

An. Şt. Univ. Ovidius Constanța

Vol. 11(1), 2003, 9-18

ON A SINGULARLY PERTURBED, COUPLED ELLIPTIC-ELLIPTIC PROBLEM

Luminița Barbu and Emil Cosma

To Professor Silviu Sburlan, at his 60' anniversary

Abstract

The behavior of the solution of the below problem (E_{ϵ}) , (BC_{ϵ}) , (TC_{ϵ}) is studied when the small parameter ϵ tends to 0.

1. Introduction.

We consider the following coupled boundary value problem of elliptic-elliptic type, denoted by P_{ϵ} :

$$\begin{cases} -\epsilon u''(x) + \alpha(x)u'(x) + \beta(x)u(x) = f(x), \ x \in (a,b), \\ - (\mu(x)v'(x))' + \alpha(x)v'(x) + \beta(x)v(x) = g(x), \ x \in (b,c), \end{cases}$$
(E_{\epsilon})

with homogeneous Dirichlet boundary conditions

$$u(a) = v(c) = 0 \tag{BC_{\epsilon}}$$

and transmission conditions at x = b

$$u(b) = v(b), \quad \epsilon u'(b) = (\mu v')(b). \tag{TC}_{\epsilon}$$

The transmission conditions at x = b express the continuity of the solution and of the flux.

The following assumptions will be required in the following:

 (A_1) a, b, $c \in \mathbb{R}$, a < b < c, $\epsilon > 0$ is a small parameter;

Key Words: Coupled boundary value problem, transmission conditions, singularly perturbed, asymptotic expansion.

Mathematical Reviews subject classification: 34B05, 34E15.

 $\begin{aligned} (A_2) \ \alpha \in H^1(a,c), \ \beta \in L^{\infty}(a,c), \ \mu \in H^1(a,c); \\ (A_3) \ \alpha(x) \leq \alpha_0 < 0 \ \text{in} \ [a,c], \ \mu(x) \geq \mu_0 > 0 \ \text{in} \ [b,c], \ \beta - \frac{\alpha'}{2} \geq 0 \ \text{a.e. in} \ (a,c); \\ (A_4)f \in L^2(a,b), g \in L^2(b,c). \end{aligned}$

The aim of this paper is to investigate the problem P_{ϵ} for ϵ going to zero from the view point of singular perturbation theory. This is a singularly perturbed problem with respect to the norm of uniform convergence and the boundary layer is the point x = a. To have an idea about this matter, let us consider the particular case when α, β, μ are constant functions. If the solution (u, v) of (P_{ϵ}) converges in $C[a, b] \times C[b, c]$ to (U, V), then it can easily be seen that (U, V) satisfies

$$\begin{cases} \alpha U' + \beta U = f, & \text{in } (a, b), \\ -\mu V'' + \alpha V' + \beta V = g, & \text{in } (b, c) \\ U(a) = 0, U(b) = V(b), \\ V'(b) = 0, V(c) = 0. \end{cases}$$

The condition U(a) = 0 is not satisfied in general (this exceeds the number of conditions allowed). This fact is not acceptable from a physical point of view. Actually we shall see that indeed, in the point x = a, the solution (u, v)has a singular behaviour as ϵ goes to zero. The corresponding unperturbed (reduced) problem, denoted by P_0 , is the following [6]:

$$\begin{cases} \alpha(x)U'(x) + \beta(x)U(x) = f(x), & x \in (a,b) \\ -(\mu(x)V'(x))' + \alpha(x)V'(x) + \beta(x)V(x) = g(x), & x \in (b,c), \end{cases}$$
(E₀)

$$V(c) = 0, \qquad (BC_0)$$

$$\begin{cases} U(b) = V(b), \\ V'(b) = 0. \end{cases} (TC_0)$$

This problem will be reobtained below by using the Vishik-Lusternik method and it is the same as that derived in [6] by using a different way.

