bounded lattice,
- (a_2) $(A, \odot, 1)$ is a commutative monoid,
- $(a_3) \odot and \rightarrow form an adjoint pair, i.e. \ c \leq a \rightarrow b \ iff \ a \odot c \leq b \ for \ all \ a, b, c \in A,$
- $(a_4) \ a \wedge b = a \odot (a \to b),$
- (a_5) $(a \rightarrow b) \lor (b \rightarrow a) = 1$, for all $a, b \in A$.

The origin of BL-algebras is in Mathematical Logic; they were invented by Hájek in [7] in order to study the "Basic Logic" (BL, for short) arising from the continuous triangular norms, familiar in the framework of fuzzy set theory.

Key Words: BL-algebra, BL-algebra of fractions, ∧-closed system. Mathematical Reviews subject classification: 06D35, 03G25.

They play the role of Lindenbaum algebras from classical Propositional calculus. Apart from their logical interest, BL-algebras have important algebraic properties (see [8]-[11]).

Examples

 (E_1) Define on the real unit interval I = [0, 1] binary operations \odot and \rightarrow by

$$x \odot y = \max\{0, x + y - 1\}$$
$$x \to y = \min\{1, 1 - x + y\}.$$

Then $(I, \leq, \min, \max, \odot, \rightarrow, 0, 1)$ is a BL-algebra (called *Lukasiewicz structure*).

 (E_2) Define on the real unit interval I

$$x \odot y = \min\{x, y\}$$

$$x \to y = 1$$
 iff $x \leq y$ and y otherwise.

Then $(I, \leq, \min, \max, \odot, \rightarrow, 0, 1)$ is a BL-algebra (called *Gődel structure*).

(E₃) Let \odot be the usual multiplication of real numbers on the unit interval I and $x \to y = 1$ iff $x \leq y$ and y/x otherwise. Then $(I, \leq, \min, \max, \odot, \rightarrow, 0, 1)$ is a BL-algebra (called *Products structure* or *Gaines structure*).

Remark 1.1 Not every residuated lattice, however, is a BL-algebra (see [11], p.16). Consider, for example a residuated lattice defined on the unit interval, for all $x, y, z \in I$, such that

$$x \odot y = 0$$
, if $x + y \le \frac{1}{2}$ and $x \land y$ elsewhere,
 $x \to y = 1$ if $x \le y$ and $\max\{\frac{1}{2} - x, y\}$ elsewhere

Let 0 < y < x, $x + y < \frac{1}{2}$. Then $y < \frac{1}{2} - x$ and $0 \neq y = x \land y$, but $x \odot (x \rightarrow y) = x \odot (\frac{1}{2} - x) = 0$. Therefore (a_4) does not hold.

- (*E*₄) If $(A, \land, \lor, \rceil, 0, 1)$ is a Boolean algebra, then $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is a BLalgebra where the operation \odot coincide with \land and $x \to y = \rceil x \lor y$ for all $x, y \in A$.
- (E₅) If $(A, \land, \lor, \rightarrow, 0, 1)$ is a relative Stone lattice (see [1], p.176), then $(A, \land, \lor, \odot, \rightarrow, 0, 1)$ is a BL-algebra where the operation \odot coincide with \land .

 (E_6) If $(A, \oplus, *, 0)$ is a *MV-algebra* (see [3], [4], [11]), then $(A, \wedge, \vee, \odot, \rightarrow, 0, 1)$ is a BL-algebra, where for $x, y \in A$:

$$\begin{aligned} x \odot y &= (x^* \oplus y^*)^*, \\ x \to y &= x^* \oplus y, 1 = 0^*, \\ x \lor y &= (x \to y) \to y = (y \to x) \to x \text{ and } x \land y = (x^* \lor y^*)^*. \end{aligned}$$

A BL-algebra is *nontrivial* if $0 \neq 1$. For any BL-algebra A, the reduct $L(A) = (A, \land, \lor, 0, 1)$ is a bounded distributive lattice. For any $a \in A$, we define $a^* = a \to 0$ and denote $(a^*)^*$ by a^{**} . We denote the set of natural numbers by ω and define $a^0 = 1$ and $a^n = a^{n-1} \odot a$ for $n \in \omega \setminus \{0\}$.

