An. Şt. Univ. Ovidius Constanţa

ON A SINGULARLY PERTURBED, COUPLED ELLIPTIC-ELLIPTIC PROBLEM

Luminiţa Barbu and Emil Cosma
To Professor Silviu Sburlan, at his 60' anniversary

Abstract

The behavior of the solution of the below problem $\left(E_{\epsilon}\right),\left(B C_{\epsilon}\right)$, $\left(T C_{\epsilon}\right)$ is studied when the small parameter ϵ tends to 0 .

1. Introduction.

We consider the following coupled boundary value problem of elliptic-elliptic type, denoted by P_{ϵ} :

$$
\left\{\begin{array}{l}
-\epsilon u^{\prime \prime}(x)+\alpha(x) u^{\prime}(x)+\beta(x) u(x)=f(x), x \in(a, b), \\
-\left(\mu(x) v^{\prime}(x)\right)^{\prime}+\alpha(x) v^{\prime}(x)+\beta(x) v(x)=g(x), x \in(b, c),
\end{array}\right.
$$

with homogeneous Dirichlet boundary conditions

$$
u(a)=v(c)=0
$$

and transmission conditions at $x=b$

$$
u(b)=v(b), \quad \epsilon u^{\prime}(b)=\left(\mu v^{\prime}\right)(b) .
$$

The transmission conditions at $x=b$ express the continuity of the solution and of the flux.

The following assumptions will be required in the following:
$\left(A_{1}\right) a, b, c \in \mathbb{R}, a<b<c, \epsilon>0$ is a small parameter;

[^0]$\left(A_{2}\right) \alpha \in H^{1}(a, c), \beta \in L^{\infty}(a, c), \mu \in H^{1}(a, c) ;$
$\left(A_{3}\right) \alpha(x) \leq \alpha_{0}<0$ in $[a, c], \mu(x) \geq \mu_{0}>0$ in $[b, c], \beta-\frac{\alpha^{\prime}}{2} \geq 0$ a.e. in $(a, c) ;$
$\left(A_{4}\right) f \in L^{2}(a, b), g \in L^{2}(b, c)$.
The aim of this paper is to investigate the problem P_{ϵ} for ϵ going to zero from the view point of singular perturbation theory. This is a singularly perturbed problem with respect to the norm of uniform convergence and the boundary layer is the point $x=a$. To have an idea about this matter, let us consider the particular case when α, β, μ are constant functions. If the solution (u, v) of $\left(P_{\epsilon}\right)$ converges in $C[a, b] \times C[b, c]$ to (U, V), then it can easily be seen that (U, V) satisfies
\[

\left\{$$
\begin{array}{l}
\alpha U^{\prime}+\beta U=f, \quad \text { in }(a, b) \\
-\mu V^{\prime \prime}+\alpha V^{\prime}+\beta V=g, \quad \text { in }(b, c) \\
U(a)=0, U(b)=V(b) \\
V^{\prime}(b)=0, V(c)=0
\end{array}
$$\right.
\]

The condition $U(a)=0$ is not satisfied in general (this exceeds the number of conditions allowed). This fact is not acceptable from a physical point of view. Actually we shall see that indeed, in the point $x=a$, the solution (u, v) has a singular behaviour as ϵ goes to zero. The corresponding unperturbed (reduced) problem, denoted by P_{0}, is the following [6]:

$$
\left\{\begin{array}{l}
\alpha(x) U^{\prime}(x)+\beta(x) U(x)=f(x), \quad x \in(a, b) \\
-\left(\mu(x) V^{\prime}(x)\right)^{\prime}+\alpha(x) V^{\prime}(x)+\beta(x) V(x)=g(x), \quad x \in(b, c), \\
V(c)=0, \tag{0}\\
\left\{\begin{array}{l}
U(b)=V(b), \\
V^{\prime}(b)=0 .
\end{array}\right.
\end{array}\right.
$$

This problem will be reobtained below by using the Vishik-Lusternik method and it is the same as that derived in [6] by using a different way.