In [1], [2] we studied a similar transmission of type elliptic-elliptic but we considered that $\alpha \geq \alpha_0 > 0$. Here we are assuming $\alpha < 0$, hence the asymptotic behavior is different from the case $\alpha > 0$: actually we cannot have a convergence of u(a) to U(a), in general. A comment is needed about the conditions $(TC_0), (BC_0)$. Note that the problem P_0 has no conditions at all for x = a and needs two conditions at b, in this case, when $\alpha < 0$. In Section 2 we shall derive a formal zero-th order asymptotic expansion for the solution (u, v) of the problem (P_{ϵ}) . The interface point x = a is a boundary layer and the expansion of u contains a corresponding corrector (boundary layer function).

In Section 3 we shall investigate the existence and uniqueness of the solutions to the problems (P_{ϵ}) and P_0 .

Finally, Section 4 is devoted to obtaining some estimates for the remainder terms of the expansion established in Section 2 with respect to the uniform convergence topology.

2. A formal asymptotic expansion for the solution of P_{ϵ}

The classical perturbation theory (see [7] for details) can be adapted to our specific singular perturbation problem. Following this theory, we are going to derive formally an expansion of the solution (u, v) of (P_{ϵ}) of the form:

$$\begin{cases} u(x) = U(x) + \theta_1(\zeta) + \rho_{1\epsilon}(x), & x \in [a, b], \\ v(x) = V(x) + \theta_2(\zeta) + \rho_{2\epsilon}(x), & x \in [b, c], \end{cases}$$
(2.1)

where $\zeta := \epsilon^{-1}(x-a)$ is the fast variable; (U, V) is the zero-th order term of the regular series; θ_1 , θ_2 are boundary layer functions (correctors); $\rho_{1\epsilon}$, $\rho_{2\epsilon}$ denote the remainder terms of zero-th order.

We substitute formally in (E_{ϵ}) (u, v) given by (2.1) and then we identify the coefficients of ϵ^k (k = -1, 0), separately those depending on x from those depending on ζ . So, we get

$$\begin{cases} \alpha(x)U'(x) + \beta(x)U(x) = f(x), & a < x < b, \\ -(\mu(x)V'(x))' + \alpha(x)V'(x) + \beta(x)V(x) = g(x), & b < x < c. \end{cases}$$
(E₀)

For $\theta_1 = \theta_1(\zeta)$ we derive the equation

$$\theta_1''(\zeta) - \alpha(a)\theta_1'(\zeta) = 0. \tag{2.2}$$

Eq. (2.2) and the fact that θ_1 is a boundary layer function (in particular, $\theta_1(\zeta) \longrightarrow 0$, as $\zeta \longrightarrow \infty$) implies that $\theta_1(\zeta) = ke^{\alpha(a)\zeta}$, where k is a constant which will be determined from (BC_{ϵ}) . Also, we can deduce that $\theta_2 = 0$.

For the remainder terms we have the equations

$$\begin{cases} -\varepsilon \ \rho_{1\epsilon}^{\prime\prime}(x) + \alpha(x)\rho_{1\epsilon}^{\prime}(x) + \beta(x)\rho_{1\epsilon}(x) = \\ = \epsilon U^{\prime\prime}(x) + \epsilon^{-1} (\alpha(x) - \alpha(a))\theta_1^{\prime}(\zeta(x)) - \beta(x)\theta_1(\zeta(x)), \quad a < x < b, \\ -((\mu\rho_{2\epsilon}^{\prime})(x))^{\prime} + \alpha(x)\rho_{2\epsilon}^{\prime}(x) + \beta(x)\rho_{2\epsilon}(x) = 0, \quad b < x < c, \end{cases}$$

$$(ER)$$

where $\zeta(x) = (x - a)/\epsilon$.

From (BC_{ϵ}) , we can derive

$$k = -U(a)$$
, hence $\theta_1(\xi) = -U(a)e^{\alpha(a)\zeta}$ (2.3)

$$V(c) = 0, (BC_0)$$

$$\begin{cases} \rho_{1\epsilon}(a) = 0, \\ \rho_{2\epsilon}(c) = 0. \end{cases}$$
(BCR)

By replacing (2.1) into $(TC)_{\epsilon}$, we can see that U and V satisfy the transmission conditions

$$\begin{cases} U(b) = V(b), \\ V'(b) = 0, \end{cases} (TC_0)$$

and for the remainder terms we have

$$\begin{cases}
\rho_{1\epsilon}(b) = \rho_{2\epsilon}(b) + U(a)e^{\alpha(a)\theta_1(\zeta(b))}, \\
\epsilon \rho'_{1\epsilon}(b) = -\epsilon U'(b) + U(a)\alpha(a)e^{\alpha(a)\theta_1(\zeta(b))} + (\mu \rho'_{2\epsilon})(b).
\end{cases}$$
(TCR)