In [4], [7]-[11] it is proved that if A is a BL-algebra and $a, b, c, b_i \in A$, ($i \in I$) then we have the following rules of calculus:

- $(c_1) \ a \odot b \leq a, b$, hence $a \odot b \leq a \land b$ and $a \odot 0 = 0$,
- (c_2) $a \leq b$ implies $a \odot c \leq b \odot c$,
- $(c_3) \ a \leq b \text{ iff } a \to b = 1,$
- $(c_4) \ 1 \to a = a, a \to a = 1, a \le b \to a, a \to 1 = 1,$
- $(c_5) \ a \odot a^* = 0,$
- $(c_6) \ a \odot b = 0 \text{ iff } a \leq b^*,$
- (c_7) $a \lor b = 1$ implies $a \odot b = a \land b$,
- $(c_8) \ a \to (b \to c) = (a \odot b) \to c = b \to (a \to c),$
- (c_9) $(a \to b) \to (a \to c) = (a \land b) \to c,$
- $(c_{10}) \ a \to (b \to c) \ge (a \to b) \to (a \to c),$
- $(c_{11}) a \leq b$ implies $c \to a \leq c \to b, b \to c \leq a \to c$ and $b^* \leq a^*$,
- $(c_{12}) a \leq (a \rightarrow b) \rightarrow b$, $((a \rightarrow b) \rightarrow b) \rightarrow b = a \rightarrow b$,
- $(c_{13}) \ a \odot (b \lor c) = (a \odot b) \lor (a \odot c),$
- $(c_{14}) \ a \odot (b \land c) = (a \odot b) \land (a \odot c),$
- $(c_{15}) \ a \lor b = ((a \to b) \to b) \land ((b \to a) \to a),$
- $\begin{array}{l} (c_{16}) \ (a \wedge b)^n = a^n \wedge b^n, (a \vee b)^n = a^n \vee b^n, \, \text{hence} \ a \vee b = 1 \ \text{implies} \ a^n \vee b^n = 1 \\ \text{for any} \ n \in \omega, \end{array}$

$$\begin{aligned} &(c_{17}) \ a \to (b \land c) = (a \to b) \land (a \to c), \\ &(c_{18}) \ (b \land c) \to a = (b \to a) \lor (c \to a), \\ &(c_{19}) \ (a \lor b) \to c = (a \to c) \land (b \to c), \\ &(c_{20}) \ a \to b \le (b \to c) \to (a \to c), \\ &(c_{21}) \ a \to b \le (c \to a) \to (c \to b), \\ &(c_{22}) \ a \to b \le (a \odot c) \to (b \odot c), \\ &(c_{23}) \ a \odot (b \to c) \le b \to (a \odot c), \\ &(c_{24}) \ (b \to c) \odot (a \to b) \le a \to c, \\ &(c_{25}) \ (a_1 \to a_2) \odot (a_2 \to a_3) \odot \dots \odot (a_{n-1} \to a_n) \le a_1 \to a_n, \\ &(c_{25}) \ (a_1 \to a_2) \odot (a_2 \to a_3) \odot \dots \odot (a_{n-1} \to a_n) \le a_1 \to a_n, \\ &(c_{26}) \ a, b \le c \text{ and } c \to a = c \to b \text{ implies } a = b, \\ &(c_{27}) \ a \lor (b \odot c) \ge (a \lor b) \odot (a \lor c), \text{ hence } a^m \lor b^n \ge (a \lor b)^{mn}, \text{ for any } m, n \in \omega, \\ &(c_{28}) \ (a \to b) \odot (a' \to b') \le (a \lor a') \to (b \lor b'), \\ &(c_{29}) \ (a \to b) \odot (a' \to b') \le (a \land a') \to (b \land b'), \\ &(c_{29}) \ (a \to b) \odot (a' \to b') \le (a \land a') \to (b \land b'), \\ &(c_{30}) \ (a \to b) \to c \le ((b \to a) \to c) \to c, \\ &(c_{31}) \ a \odot (\bigwedge_{i \in I} b_i) = \bigwedge_{i \in I} (a \to b_i), \\ &a \land (\bigwedge_{i \in I} b_i) = \bigvee_{i \in I} (a \to b_i), \\ &(\bigvee_{i \in I} b_i) \to a = \bigwedge_{i \in I} (b_i \to a) \\ &\bigvee_{i \in I} (a \to b_i) \le a \to (\bigvee_{i \in I} b_i) \to a, \\ &\bigvee_{i \in I} (a \to b_i) \le a \to (\bigvee_{i \in I} b_i), \\ &a \land (\bigvee_{i \in I} b_i) = \bigvee_{i \in I} (a \land b_i); \text{ if } A \text{ is an BL-chain then } a \lor (\bigwedge_{i \in I} b_i) = \bigwedge_{i \in I} (a \lor b_i), \\ &(\text{whenever the arbitrary meets and unions exist)} \end{aligned}$$