In [1], [2] we studied a similar transmission of type elliptic-elliptic but we considered that $\alpha \geq \alpha_{0}>0$. Here we are assuming $\alpha<0$, hence the asymptotic behavior is different from the case $\alpha>0$: actually we cannot have a convergence of $u(a)$ to $U(a)$, in general. A comment is needed about the conditions $\left(T C_{0}\right),\left(B C_{0}\right)$. Note that the problem P_{0} has no conditions at all for $x=a$ and needs two conditions at b, in this case, when $\alpha<0$.

In Section 2 we shall derive a formal zero-th order asymptotic expansion for the solution (u, v) of the problem $\left(P_{\epsilon}\right)$. The interface point $x=a$ is a boundary layer and the expansion of u contains a corresponding corrector (boundary layer function).

In Section 3 we shall investigate the existence and uniqueness of the solutions to the problems $\left(P_{\epsilon}\right)$ and P_{0}.

Finally, Section 4 is devoted to obtaining some estimates for the remainder terms of the expansion established in Section 2 with respect to the uniform convergence topology.

2. A formal asymptotic expansion for the solution of P_{ϵ}

The classical perturbation theory (see [7] for details) can be adapted to our specific singular perturbation problem. Following this theory, we are going to derive formally an expansion of the solution (u, v) of $\left(P_{\epsilon}\right)$ of the form:

$$
\begin{cases}u(x)=U(x)+\theta_{1}(\zeta)+\rho_{1 \epsilon}(x), & x \in[a, b] \tag{2.1}\\ v(x)=V(x)+\theta_{2}(\zeta)+\rho_{2 \epsilon}(x), & x \in[b, c]\end{cases}
$$

where $\zeta:=\epsilon^{-1}(x-a)$ is the fast variable; (U, V) is the zero-th order term of the regular series; θ_{1}, θ_{2} are boundary layer functions (correctors); $\rho_{1 \epsilon}, \rho_{2 \epsilon}$ denote the remainder terms of zero-th order.

We substitute formally in $\left(E_{\epsilon}\right)(u, v)$ given by (2.1) and then we identify the coefficients of $\epsilon^{k}(k=-1,0)$, separately those depending on x from those depending on ζ. So, we get

$$
\left\{\begin{array}{l}
\alpha(x) U^{\prime}(x)+\beta(x) U(x)=f(x), \quad a<x<b \tag{0}\\
-\left(\mu(x) V^{\prime}(x)\right)^{\prime}+\alpha(x) V^{\prime}(x)+\beta(x) V(x)=g(x), \quad b<x<c
\end{array}\right.
$$

For $\theta_{1}=\theta_{1}(\zeta)$ we derive the equation

$$
\begin{equation*}
\theta_{1}^{\prime \prime}(\zeta)-\alpha(a) \theta_{1}^{\prime}(\zeta)=0 \tag{2.2}
\end{equation*}
$$

Eq. (2.2) and the fact that θ_{1} is a boundary layer function (in particular, $\theta_{1}(\zeta) \longrightarrow 0$, as $\left.\zeta \longrightarrow \infty\right)$ implies that $\theta_{1}(\zeta)=k e^{\alpha(a) \zeta}$, where k is a constant which will be determined from $\left(B C_{\epsilon}\right)$. Also, we can deduce that $\theta_{2}=0$.

For the remainder terms we have the equations

$$
\left\{\begin{array}{l}
-\varepsilon \rho_{1 \epsilon}^{\prime \prime}(x)+\alpha(x) \rho_{1 \epsilon}^{\prime}(x)+\beta(x) \rho_{1 \epsilon}(x)= \tag{ER}\\
=\epsilon U^{\prime \prime}(x)+\epsilon^{-1}(\alpha(x)-\alpha(a)) \theta_{1}^{\prime}(\zeta(x))-\beta(x) \theta_{1}(\zeta(x)), \quad a<x<b \\
-\left(\left(\mu \rho_{2 \epsilon}^{\prime}\right)(x)\right)^{\prime}+\alpha(x) \rho_{2 \epsilon}^{\prime}(x)+\beta(x) \rho_{2 \epsilon}(x)=0, \quad b<x<c
\end{array}\right.
$$

where $\zeta(x)=(x-a) / \epsilon$.
From $\left(B C_{\epsilon}\right)$, we can derive

$$
\begin{equation*}
k=-U(a), \text { hence } \theta_{1}(\xi)=-U(a) e^{\alpha(a) \zeta} \tag{2.3}
\end{equation*}
$$

$$
\begin{gather*}
V(c)=0 \tag{0}\\
\left\{\begin{array}{l}
\rho_{1 \epsilon}(a)=0 \\
\rho_{2 \epsilon}(c)=0
\end{array}\right. \tag{BCR}
\end{gather*}
$$