Summarizing, the reduced problem, P_0 , is $(E_0) - (BC_0) - (TC_0)$, while the problem satisfied by the remainder terms is (ER) - (BCR) - (TCR). As we shall see later on, the last problem is satisfied by $(\rho_{1\epsilon}, \rho_{2\epsilon})$ in a generalized sense.

3. Existence and regularity for the problems (P_{ϵ}) and P_{0} .

For the problem (P_{ϵ}) we have the following result, whose proof is essentially known (see [1]):

Proposition 3.1. Assume that $(A_1)-(A_4)$ are satisfied. Then, the problem P_{ϵ} admits a unique solution $(u, v) \in H^2(a, b) \times H^2(b, c)$ satisfying (E_{ϵ}) a.e. in (a, b) and in (b, c), respectively, as well as (BC_{ϵ}) and (TC_{ϵ}) .

In the following, we are going to investigate the reduced problem (P_0) . In fact, we can split it in two separate problems, with the unknowns U and V, respectively. Clearly, V is a solution of $(E_0)_2$, with the boundary conditions

$$V'(b) = 0, V(c) = 0.$$
(3.1)

By the Lax-Milgram lemma, there exists a unique solution $V \in H^2(b,c)$ of this problem. Obviously, Eq. $(E_0)_1$, with U(b) = V(b), has a unique solution $U \in H^1(a, b)$. Therefore, we have the following result **Proposition 3.2.** Assume that $(A_1) - (A_4)$ are satisfied. Then, the problem P_0 has a unique solution $U \in H^1(a, b), V \in H^2(a, c)$, which satisfies (E_0) a.e. in (a, b) and (b, c), respectively, as well as (BC_0) and (TC_0) .

If we denote

$$\tilde{\rho}_{1\epsilon}(x) := \rho_{1\epsilon}(x) + A_{\epsilon}x + B_{\epsilon}, \ A_{\epsilon} := (b-a)\chi_{\epsilon}, \ B_{\epsilon} := -aA_{\epsilon}, \tag{3.2}$$

where $\chi_{\epsilon} = -U(a)e^{\alpha(a)\theta_1(\zeta(b)}$ then we have $\tilde{\rho}_{1\epsilon}(a)=0$, $\tilde{\rho}_{1\epsilon}(b) = \rho_{2\epsilon}(b)$ and taking into account $(P_{\epsilon}), (P_0)$, we can see that

$$\rho_{\epsilon} := \begin{cases} \tilde{\rho}_{1\epsilon} & \text{in } [a, b] \\ \rho_{2\epsilon} & \text{in } (b, c] \end{cases},$$

satisfies $\rho_{\epsilon} \in H_0^1(a, c)$ and

$$\epsilon \int_{a}^{b} \tilde{\rho}_{1\epsilon}' \varphi' dx + \int_{b}^{c} \mu \rho_{2\epsilon}' \varphi' dx + \int_{a}^{b} \alpha \tilde{\rho}_{1\epsilon}' \varphi dx + \int_{b}^{c} \alpha \rho_{2\epsilon}' \varphi dx$$
$$= -\epsilon \int_{a}^{b} U' \varphi' dx - \int_{a}^{c} h_{\epsilon} \varphi dx + \epsilon A_{\epsilon} \varphi(b) + \alpha(a) \varphi(b) \chi_{\epsilon}, \quad \forall \ \varphi \in H_{0}^{1}(a,c), \quad (3.3)$$
where

where

$$h_{\epsilon}(x) := \begin{cases} \beta(x)\theta_1((\zeta(x)) + \alpha(a)(\alpha(x) - \alpha(a))\theta_1(\zeta(x)) + \\ + \left[A_{\epsilon}\alpha(x) + \beta(x)(A_{\epsilon}x + B_{\epsilon})\right], & \text{in } (a,b), \\ 0, & \text{in } (b,c). \end{cases}$$