 $(c_{33}) \ (a \wedge b)^* = a^* \vee b^* \text{ and } (a \vee b)^* = a^* \wedge b^*,$

- $\begin{array}{lll} (c_{34}) & (a \wedge b)^{**} = a^{**} \wedge b^{**} \ , \ (a \vee b)^{**} = a^{**} \vee b^{**}, (a \odot b)^{**} = a^{**} \odot b^{**} \ , \\ & (a \to b)^{**} = a^{**} \to b^{**}, \end{array}$
- (c_{35}) If $a^{**} \leq a^{**} \to a$, then $a^{**} = a$,

$$(c_{36}) \ a = a^{**} \odot (a^{**} \to a),$$

- $(c_{37}) \ a \to b^* = b \to a^* = a^{**} \to b^* = (a \odot b)^*,$
- $(c_{38}) \ (a^{**} \to a)^* = 0, (a^{**} \to a) \lor a^{**} = 1,$
- $(c_{39}) \ b^* \le a \text{ implies } a \to (a \odot b)^{**} = b^{**}.$

For any BL-algebra A, B(A) denotes the Boolean algebra of all complemented elements in L(A) (hence B(A) = B(L(A))).

Proposition 1.1 ([7]-[11])For $e \in A$, the following are equivalent:

(i)
$$e \in B(A)$$
,

- (ii) $e \odot e = e$ and $e = e^{**}$,
- $(iii) \ e \odot e = e \ and \ e^* \to e = e,$
- $(iv) \ e \lor e^* = 1.$

Remark 1.2 If $a \in A$, and $e \in B(A)$, then $e \odot a = e \land a, a \rightarrow e = (a \odot e^*)^* = a^* \lor e$; if $e \leq a \lor a^*$, then $e \odot a \in B(A)$.

Proposition 1.2 ([4]) For $e \in A$, the following are equivalent:

- (i) $e \in B(A)$,
- (*ii*) $(e \to x) \to e = e$, for every $x \in A$.

Lemma 1.1 If $e, f \in B(A)$ and $x, y \in A$, then:

$$(c_{40}) \ e \lor (x \odot y) = (e \lor x) \odot (e \lor y),$$

- $(c_{41}) \ e \land (x \odot y) = (e \land x) \odot (e \land y),$
- $(c_{42}) \ e \odot (x \to y) = e \odot [(e \odot x) \to (e \odot y)],$
- $(c_{43}) \ x \odot (e \to f) = x \odot [(x \odot e) \to (x \odot f)],$
- $(c_{44}) \ e \to (x \to y) = (e \to x) \to (e \to y).$