By replacing (2.1) into $(T C)_{\epsilon}$, we can see that U and V satisfy the transmission conditions

$$
\left\{\begin{array}{l}
U(b)=V(b) \tag{0}\\
V^{\prime}(b)=0
\end{array}\right.
$$

and for the remainder terms we have

$$
\left\{\begin{array}{l}
\rho_{1 \epsilon}(b)=\rho_{2 \epsilon}(b)+U(a) e^{\alpha(a) \theta_{1}(\zeta(b))} \tag{TCR}\\
\epsilon \rho_{1 \epsilon}^{\prime}(b)=-\epsilon U^{\prime}(b)+U(a) \alpha(a) e^{\alpha(a) \theta_{1}(\zeta(b))}+\left(\mu \rho_{2 \epsilon}^{\prime}\right)(b)
\end{array}\right.
$$

Summarizing, the reduced problem, P_{0}, is $\left(E_{0}\right)-\left(B C_{0}\right)-\left(T C_{0}\right)$, while the problem satisfied by the remainder terms is $(E R)-(B C R)-(T C R)$. As we shall see later on, the last problem is satisfied by $\left(\rho_{1 \epsilon}, \rho_{2 \epsilon}\right)$ in a generalized sense.

3. Existence and regularity for the problems $\left(P_{\epsilon}\right)$ and P_{0}.

For the problem $\left(P_{\epsilon}\right)$ we have the following result, whose proof is essentially known (see [1]):

Proposition 3.1. Assume that $\left(A_{1}\right)-\left(A_{4}\right)$ are satisfied. Then, the problem P_{ϵ} admits a unique solution $(u, v) \in H^{2}(a, b) \times H^{2}(b, c)$ satisfying $\left(E_{\epsilon}\right)$ a.e. in (a, b) and in (b, c), respectively, as well as $\left(B C_{\epsilon}\right)$ and $\left(T C_{\epsilon}\right)$.

In the following, we are going to investigate the reduced problem $\left(P_{0}\right)$. In fact, we can split it in two separate problems, with the unknowns U and V, respectively. Clearly, V is a solution of $\left(E_{0}\right)_{2}$, with the boundary conditions

$$
\begin{equation*}
V^{\prime}(b)=0, V(c)=0 \tag{3.1}
\end{equation*}
$$

By the Lax-Milgram lemma, there exists a unique solution $V \in H^{2}(b, c)$ of this problem. Obviously, Eq. $\left(E_{0}\right)_{1}$, with $U(b)=V(b)$, has a unique solution $U \in H^{1}(a, b)$. Therefore, we have the following result

Proposition 3.2. Assume that $\left(A_{1}\right)-\left(A_{4}\right)$ are satisfied. Then, the problem P_{0} has a unique solution $U \in H^{1}(a, b), V \in H^{2}(a, c)$, which satisfies $\left(E_{0}\right)$ a.e. in (a, b) and (b, c), respectively, as well as $\left(B C_{0}\right)$ and $\left(T C_{0}\right)$.