Indeed, by (E_{ϵ}) and (E_0) , we obtain

$$\begin{split} \int_{a}^{b} \epsilon u' \varphi' dx + \int_{a}^{b} \alpha u' \varphi dx + \int_{a}^{b} \beta u \varphi dx + \int_{b}^{c} (\mu v') \varphi' dx + \\ &+ \int_{b}^{c} \alpha v' \varphi dx + \int_{b}^{c} \beta v \varphi dx = \int_{a}^{b} f \varphi dx + \int_{b}^{c} g \varphi dx, \; \forall \; \varphi \in H_{0}^{1}(a,c), \\ &\int_{a}^{b} \alpha U' \varphi dx + \int_{a}^{b} \beta U \varphi dx = \int_{a}^{b} f \varphi dx, \\ &\int_{b}^{c} (\mu V') \varphi' dx + \int_{b}^{c} \alpha V' \varphi dx + \int_{b}^{c} \beta V \varphi dx - \mu V' \varphi|_{b}^{c} = \int_{b}^{c} \varphi g dx, \; \forall \; \varphi \in H_{0}^{1}(a,c). \end{split}$$
Now, subtracting the last two equalities from the first one, we obtain that

Now, subtracting the last two equalities from the first one, we obtain that

$$\int_{a}^{b} \epsilon \Big(U' + \frac{d}{dx} \theta_{1}(\zeta(x)) + \varrho_{1\epsilon}' \Big) \varphi' dx + \int_{a}^{b} \alpha \Big(\frac{d}{dx} \theta_{1}(\zeta(x)) + \rho_{1\epsilon}' \Big) \varphi dx + \int_{a}^{b} \varphi dx + \int_{a}$$

.

$$+ \int_{a}^{b} \beta \Big(\theta_{1}(\zeta(x)) + \rho_{1\epsilon} \Big) \varphi dx + \\ + \int_{b}^{c} (\mu \rho_{2\epsilon}') \varphi' dx + \int_{b}^{c} \alpha \rho_{2\epsilon}' \varphi dx + \int_{b}^{c} \beta \rho_{2\epsilon} \varphi dx - (\mu V')(b) \varphi(b) = 0.$$

From

$$\epsilon \int_{a}^{b} \varphi' \frac{d}{dx} \theta_{1}(\zeta(x)) dx = \epsilon \varphi(x) \frac{d}{dx} \theta_{1}(\zeta(x)) |_{a}^{b} - \epsilon \int_{a}^{b} \varphi \frac{d^{2}}{dx^{2}} \theta_{1}(\zeta) dx =$$
$$= \varphi(b) \chi_{\epsilon} \alpha(a) - \epsilon^{-1} \alpha(a)^{2} \int_{a}^{b} \varphi \theta_{1}(\zeta(x)) dx,$$

we can see that,

$$\begin{split} \int_{a}^{b} \epsilon \Big(\tilde{\rho}_{1\epsilon}{}' - A_{\epsilon}\varphi' \Big) dx + \int_{a}^{b} \alpha \Big(\tilde{\rho}_{1\epsilon}{}' - A_{\epsilon} - \epsilon^{-1}\alpha(a)\theta_{1}(\zeta) \Big) \varphi dx + \\ &+ \int_{a}^{b} \beta \Big(\theta_{1}(\xi) + \tilde{\rho}_{1\epsilon} - A_{\epsilon}x - B_{\epsilon}) \Big) \varphi dx + \\ &+ \int_{b}^{c} \mu \rho'_{2\epsilon}\varphi' dx + \int_{b}^{c} \alpha \rho'_{2\epsilon}\varphi dx + \int_{b}^{c} \beta \rho_{2\epsilon}\varphi dx - \\ &- \epsilon^{-1}\alpha(a)^{2} \int_{a}^{b} \varphi \theta_{1}(\zeta) dx = -\epsilon \int_{a}^{b} U'\varphi' dx + \alpha(a)\varphi(b)\chi_{\epsilon}. \end{split}$$

In conclusion, we obtain (3.3).

An elementary computation shows that, if $\rho_{1\epsilon}$, $\rho_{2\epsilon}$ are smooth functions, then they satisfy problem (ER) - (BCR) - (TCR) in a classical sense.