Proof. (c_{40}) . We have

$$(e \lor x) \odot (e \lor y) \stackrel{c_{13}}{=} [(e \lor x) \odot e] \lor [(e \lor x) \odot y] = [(e \lor x) \odot e] \lor [(e \odot y) \lor (x \odot y)]$$
$$= [(e \lor x) \land e] \lor [(e \odot y) \lor (x \odot y)] = e \lor (e \odot y) \lor (x \odot y) = e \lor (x \odot y).$$
$$(c_{41}).$$
We have
$$(e \land x) \odot (e \land y) = (e \odot x) \odot (e \odot y) = (e \odot e) \odot (x \odot y) = e \odot (x \odot y) = e \land (x \odot y).$$

 (c_{42}) . By (c_{22}) we have

$$x \to y \le (e \odot x) \to (e \odot y),$$

hence

$$e \odot (x \to y) \le e \odot [(e \odot x) \to (e \odot y)].$$

Conversely,

$$e \odot [(e \odot x) \to (e \odot y)] \le e$$

and

$$(e \odot x) \odot [(e \odot x) \to (e \odot y)] \le e \odot y \le y$$

 \mathbf{SO}

$$e \odot [(e \odot x) \to (e \odot y)] \le x \to y$$

Hence

$$e \odot [(e \odot x) \to (e \odot y)] \le e \odot (x \to y).$$

 $\begin{array}{l} (c_{43}). \text{ We have } x \odot [(x \odot e) \to (x \odot f)] = x \odot [(x \odot e) \to (x \wedge f)] \stackrel{c_{31}}{=} \\ x \odot [(x \odot e \to x) \land (x \odot e \to f)] = x \odot [1 \land (x \odot e \to f)] = x \odot (x \odot e \to f) \stackrel{c_{8}}{=} \\ x \odot [x \to (e \to f)] = x \land (e \to f) = x \odot (e \to f). \\ (c_{44}). \text{ Follows from } (c_8) \text{ and } (c_9) \text{ since } e \land x = e \odot x. \end{array}$

Definition 1.2 ([7]-[11])Let A and B be BL-algebras. A function $f : A \to B$ is a morphism of BL-algebras iff it satisfies the following conditions, for every $x, y \in A$:

$$(a_6) f(0) = 0,$$

$$(a_7) f(x \odot y) = f(x) \odot f(y),$$

$$(a_8) f(x \to y) = f(x) \to f(y).$$

Remark 1.3 ([7]-[11]) It follows that:

$$f(1) = 1,$$

$$f(x^*) = [f(x)]^*$$

$$f(x \lor y) = f(x) \lor f(y),$$

$$f(x \land y) = f(x) \land f(y),$$

for every $x, y \in A$.

2 BL-algebra of fractions relative to an \wedge -closed system

Definition 2.1 A nonempty subset $S \subseteq A$ is called \wedge -closed system in A if $1 \in S$ and $x, y \in S$ implies $x \wedge y \in S$.

We denote by S(A) the set of all \wedge -closed system of A (clearly $\{1\}, A \in S(A)$).

For $S \in S(A)$, on the *BL*-algebra A we consider the relation θ_S defined by

 $(x,y) \in \theta_S$ iff there exists $e \in S \cap B(A)$ such that $x \wedge e = y \wedge e$.

Lemma 2.1 θ_S is a congruence on A.

Proof. The reflexivity (since $1 \in S \cap B(A)$) and the symmetry of θ_S are immediately. To prove the transitivity of θ_S , let $(x, y), (y, z) \in \theta_S$. Thus there exists $e, f \in S \cap B(A)$ such that $x \wedge e = y \wedge e$ and $y \wedge f = z \wedge f$. If denote $g = e \wedge f \in S \cap B(A)$, then $g \wedge x = (e \wedge f) \wedge x = (e \wedge x) \wedge f = (y \wedge e) \wedge f = (y \wedge f) \wedge e = (z \wedge f) \wedge e = z \wedge (f \wedge e) = z \wedge g$, hence $(x, z) \in \theta_S$.