If we denote

$$
\begin{equation*}
\tilde{\rho}_{1 \epsilon}(x):=\rho_{1 \epsilon}(x)+A_{\epsilon} x+B_{\epsilon}, A_{\epsilon}:=(b-a) \chi_{\epsilon}, B_{\epsilon}:=-a A_{\epsilon} \tag{3.2}
\end{equation*}
$$

where $\chi_{\epsilon}=-U(a) e^{\alpha(a) \theta_{1}(\zeta(b)}$ then we have $\tilde{\rho}_{1 \epsilon}(a)=0, \tilde{\rho}_{1 \epsilon}(b)=\rho_{2 \epsilon}(b)$ and taking into account $\left(P_{\epsilon}\right),\left(P_{0}\right)$, we can see that

$$
\rho_{\epsilon}:= \begin{cases}\tilde{\rho}_{1 \epsilon} & \text { in }[a, b] \\ \rho_{2 \epsilon} & \text { in }(b, c]\end{cases}
$$

satisfies $\rho_{\epsilon} \in H_{0}^{1}(a, c)$ and

$$
\begin{gather*}
\epsilon \int_{a}^{b} \tilde{\rho}_{1 \epsilon}^{\prime} \varphi^{\prime} d x+\int_{b}^{c} \mu \rho_{2 \epsilon}^{\prime} \varphi^{\prime} d x+\int_{a}^{b} \alpha \tilde{\rho}_{1 \epsilon}^{\prime} \varphi d x+\int_{b}^{c} \alpha \rho_{2 \epsilon}^{\prime} \varphi d x \\
=-\epsilon \int_{a}^{b} U^{\prime} \varphi^{\prime} d x-\int_{a}^{c} h_{\epsilon} \varphi d x+\epsilon A_{\epsilon} \varphi(b)+\alpha(a) \varphi(b) \chi_{\epsilon}, \quad \forall \varphi \in H_{0}^{1}(a, c), \tag{3.3}
\end{gather*}
$$

where

$$
h_{\epsilon}(x):=\left\{\begin{array}{l}
\beta(x) \theta_{1}\left((\zeta(x))+\alpha(a)(\alpha(x)-\alpha(a)) \theta_{1}(\zeta(x))+\right. \\
+\left[A_{\epsilon} \alpha(x)+\beta(x)\left(A_{\epsilon} x+B_{\epsilon}\right)\right], \quad \text { in }(a, b) \\
0, \quad \text { in }(b, c)
\end{array}\right.
$$

Indeed, by $\left(E_{\epsilon}\right)$ and $\left(E_{0}\right)$, we obtain

$$
\begin{gathered}
\int_{a}^{b} \epsilon u^{\prime} \varphi^{\prime} d x+\int_{a}^{b} \alpha u^{\prime} \varphi d x+\int_{a}^{b} \beta u \varphi d x+\int_{b}^{c}\left(\mu v^{\prime}\right) \varphi^{\prime} d x+ \\
+\int_{b}^{c} \alpha v^{\prime} \varphi d x+\int_{b}^{c} \beta v \varphi d x=\int_{a}^{b} f \varphi d x+\int_{b}^{c} g \varphi d x, \forall \varphi \in H_{0}^{1}(a, c) \\
\int_{a}^{b} \alpha U^{\prime} \varphi d x+\int_{a}^{b} \beta U \varphi d x=\int_{a}^{b} f \varphi d x \\
\int_{b}^{c}\left(\mu V^{\prime}\right) \varphi^{\prime} d x+\int_{b}^{c} \alpha V^{\prime} \varphi d x+\int_{b}^{c} \beta V \varphi d x-\left.\mu V^{\prime} \varphi\right|_{b} ^{c}=\int_{b}^{c} \varphi g d x, \forall \varphi \in H_{0}^{1}(a, c) .
\end{gathered}
$$

Now, subtracting the last two equalities from the first one, we obtain that

$$
\int_{a}^{b} \epsilon\left(U^{\prime}+\frac{d}{d x} \theta_{1}(\zeta(x))+\varrho_{1 \epsilon}^{\prime}\right) \varphi^{\prime} d x+\int_{a}^{b} \alpha\left(\frac{d}{d x} \theta_{1}(\zeta(x))+\rho_{1 \epsilon}^{\prime}\right) \varphi d x+
$$

$$
\begin{gathered}
+\int_{a}^{b} \beta\left(\theta_{1}(\zeta(x))+\rho_{1 \epsilon}\right) \varphi d x+ \\
+\int_{b}^{c}\left(\mu \rho_{2 \epsilon}^{\prime}\right) \varphi^{\prime} d x+\int_{b}^{c} \alpha \rho_{2 \epsilon}^{\prime} \varphi d x+\int_{b}^{c} \beta \rho_{2 \epsilon} \varphi d x-\left(\mu V^{\prime}\right)(b) \varphi(b)=0
\end{gathered}
$$