4. Estimates for the remainder terms

The main result of this section is

Theorem 4.1. Assume that $(A_1)-(A_4)$ are satisfied and α is Lipschitzian in [a,b] (i.e., $\exists L>0$, such that $|\alpha(x)-\alpha(y)| \leq L|x-y|, \forall x, y \in [a,b]$). Then, for every $\epsilon>0$, the problem (P_{ϵ}) has a unique solution $(u,v) \in H^2(a,b) \times H^2(b,c)$ of the form (2.1), where $col(U,V) \in H^1(a,b) \times H^2(b,c)$ is the solution of (P_0) , θ_1 is given by (2.3), $\theta_2 = 0$ and $(\rho_{1\epsilon}, \rho_{2\epsilon}) \in H^1(a,b) \times H^2(b,c)$.

In addition, we have the estimates $\|\rho_{1\epsilon}\|_{C[a,b]} = O(\sqrt{\epsilon}), \|\rho_{2\epsilon}\|_{C[b,c]} = O(\sqrt{\epsilon}).$

Proof. By Propositions 3.1 and 3.2, $(\rho_{1\epsilon}, \rho_{2\epsilon}) \in H^1(a, b) \times H^2(b, c)$. For the sake of simplicity, we assume that $\beta - \alpha'/2 \geq \gamma_0 > 0$ a.e. in (a, c). If we choose in (3.3) $\varphi = \rho_{\epsilon} \in H_0^1(a, c)$, we can see that

$$\epsilon \int_{a}^{b} \left(\tilde{\rho}'_{1\epsilon}\right)^{2} dx + \int_{b}^{c} \mu \left(\rho'_{2\epsilon}\right)^{2} dx + \int_{a}^{b} \left(\beta - \alpha'/2\right) \left(\tilde{\rho}_{1\epsilon}\right)^{2} dx + \int_{b}^{c} \left(\beta - \alpha'/2\right) \rho_{2\epsilon}^{2} dx = -\epsilon \int_{a}^{b} U' \left(\tilde{\rho}_{1\epsilon}\right)^{\prime} dx - \int_{a}^{b} h_{\epsilon} \left(\tilde{\rho}_{1\epsilon}\right) dx + \gamma_{\epsilon}, \quad (4.1)$$

where $\gamma_{\epsilon} = \alpha(a)\varphi(b) \ \tilde{\rho}_{1\epsilon}(b) + \epsilon A_{\epsilon} \ \tilde{\rho}_{1\epsilon}(b)$. In the case $\beta - \alpha'/2 \ge 0$ a.e. in (a, c), we choose in (3.3)

$$\varphi(x) := \left\{ \begin{array}{ll} e^{-x} \ \tilde{r}_{1\epsilon}(x) & \quad \mbox{in } [a,b] \\ \\ e^{-b}r_{2\epsilon}(x) & \quad \mbox{in } (b,c] \end{array} \right.$$

and we can use a slight modification of our reasoning below. Denote by $\|\cdot\|_1$, $\|\cdot\|_2$ the norms of $L^2(a,b)$, $L^2(b,c)$, respectively. As $\beta - \alpha'/2 \ge \gamma_0 > 0$ a.e. in (a,c) and $\mu \ge \mu_0 > 0$ in [b,c], it follows from (4.1) that

$$\epsilon \| \tilde{\rho}_{1\epsilon}' \|_{1}^{2} + \mu_{0} \| \rho_{2\epsilon}' \|_{2}^{2} + \gamma_{0} \left(\| \tilde{\rho}_{1\epsilon} \|_{1}^{2} + \| \rho_{2\epsilon} \|_{2}^{2} \right) \leq$$

$$\leq (1/2) \left[\epsilon \| U' \|_{1}^{2} + \epsilon \| \tilde{\rho}_{1\epsilon}' \|_{1}^{2} + \gamma_{0}^{-1} \| h_{\epsilon} \|_{1}^{2} + \gamma_{0} \| \tilde{\rho}_{1\epsilon} \|_{1}^{2} \right] + |\gamma_{\epsilon}|.$$
(4.2)