To prove the compatibility of θ_S with the operations \land, \lor, \odot and \rightarrow , let $x, y, z, t \in A$ such that $(x, y) \in \theta_S$ and $(z, t) \in \theta_S$. Thus there exists $e, f \in S \cap B(A)$ such that $x \land e = y \land e$ and $z \land f = t \land f$; we denote $g = e \land f \in S \cap B(A)$.

We obtain:

$$(x \wedge z) \wedge g = (x \wedge z) \wedge (e \wedge f) = (x \wedge e) \wedge (z \wedge f) = (y \wedge e) \wedge (t \wedge f) = (y \wedge t) \wedge g,$$

hence $(x \wedge z, y \wedge t) \in \theta_S$ and

$$(x \lor z) \land g = (x \lor z) \land (e \land f) = [(e \land f) \land x] \lor [(e \land f) \land z] = [(e \land x) \land f] \lor [e \land (f \land z)]$$

 $= [(e \wedge y) \wedge f] \vee [e \wedge (f \wedge t)] = [(e \wedge f) \wedge y] \vee [(e \wedge f) \wedge t] = (y \vee t) \wedge (e \wedge f) = (y \vee t) \wedge g,$

hence $(x \lor z, y \lor t) \in \theta_S$.

By Remark 1.2 we obtain:

$$(x \odot z) \land g = (x \odot z) \odot g = (x \odot e) \odot (z \odot f) = (y \odot e) \odot (t \odot f) = (y \odot t) \odot g = (y \odot t) \land g,$$

hence $(x \odot z, y \odot t) \in \theta_S$ and by (c_{42}) :

$$(x \to z) \land g = (x \to z) \odot g = g \odot [(g \odot x) \to (g \odot z)] =$$
$$g \odot [(g \odot y) \to (g \odot t)] = (y \to t) \odot g = (y \to t) \land g,$$

hence $(x \to z, y \to t) \in \theta_S$.

For x we denote by x/S the equivalence class of x relative to θ_S and by

$$A[S] = A/\theta_S.$$

By $p_S : A \to A[S]$ we denote the canonical map defined by $p_S(x) = x/S$, for every $x \in A$. Clearly, in A[S], $\mathbf{0} = 0/S$, $\mathbf{1} = 1/S$ and for every $x, y \in A$,

$$\begin{aligned} x/S \wedge y/S &= (x \wedge y)/S \\ x/S \vee y/S &= (x \vee y)/S \\ x/S \odot y/S &= (x \odot y)/S \\ x/S &\to y/S &= (x \to y)/S. \end{aligned}$$

So, p_S is an onto morphism of *BL*-algebras.

Remark 2.1 Since for every $s \in S \cap B(A)$, $s \wedge s = s \wedge 1$ we deduce that $s/S = 1/S = \mathbf{1}$, hence $p_S(S \cap B(A)) = \{\mathbf{1}\}$.

Proposition 2.1 If $a \in A$, then $a/S \in B(A[S])$ iff there exists $e \in S \cap B(A)$ such that $e \wedge a \in B(A)$. So, if $e \in B(A)$, then $e/S \in B(A[S])$.

Proof. For $a \in A$, we have $a/S \in B(A[S]) \Leftrightarrow a/S \odot a/S = a/S$ and $(a/S)^{**} = a/S$.

From $a/S \odot a/S = a/S$ we deduce that $(a \odot a)/S = a/S \Leftrightarrow$ there exists $g \in S \cap B(A)$ such that $(a \odot a) \land g = a \land g \Leftrightarrow (a \odot a) \odot g = a \land g \Leftrightarrow (a \odot g) \odot (a \odot g) = a \land g \Leftrightarrow (a \land g) \odot (a \land g) = a \land g \Leftrightarrow (a \land g) \odot (a \land g) = a \land g$.

