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ON A SINGULARLY PERTURBED,
COUPLED ELLIPTIC-ELLIPTIC PROBLEM
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Abstract

The behavior of the solution of the below problem (Eε), (BCε),
(TCε) is studied when the small parameter ε tends to 0.

1. Introduction.

We consider the following coupled boundary value problem of elliptic-elliptic
type, denoted by Pε:

{ −εu′′(x) + α(x)u′(x) + β(x)u(x) = f(x), x ∈ (a, b),

− (
µ(x)v′(x)

)′ + α(x)v′(x) + β(x)v(x) = g(x), x ∈ (b, c),
(Eε)

with homogeneous Dirichlet boundary conditions

u(a) = v(c) = 0 (BCε)

and transmission conditions at x = b

u(b) = v(b), εu′(b) = (µv′)(b). (TCε)

The transmission conditions at x = b express the continuity of the solution
and of the flux.

The following assumptions will be required in the following:

(A1) a, b, c ∈ IR, a < b < c, ε > 0 is a small parameter;
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(A2) α ∈ H1(a, c), β ∈ L∞(a, c), µ ∈ H1(a, c);

(A3) α(x) ≤ α0 < 0 in [a, c], µ(x) ≥ µ0 > 0 in [b, c], β−α′
2 ≥ 0 a.e. in (a, c);

(A4)f ∈ L2(a, b), g ∈ L2(b, c).

The aim of this paper is to investigate the problem Pε for ε going to zero
from the view point of singular perturbation theory. This is a singularly
perturbed problem with respect to the norm of uniform convergence and the
boundary layer is the point x = a. To have an idea about this matter, let us
consider the particular case when α, β, µ are constant functions. If the solution
(u, v) of (Pε) converges in C[a, b]×C[b, c] to (U, V ), then it can easily be seen
that (U, V ) satisfies





αU ′ + βU = f, in (a, b),

−µV ′′ + αV ′ + βV = g, in (b, c),

U(a) = 0, U(b) = V (b),

V ′(b) = 0, V (c) = 0.

The condition U(a) = 0 is not satisfied in general (this exceeds the number
of conditions allowed). This fact is not acceptable from a physical point of
view. Actually we shall see that indeed, in the point x = a, the solution (u, v)
has a singular behaviour as ε goes to zero. The corresponding unperturbed
(reduced) problem, denoted by P0, is the following [6]:

{
α(x)U ′(x) + β(x)U(x) = f(x), x ∈ (a, b)

− (
µ(x)V ′(x)

)′ + α(x)V ′(x) + β(x)V (x) = g(x), x ∈ (b, c),
(E0)

V (c) = 0, (BC0){
U(b) = V (b),

V ′(b) = 0.
(TC0)

This problem will be reobtained below by using the Vishik-Lusternik method
and it is the same as that derived in [6] by using a different way.

In [1], [2] we studied a similar transmission of type elliptic-elliptic but
we considered that α ≥ α0 > 0. Here we are assuming α < 0, hence the
asymptotic behavior is different from the case α > 0: actually we cannot have
a convergence of u(a) to U(a), in general. A comment is needed about the
conditions (TC0), (BC0). Note that the problem P0 has no conditions at all
for x = a and needs two conditions at b, in this case, when α < 0.
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In Section 2 we shall derive a formal zero-th order asymptotic expansion
for the solution (u, v) of the problem (Pε). The interface point x = a is a
boundary layer and the expansion of u contains a corresponding corrector
(boundary layer function).

In Section 3 we shall investigate the existence and uniqueness of the solu-
tions to the problems (Pε) and P0.

Finally, Section 4 is devoted to obtaining some estimates for the remainder
terms of the expansion established in Section 2 with respect to the uniform
convergence topology.

2. A formal asymptotic expansion for the solution of Pε

The classical perturbation theory (see [7] for details) can be adapted to our
specific singular perturbation problem. Following this theory, we are going to
derive formally an expansion of the solution (u, v) of (Pε) of the form:

{
u(x) = U(x) + θ1(ζ) + ρ1ε(x), x ∈ [a, b],

v(x) = V (x) + θ2(ζ) + ρ2ε(x), x ∈ [b, c],
(2.1)

where ζ:=ε−1(x − a) is the fast variable; (U, V ) is the zero-th order term of
the regular series; θ1, θ2 are boundary layer functions (correctors); ρ1ε, ρ2ε

denote the remainder terms of zero-th order.
We substitute formally in (Eε) (u, v) given by (2.1) and then we identify

the coefficients of εk (k = −1, 0), separately those depending on x from those
depending on ζ. So, we get

{
α(x)U ′(x) + β(x)U(x) = f(x), a < x < b,

−(µ(x)V ′(x))′ + α(x)V ′(x) + β(x)V (x) = g(x), b < x < c.
(E0)

For θ1=θ1(ζ) we derive the equation

θ′′1 (ζ)− α(a)θ′1(ζ) = 0. (2.2)

Eq. (2.2) and the fact that θ1 is a boundary layer function (in particular,
θ1(ζ) −→ 0, as ζ −→∞) implies that θ1(ζ) = keα(a)ζ , where k is a constant
which will be determined from (BCε). Also, we can deduce that θ2 = 0.