From

$$
\begin{gathered}
\epsilon \int_{a}^{b} \varphi^{\prime} \frac{d}{d x} \theta_{1}(\zeta(x)) d x=\left.\epsilon \varphi(x) \frac{d}{d x} \theta_{1}(\zeta(x))\right|_{a} ^{b}-\epsilon \int_{a}^{b} \varphi \frac{d^{2}}{d x^{2}} \theta_{1}(\zeta) d x= \\
=\varphi(b) \chi_{\epsilon} \alpha(a)-\epsilon^{-1} \alpha(a)^{2} \int_{a}^{b} \varphi \theta_{1}(\zeta(x)) d x
\end{gathered}
$$

we can see that,

$$
\begin{aligned}
& \int_{a}^{b} \epsilon\left(\tilde{\rho}_{1 \epsilon}^{\prime}-A_{\epsilon} \varphi^{\prime}\right) d x+\int_{a}^{b} \alpha\left(\tilde{\rho}_{1 \epsilon}^{\prime}-A_{\epsilon}-\epsilon^{-1} \alpha(a) \theta_{1}(\zeta)\right) \varphi d x+ \\
& \left.\quad+\int_{a}^{b} \beta\left(\theta_{1}(\xi)+\tilde{\rho}_{1 \epsilon}-A_{\epsilon} x-B_{\epsilon}\right)\right) \varphi d x+ \\
& +\int_{b}^{c} \mu \rho_{2 \epsilon}^{\prime} \varphi^{\prime} d x+\int_{b}^{c} \alpha \rho_{2 \epsilon}^{\prime} \varphi d x+\int_{b}^{c} \beta \rho_{2 \epsilon} \varphi d x- \\
& -\epsilon^{-1} \alpha(a)^{2} \int_{a}^{b} \varphi \theta_{1}(\zeta) d x=-\epsilon \int_{a}^{b} U^{\prime} \varphi^{\prime} d x+\alpha(a) \varphi(b) \chi_{\epsilon}
\end{aligned}
$$

In conclusion, we obtain (3.3).
An elementary computation shows that, if $\rho_{1 \epsilon}, \rho_{2 \epsilon}$ are smooth functions, then they satisfy problem $(E R)-(B C R)-(T C R)$ in a classical sense.

4. Estimates for the remainder terms

The main result of this section is
Theorem 4.1. Assume that $\left(A_{1}\right)-\left(A_{4}\right)$ are satisfied and α is Lipschitzian in $[a, b]$ (i.e., $\exists L>0$, such that $|\alpha(x)-\alpha(y)| \leq L|x-y|, \forall x, y \in[a, b])$. Then, for every $\epsilon>0$, the problem $\left(P_{\epsilon}\right)$ has a unique solution $(u, v) \in H^{2}(a, b) \times H^{2}(b, c)$ of the form (2.1), where $\operatorname{col}(U, V) \in H^{1}(a, b) \times H^{2}(b, c)$ is the solution of $\left(P_{0}\right), \theta_{1}$ is given by $(2.3), \theta_{2}=0$ and $\left(\rho_{1 \epsilon}, \rho_{2 \epsilon}\right) \in H^{1}(a, b) \times H^{2}(b, c)$.

In addition, we have the estimates $\left\|\rho_{1 \epsilon}\right\|_{C[a, b]}=O(\sqrt{\epsilon}),\left\|\rho_{2 \epsilon}\right\|_{C[b, c]}=O(\sqrt{\epsilon})$.