From $(a/S)^{**} = a/S$ we deduce that exists $f \in S \cap B(A)$ such that $a^{**} \wedge f = a \wedge f$. If denote $e = g \wedge f \in S \cap B(A)$, then

$$(a \wedge e) \odot (a \wedge e) = (a \wedge g \wedge f) \odot (a \wedge g \wedge f) \Leftrightarrow (a \odot g) \odot f \odot (a \odot g) \odot f = a \odot g \odot f = a \wedge g \wedge f = a \wedge e$$

and

$$a^{**} \wedge e = a^{**} \wedge g \wedge f = (a^{**} \wedge f) \wedge g = (a \wedge f) \wedge g = a \wedge e,$$

hence $a \wedge e \in B(A)$.

If $e \in B(A)$, since $1 \in S \cap B(A)$ and $1 \wedge e = e \in B(A)$ we deduce that $e/S \in B(A[S])$.

Theorem 2.1 If A' is a BL-algebra and $f : A \to A'$ is a morphism of BLalgebras such that $f(S \cap B(A)) = \{1\}$, then there exists a unique morphism of BL-algebras $f' : A[S] \to A'$ such that the diagram

is commutative (i.e. $f' \circ p_S = f$).

Proof. If $x, y \in A$ and $p_S(x) = p_S(y)$, then $(x, y) \in \theta_S$, hence there exists $e \in S \cap B(A)$ such that $x \wedge e = y \wedge e$. Since f is morphism of *BL*-algebras, we obtain that $f(x \wedge e) = f(y \wedge e) \Leftrightarrow f(x) \wedge f(e) = f(y) \wedge f(e) \Leftrightarrow f(x) \wedge \mathbf{1} = f(y) \wedge \mathbf{1} \Leftrightarrow f(x) = f(y)$.

From this observation we deduce that the map $f': A[S] \to A'$ defined for $x \in A$ by f'(x/S) = f(x) is correctly defined. Clearly, f' is an morphism of *BL*-algebras. The unicity of f' follows from the fact that p_S is a onto map.

Remark 2.2 Theorem 2.1 allows us to call A[S] the BL-algebra of fractions relative to the \wedge -closed system S.

References

- [1] R. Balbes, Ph. Dwinger: Distributive Lattices, University of Missouri Press, 1974
- [2] D. Buşneag: Hilbert algebra of fractions relative to an ⊻-closed system, Analele Universității din Craiova, Seria Matematica-Fizica-Chimie, vol. XVI, (1998), 34-38
- [3] D. Buşneag, D. Piciu: MV-algebra of fractions relative to an ∧-closed system, Analele Universității din Craiova, Seria Matematica-Informatica, vol. XXXI, (2003), 1-5
- [4] D. Buşneag, D. Piciu: On the lattice of deductive systems of a BL-algebra, Central European Journal of Mathematics, Volume 1, Number 2, April 2003, 221-238
- [5] C. C. Chang: Algebraic analysis of many valued logics, Trans. Amer. Math. Soc., 88(1958), 467-490
- [6] R. Cignoli, I.M.L. D'Ottaviano, D. Mundici: Algebraic foundation of many -valued Reasoning, Kluwer Academic Publishers, Dordrecht, 2000
- [7] P. Hájek: Metamathematics of fuzzy logic, Kluwer Acad. Publ., Dordrecht, 1998
- [8] A. Iorgulescu: Iséki algebras. Connections with BL-algebras (to appear in Soft Computing)
- [9] A. Di Nola, G. Georgescu, A. Iorgulescu: *Pseudo-BL-algebras* (to appear in Multiple Valued Logic)
- [10] D. Piciu: Pseudo MV-algebra of fractions relative to an ^-closed system, Analele Universității din Craiova, Seria Matematica-Informatica, vol. XXXI, (2003), 6-11

[11] E. Turunen: Mathematics Behind Fuzzy Logic, Physica-Verlag, 1999

University of Craiova, Faculty of Mathematics and Computer Science, 13, Al.I. Cuza st., 1100, Craiova, Romania Tel/Fax: 40-251412673 e-mail: busneag@central.ucv.ro , danap@central.ucv.ro