For the remainder terms we have the equations




−ε ρ′′1ε(x) + α(x)ρ′1ε(x) + β(x)ρ1ε(x) =

= εU ′′(x) + ε−1
(
α(x)− α(a)

)
θ′1

(
ζ(x)

)− β(x)θ1

(
ζ(x)

)
, a < x < b,

−(
(µρ′2ε)(x)

)′ + α(x)ρ′2ε(x) + β(x)ρ2ε(x) = 0, b < x < c,
(ER)



12 L. Barbu and E. Cosma

where ζ(x) = (x− a)/ε.
From (BCε), we can derive

k = −U(a), hence θ1(ξ) = −U(a)eα(a)ζ (2.3)

V (c) = 0, (BC0)

{
ρ1ε(a) = 0,

ρ2ε(c) = 0.
(BCR)

By replacing (2.1) into (TC)ε , we can see that U and V satisfy the trans-
mission conditions {

U(b) = V (b),

V ′(b) = 0,
(TC0)

and for the remainder terms we have
{

ρ1ε(b) = ρ2ε(b) + U(a)eα(a)θ1(ζ(b)),

ερ′1ε(b) = −εU ′(b) + U(a)α(a)eα(a)θ1(ζ(b)) +
(
µρ′2ε

)
(b).

(TCR)

Summarizing, the reduced problem, P0, is (E0)−(BC0)−(TC0), while the
problem satisfied by the remainder terms is (ER)− (BCR)− (TCR). As we
shall see later on, the last problem is satisfied by (ρ1ε, ρ2ε) in a generalized
sense.

3. Existence and regularity for the problems (Pε) and P0.

For the problem (Pε) we have the following result, whose proof is essentially
known (see [1]):

Proposition 3.1. Assume that (A1)−(A4) are satisfied. Then, the
problem Pε admits a unique solution (u, v) ∈ H2(a, b)×H2(b, c) satisfying (Eε)
a.e. in (a, b) and in (b, c), respectively, as well as (BCε) and (TCε).

In the following, we are going to investigate the reduced problem (P0).
In fact, we can split it in two separate problems, with the unknowns U and V ,
respectively. Clearly, V is a solution of (E0)2, with the boundary conditions

V ′(b) = 0, V (c) = 0. (3.1)

By the Lax-Milgram lemma, there exists a unique solution V ∈H2(b, c)
of this problem. Obviously, Eq. (E0)1, with U(b) = V (b), has a unique
solution U ∈ H1(a, b). Therefore, we have the following result



On a singularly perturbed, coupled elliptic-elliptic problem 13

Proposition 3.2. Assume that (A1) − (A4) are satisfied. Then,
the problem P0 has a unique solution U∈H1(a, b), V ∈H2(a, c), which satisfies
(E0) a.e. in (a, b) and (b, c), respectively, as well as (BC0) and (TC0).

If we denote

ρ̃1ε(x) := ρ1ε(x) + Aεx + Bε, Aε := (b− a)χε, Bε := −aAε, (3.2)

where χε = −U(a)eα(a)θ1(ζ(b) then we have ρ̃1ε(a)=0, ρ̃1ε(b) = ρ2ε(b) and
taking into account (Pε), (P0), we can see that

ρε :=

{
ρ̃1ε in [a, b]

ρ2ε in (b, c]
,

satisfies ρε∈H1
0 (a, c) and

ε

∫ b

a

ρ̃′1εϕ
′dx +

∫ c

b

µρ2ε
′ϕ′dx +

∫ b

a

αρ̃′1εϕdx +
∫ c

b

αρ2ε
′ϕdx

= −ε

∫ b

a

U ′ϕ′dx−
∫ c

a

hεϕdx + εAεϕ(b) + α(a)ϕ(b)χε, ∀ ϕ ∈ H1
0 (a, c), (3.3)

where

hε(x) :=





β(x)θ1

(
(ζ(x)

)
+ α(a)

(
α(x)− α(a)

)
θ1

(
ζ(x)

)
+

+
[
Aεα(x) + β(x)(Aεx + Bε)

]
, in (a, b),

0, in (b, c).