Proof. By Propositions 3.1 and $3.2,\left(\rho_{1 \epsilon}, \rho_{2 \epsilon}\right) \in H^{1}(a, b) \times H^{2}(b, c)$. For the sake of simplicity, we assume that $\beta-\alpha^{\prime} / 2 \geq \gamma_{0}>0$ a.e. in (a, c). If we choose in (3.3) $\varphi=\rho_{\epsilon} \in H_{0}^{1}(a, c)$,, we can see that

$$
\begin{align*}
& \epsilon \int_{a}^{b}\left(\tilde{\rho}_{1 \epsilon}^{\prime}\right)^{2} d x+\int_{b}^{c} \mu\left(\rho_{2 \epsilon}^{\prime}\right)^{2} d x+\int_{a}^{b}\left(\beta-\alpha^{\prime} / 2\right) \tilde{\rho}_{1 \epsilon}^{2} d x+ \\
&+ \int_{b}^{c}\left(\beta-\alpha^{\prime} / 2\right) \rho_{2 \epsilon}^{2} d x=-\epsilon \int_{a}^{b} U^{\prime} \tilde{\rho}_{1 \epsilon}^{\prime} d x-\int_{a}^{b} h_{\epsilon} \tilde{\rho}_{1 \epsilon} d x+\gamma_{\epsilon} \tag{4.1}
\end{align*}
$$

where $\gamma_{\epsilon}=\alpha(a) \varphi(b) \tilde{\rho}_{1 \epsilon}(b)+\epsilon A_{\epsilon} \tilde{\rho}_{1 \epsilon}(b)$. In the case $\beta-\alpha^{\prime} / 2 \geq 0$ a.e. in (a, c), we choose in (3.3)

$$
\varphi(x):=\left\{\begin{array}{lc}
e^{-x} \tilde{r}_{1 \epsilon}(x) & \text { in }[a, b] \\
e^{-b} r_{2 \epsilon}(x) & \text { in }(b, c]
\end{array}\right.
$$

and we can use a slight modification of our reasoning below. Denote by $\|\cdot\|_{1}$, $\|\cdot\|_{2}$ the norms of $L^{2}(a, b), L^{2}(b, c)$, respectively. As $\beta-\alpha^{\prime} / 2 \geq \gamma_{0}>0$ a.e. in (a, c) and $\mu \geq \mu_{0}>0$ in $[b, c]$, it follows from (4.1) that

$$
\begin{gather*}
\epsilon\left\|\tilde{\rho}_{1 \epsilon}{ }^{\prime}\right\|_{1}^{2}+\mu_{0}\left\|\rho_{2 \epsilon}^{\prime}\right\|_{2}^{2}+\gamma_{0}\left(\left\|\tilde{\rho}_{1 \epsilon}\right\|_{1}^{2}+\left\|\rho_{2 \epsilon}\right\|_{2}^{2}\right) \leq \\
\leq(1 / 2)\left[\epsilon\left\|U^{\prime}\right\|_{1}^{2}+\epsilon\left\|\tilde{\rho}_{1 \epsilon}^{\prime}\right\|_{1}^{2}+\gamma_{0}^{-1}\left\|h_{\epsilon}\right\|_{1}^{2}+\gamma_{0}\left\|\tilde{\rho}_{1 \epsilon}\right\|_{1}^{2}\right]+\left|\gamma_{\epsilon}\right| . \tag{4.2}
\end{gather*}
$$

In the following, we can show that $\left\|h_{\epsilon}\right\|_{1}=O(\sqrt{\epsilon})$ and $\gamma(\epsilon)=O\left(\epsilon^{k}\right), \forall k \geq 0$. From equations $\left(E_{\epsilon}\right)$, we obtain

$$
\begin{gather*}
\epsilon\left\|u^{\prime}\right\|_{1}^{2}+\mu_{0}\left\|v^{\prime}\right\|_{2}^{2}+\gamma_{0}\left(\|u\|_{1}^{2}+\|v\|_{2}^{2}\right) \leq \\
\leq(1 / 2)\left[\gamma_{0}^{-1}\left(\|f\|_{1}^{2}+\|g\|_{2}^{2}\right)+\gamma_{0}\left(\|u\|_{1}^{2}+\|v\|_{2}^{2}\right)\right] \tag{4.3}
\end{gather*}
$$