Indeed, by (Eε) and (E0), we obtain
∫ b

a

εu′ϕ′dx +
∫ b

a

αu′ϕdx +
∫ b

a

βuϕdx +
∫ c

b

(µv′)ϕ′dx+

+
∫ c

b

αv′ϕdx +
∫ c

b

βvϕdx =
∫ b

a

fϕdx +
∫ c

b

gϕdx, ∀ ϕ ∈ H1
0 (a, c),

∫ b

a

αU ′ϕdx +
∫ b

a

βUϕdx =
∫ b

a

fϕdx,

∫ c

b

(µV ′)ϕ′dx+
∫ c

b

αV ′ϕdx+
∫ c

b

βV ϕdx− µV ′ϕ|cb =
∫ c

b

ϕgdx, ∀ ϕ ∈ H1
0 (a, c).

Now, subtracting the last two equalities from the first one, we obtain that
∫ b

a

ε
(
U ′ +

d

dx
θ1(ζ(x)) + %′1ε

)
ϕ′dx +

∫ b

a

α
( d

dx
θ1(ζ(x)) + ρ′1ε

)
ϕdx+
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+
∫ b

a

β
(
θ1(ζ(x)) + ρ1ε

)
ϕdx+

+
∫ c

b

(µρ′2ε)ϕ
′dx +

∫ c

b

αρ′2εϕdx +
∫ c

b

βρ2εϕdx− (µV ′)(b)ϕ(b) = 0.

From

ε

∫ b

a

ϕ′
d

dx
θ1(ζ(x))dx = εϕ(x)

d

dx
θ1(ζ(x))|ba − ε

∫ b

a

ϕ
d2

dx2 θ1(ζ)dx =

= ϕ(b)χεα(a)− ε−1α(a)2
∫ b

a

ϕθ1(ζ(x))dx,

we can see that,

∫ b

a

ε
(

ρ̃1ε
′ −Aεϕ

′)dx +
∫ b

a

α
(

ρ̃1ε
′ −Aε − ε−1α(a)θ1(ζ)

)
ϕdx+

+
∫ b

a

β
(
θ1(ξ) + ρ̃1ε −Aεx−Bε)

)
ϕdx+

+
∫ c

b

µρ′2εϕ
′dx +

∫ c

b

αρ′2εϕdx +
∫ c

b

βρ2εϕdx−

−ε−1α(a)2
∫ b

a

ϕθ1(ζ)dx = −ε

∫ b

a

U ′ϕ′dx + α(a)ϕ(b)χε.

In conclusion, we obtain (3.3).
An elementary computation shows that, if ρ1ε, ρ2ε are smooth functions,

then they satisfy problem (ER)− (BCR)− (TCR) in a classical sense.
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4. Estimates for the remainder terms

The main result of this section is

Theorem 4.1. Assume that (A1)−(A4) are satisfied and α is Lips-
chitzian in [a, b] (i.e., ∃ L>0, such that |α(x)−α(y) |≤L|x−y|, ∀ x, y∈[a, b]).
Then, for every ε>0, the problem (Pε) has a unique solution
(u, v) ∈H2(a, b)×H2(b, c) of the form (2.1), where col(U, V )∈H1(a, b)×H2(b, c)
is the solution of (P0), θ1 is given by (2.3), θ2 = 0 and (ρ1ε, ρ2ε) ∈H1(a, b)×H2(b, c).

In addition, we have the estimates ‖ρ1ε‖C[a,b]=O(
√

ε), ‖ρ2ε‖C[b,c]=O(
√

ε).

Proof. By Propositions 3.1 and 3.2, (ρ1ε, ρ2ε)∈H1(a, b)×H2(b, c). For
the sake of simplicity, we assume that β−α′/2≥γ0>0 a.e. in (a, c). If we choose
in (3.3) ϕ=ρε∈H1

0 (a, c),, we can see that

ε

∫ b

a

(ρ̃′1ε)
2
dx +

∫ c

b

µ (ρ′2ε)
2
dx +

∫ b

a

(β − α′/2) ρ̃1ε
2dx+

+
∫ c

b

(β − α′/2)ρ2
2εdx = −ε

∫ b

a

U ′ ρ̃1ε
′dx−

∫ b

a

hε ρ̃1εdx + γε, (4.1)

where γε = α(a)ϕ(b) ρ̃1ε(b) + εAε ρ̃1ε(b). In the case β−α′/2≥0 a.e. in (a, c),
we choose in (3.3)

ϕ(x) :=

{
e−x r̃1ε(x) in [a, b]

e−br2ε(x) in (b, c]

and we can use a slight modification of our reasoning below. Denote by ‖ · ‖1,
‖ · ‖2 the norms of L2(a, b), L2(b, c), respectively. As β− α′/2≥γ0>0 a.e. in
(a, c) and µ≥µ0 >0 in [b, c], it follows from (4.1) that