This implies that $\|u\|_{1}=O(1),\|v\|_{2}=O(1)$ and $\left\|v^{\prime}\right\|_{2}==O(1), \epsilon\left\|u^{\prime}\right\|_{2}^{2}=O(1)$. Since $v(c)=0$ and $H^{1}(b, c) \subset C[b, c]$, with a compact injection, we get $\|v\|_{C[b, c]}=O(1)$. For γ_{ϵ}, we have

$$
\lim _{\epsilon \rightarrow 0} \epsilon^{-k} \gamma_{\epsilon}=0, \text { for every } k \geq 0
$$

and therefore $\gamma_{\epsilon}=O\left(\epsilon^{k}\right)$. Now, as $\beta \in L^{\infty}(a, c),\left|A_{\epsilon}\right|,\left|B_{\epsilon}\right|=O\left(\epsilon^{k}\right), k \geq 1, \alpha$ is Lipschitzian in $[a, b]$, one gets by an easy computation that $\left\|h_{\epsilon}\right\|_{1}^{2}=O(\epsilon)$.

Now, from (4.2), it follows

$$
\left\|\tilde{\rho}_{1 \epsilon}^{\prime}\right\|_{1}=O(1), \quad\left\|\tilde{\rho}_{1 \epsilon}\right\|_{1}=O(\sqrt{\epsilon}), \quad\left\|\rho_{2 \epsilon}^{\prime}\right\|_{2}=O(\sqrt{\epsilon}), \quad\left\|\rho_{2 \epsilon}\right\|_{2}=O(\sqrt{\epsilon})
$$

therefore

$$
\begin{equation*}
\left\|\rho_{1 \epsilon}\right\|_{1} \leq\left\|\tilde{\rho}_{1 \epsilon}\right\|_{1}+\left\|\left(A_{\epsilon} x+B_{\epsilon}\right) \omega(\epsilon)\right\|_{1}=O(\sqrt{\epsilon}) \tag{4.4}
\end{equation*}
$$

From

$$
\rho_{2 \epsilon}^{2}(x)=(-1 / 2) \int_{x}^{c} \rho_{2 \epsilon}^{\prime}(s) \rho_{2 \epsilon}(s) d s \leq 2\left\|\rho_{2 \epsilon}\right\|_{2} \quad\left\|\rho_{2 \epsilon}\right\|_{2}
$$

one gets

$$
\begin{equation*}
\left\|\rho_{2 \epsilon}\right\|_{C[b, c]}=O(\sqrt{\epsilon}) \tag{4.5}
\end{equation*}
$$

In that which follows, we shall prove that $\left\|\rho_{1 \epsilon}\right\|_{C[b, c]}=O(\sqrt{\epsilon})$. To do that, we integrate $\left(E_{\epsilon}\right)_{1}$ on $[y, b], y \in[a, b]$:

$$
\begin{equation*}
\epsilon\left(u^{\prime}(y)-u^{\prime}(b)\right)+\int_{y}^{b} \alpha(s) u^{\prime}(s) d s+\int_{y}^{b} \beta(s) u(s) d s=\int_{y}^{b} f(s) d s \tag{4.6}
\end{equation*}
$$

By replacing

$$
u(x)=U(x)+\theta_{1}(\zeta(x))+\rho_{1 \epsilon}(x)
$$

in (4.6), one obtains

$$
\begin{gather*}
\epsilon \rho_{1 \epsilon}^{\prime}(y)+\int_{y}^{b} \alpha(s) \rho_{1 \epsilon}^{\prime}(s) d s+\int_{y}^{b} \beta(s) \rho_{1 \epsilon}(s) d s= \\
=\epsilon\left[U^{\prime}(y)+\frac{d}{d y} \theta_{1}(\zeta(y))\right]- \\
-\int_{y}^{b}\left[\alpha(s)\left(\frac{d}{d s} \theta_{1}(\zeta(s))\right)+\beta(s)\left(\theta_{1}(\zeta(s))\right)\right] d s+\epsilon u^{\prime}(b) \text { a.e. in }(a, x) \tag{4.7}
\end{gather*}
$$

Now we multiply the above inequality by $\rho_{1 \epsilon}^{\prime}(y)$ and then integrate on $[a, x]$.

Finally, we obtain that

$$
\begin{equation*}
(\alpha(x) / 2) \rho_{1 \epsilon}^{2}(x)+\tilde{b}(x) \rho_{1 \epsilon}(x)+\tilde{c}(x)=0 \tag{4.8}
\end{equation*}
$$

where

$$
\begin{aligned}
& \tilde{b}(x):=-\int_{x}^{b}\left(\alpha^{\prime}(y)-\beta(y)\right)\left(\rho_{1 \epsilon}(y) d y-\epsilon u^{\prime}(b)-\alpha(b) \theta_{1}\left(\zeta(b)+\theta_{1}(\zeta(y)),\right.\right. \\
& \tilde{c}(x):=-\int_{a}^{x}\left(\alpha^{\prime} / 2-\beta\right)(y) \tilde{\rho}_{1 \epsilon}^{2}(y) d y- \\
&-\int_{a}^{x} \rho_{1 \epsilon}^{\prime}(y)\left[\epsilon U^{\prime}(y)-(\alpha(y)-\alpha(a)) \theta_{1}(\zeta(y))\right] d y- \\
&- \int_{a}^{x}\left[\left(\beta(y)-\alpha^{\prime}(y)\right) \theta_{1}(\zeta(y)) \rho_{1 \epsilon}(y) d y-\epsilon \int_{a}^{x}\left(\rho_{1 \epsilon}^{\prime}\right)^{2}(y) d y .\right.
\end{aligned}
$$

By (4.4), one obtains that $\tilde{c}(x)=O(\epsilon)$. Integrating (4.6) on $[a, b]$, one obtains $\epsilon u^{\prime}(b)=O(\sqrt{\epsilon})$, hence $\tilde{b}(x)=O(\sqrt{\epsilon})$.

Finally, from

$$
\begin{gathered}
(1 / 2) \alpha(x) \rho_{1 \epsilon}^{2}(x)+O(\sqrt{\epsilon}) \rho_{1 \epsilon}(x)+O(\epsilon)=0 \text { a.e. in }(a, b), \\
\alpha(x) / 2 \leq \alpha_{0} / 2,<0 \text { in }[a, b]
\end{gathered}
$$

we can deduce that $\left|\rho_{1 \epsilon}(x)\right| \leq C \sqrt{\epsilon}, x \in[a, b]$, so we have $\left\|r_{1 \epsilon}\right\|_{C[a, b]}=$ $O(\sqrt{\epsilon})$.

References

[1] L. Barbu and Gh. Morosanu, On a class of singularly perturbed, coupled boundary value problems, Math. Sci. Res. Hot-Line 4(6) (2000), 25-37.
[2] L. Barbu and Gh. Moroşanu, Asymptotic Analysis of Some Boundary Value Problems with Singular Perturbations,Editura Academiei, Bucharest, 2000 (in Romanian).
[3] C.A. Coclici, Gh. Moroşanu and W.L. Wendland, On the viscous-viscous and the viscous-inviscid interactions in Computational Fluid Dynamics, Comput. Visualization Sci. 2 (1999), 95-105.
[4] C.A. Coclici, Gh. Moroşanu and W.L. Wendland, One-dimensional singularly perturbed coupled boundary value problems, Math. Sci. Res. Hot-Line 3(10) (1999), 1-21.
[5] C.A. Coclici, Gh. Moroşanu and W.L. Wendland, The coupling of hyperbolic and elliptic boundary value problems with variable coefficients, Math. Meth. Appl. Sci. 23 (2000), 401-440.
[6] F. Gastaldi and A. Quarteroni, On the coupling of hyperbolic and parabolic systems: analytical and numerical approach, Appl. Numer. Math. 6 (1990), 3-31.
[7] A.B. Vasilieva, V.F. Butuzov and I.V. Kalashev, The Boundary Function Method for Singular Perturbation Problems, SIAM, Philadelphia, 1995.
"Ovidius" University of Constantza,
Faculty of Mathematics and Informatics,
Mamaia Bd., 124,
8700 Constantza,
Romania

[^0]: Key Words: Coupled boundary value problem, transmission conditions, singularly perturbed, asymptotic expansion.

 Mathematical Reviews subject classification: 34B05, 34E15.