ε‖ ρ̃1ε
′‖21 + µ0‖ρ′2ε‖22 + γ0

(‖ρ̃1ε‖21 + ‖ρ2ε‖22
) ≤

≤ (1/2)
[
ε‖U ′‖21 + ε‖ρ̃′1ε‖21 + γ−1

0 ‖hε‖21 + γ0‖ρ̃1ε‖21
]
+ | γε|. (4.2)

In the following, we can show that ‖hε‖1=O(
√

ε) and γ(ε)= O(εk), ∀k≥0.
From equations (Eε), we obtain

ε‖u′‖21 + µ0‖v′‖22 + γ0

(‖u‖21 + ‖v‖22
) ≤

≤ (1/2)
[
γ−1
0

(‖f‖21 + ‖g‖22
)

+ γ0

(‖u‖21 + ‖v‖22
)]

. (4.3)
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This implies that ‖u‖1=O(1), ‖v‖2 =O(1) and ‖v′‖2= =O(1), ε ‖u′‖22=O(1).
Since v(c)=0 and H1(b, c)⊂C[b, c], with a compact injection, we get ‖v‖C[b,c]=O(1).
For γε, we have

lim
ε→0

ε−kγε = 0, for every k ≥ 0,

and therefore γε = O(εk). Now, as β∈L∞(a, c), | Aε |, | Bε |= O(εk), k ≥ 1, α

is Lipschitzian in [a, b], one gets by an easy computation that ‖hε‖21 = O(ε).
Now, from (4.2), it follows

‖ρ̃′1ε‖1 = O(1), ‖ρ̃1ε‖1 = O(
√

ε), ‖ρ′2ε‖2 = O(
√

ε), ‖ρ2ε‖2 = O(
√

ε),

therefore

‖ρ1ε‖1 ≤ ‖ρ̃1ε‖1 + ‖(Aεx + Bε)ω(ε)‖1 = O(
√

ε). (4.4)

From

ρ2
2ε(x) = (−1/2)

∫ c

x

ρ2ε
′(s)ρ2ε(s)ds ≤ 2 ‖ρ2ε‖2 ‖ρ2ε‖2,

one gets
‖ρ2ε‖C[b,c] = O(

√
ε). (4.5)

In that which follows, we shall prove that ‖ρ1ε‖C[b,c]=O(
√

ε). To do that, we
integrate (Eε)1 on [y, b], y∈[a, b]:

ε
(
u′(y)− u′(b)

)
+

∫ b

y

α(s)u′(s)ds +
∫ b

y

β(s)u(s)ds =
∫ b

y

f(s)ds. (4.6)

By replacing
u(x) = U(x) + θ1

(
ζ(x)

)
+ ρ1ε(x),

in (4.6), one obtains

ε ρ′1ε(y) +
∫ b

y

α(s)ρ′1ε(s)ds +
∫ b

y

β(s)ρ1ε(s)ds =

= ε
[
U ′(y) +

d

dy
θ1

(
ζ(y)

)]−

−
∫ b

y

[
α(s)

( d

ds
θ1

(
ζ(s)

))
+ β(s)

(
θ1

(
ζ(s)

))]
ds + εu′(b)a.e. in (a, x). (4.7)

Now we multiply the above inequality by ρ′1ε(y) and then integrate on [a, x].
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Finally, we obtain that
(
α(x)/2

)
ρ2
1ε(x) + b̃(x)ρ1ε(x) + c̃(x) = 0, (4.8)

where

b̃(x) := −
∫ b

x

(
α′(y)− β(y)

)
(ρ1ε(y)dy − εu′(b)− α(b)θ1(ζ(b) + θ1(ζ(y)),

c̃(x) := −
∫ x

a

(
α′/2− β

)
(y)ρ̃2

1ε(y)dy−

−
∫ x

a

ρ′1ε(y)
[
εU ′(y)− (

α(y)− α(a)
)
θ1

(
ζ(y)

)]
dy−

−
∫ x

a

[(
β(y)− α′(y)

)
θ1

(
ζ(y)

)
ρ1ε(y)dy − ε

∫ x

a

(ρ′1ε)
2(y)dy.

By (4.4), one obtains that c̃(x)=O(ε). Integrating (4.6) on [a, b], one obtains
εu′(b)=O(

√
ε), hence b̃(x)=O(

√
ε).

Finally, from

(1/2)α(x)ρ2
1ε(x) + O(

√
ε)ρ1ε(x) + O(ε) = 0 a.e. in (a, b),

α(x)/2 ≤ α0/2, < 0 in [a, b],

we can deduce that | ρ1ε(x) | ≤ C
√

ε, x ∈ [a, b], so we have ‖r1ε‖C[a,b] =
O(
√

ε).
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