In the following, we can show that $\|h_{\epsilon}\|_1 = O(\sqrt{\epsilon})$ and $\gamma(\epsilon) = O(\epsilon^k)$, $\forall k \ge 0$. From equations (E_{ϵ}) , we obtain

$$\epsilon \|u'\|_{1}^{2} + \mu_{0} \|v'\|_{2}^{2} + \gamma_{0} \left(\|u\|_{1}^{2} + \|v\|_{2}^{2}\right) \leq \\ \leq (1/2) \left[\gamma_{0}^{-1} \left(\|f\|_{1}^{2} + \|g\|_{2}^{2}\right) + \gamma_{0} \left(\|u\|_{1}^{2} + \|v\|_{2}^{2}\right)\right].$$
(4.3)

This implies that $||u||_1 = O(1)$, $||v||_2 = O(1)$ and $||v'||_2 = =O(1)$, $\epsilon ||u'||_2^2 = O(1)$. Since v(c)=0 and $H^1(b,c) \subset C[b,c]$, with a compact injection, we get $||v||_{C[b,c]} = O(1)$. For γ_{ϵ} , we have

$$\lim_{\epsilon \to 0} \epsilon^{-k} \gamma_{\epsilon} = 0, \text{ for every } k \ge 0,$$

and therefore $\gamma_{\epsilon} = O(\epsilon^k)$. Now, as $\beta \in L^{\infty}(a, c)$, $|A_{\epsilon}|, |B_{\epsilon}| = O(\epsilon^k), k \ge 1, \alpha$ is Lipschitzian in [a, b], one gets by an easy computation that $||h_{\epsilon}||_1^2 = O(\epsilon)$.

Now, from (4.2), it follows

$$\|\tilde{\rho}_{1\epsilon}'\|_1 = O(1), \quad \|\tilde{\rho}_{1\epsilon}\|_1 = O(\sqrt{\epsilon}), \quad \|\rho_{2\epsilon}'\|_2 = O(\sqrt{\epsilon}), \quad \|\rho_{2\epsilon}\|_2 = O(\sqrt{\epsilon}).$$

therefore

$$\|\rho_{1\epsilon}\|_{1} \leq \|\tilde{\rho}_{1\epsilon}\|_{1} + \|(A_{\epsilon}x + B_{\epsilon})\omega(\epsilon)\|_{1} = O(\sqrt{\epsilon}).$$

$$(4.4)$$

From

$$\rho_{2\epsilon}^2(x) = (-1/2) \int_x^c \rho_{2\epsilon}'(s) \rho_{2\epsilon}(s) ds \le 2 \|\rho_{2\epsilon}\|_2 \|\rho_{2\epsilon}\|_2,$$

one gets

$$\|\rho_{2\epsilon}\|_{C[b,c]} = O(\sqrt{\epsilon}). \tag{4.5}$$

In that which follows, we shall prove that $\|\rho_{1\epsilon}\|_{C[b,c]} = O(\sqrt{\epsilon})$. To do that, we integrate $(E_{\epsilon})_1$ on [y, b], $y \in [a, b]$:

$$\epsilon \left(u'(y) - u'(b) \right) + \int_y^b \alpha(s)u'(s)ds + \int_y^b \beta(s)u(s)ds = \int_y^b f(s)ds.$$
(4.6)

By replacing

$$u(x) = U(x) + \theta_1(\zeta(x)) + \rho_{1\epsilon}(x),$$

in (4.6), one obtains

$$\epsilon \ \rho_{1\epsilon}'(y) + \int_{y}^{b} \alpha(s)\rho_{1\epsilon}'(s)ds + \int_{y}^{b} \beta(s)\rho_{1\epsilon}(s)ds =$$
$$= \epsilon \Big[U'(y) + \frac{d}{dy}\theta_{1}(\zeta(y)) \Big] -$$
$$- \int_{y}^{b} \Big[\alpha(s)\Big(\frac{d}{ds}\theta_{1}(\zeta(s))\Big) + \beta(s)\Big(\theta_{1}(\zeta(s))\Big) \Big] ds + \epsilon u'(b) \text{a.e. in } (a,x). \quad (4.7)$$

Now we multiply the above inequality by $\rho'_{1\epsilon}(y)$ and then integrate on [a, x].

Finally, we obtain that

$$\left(\alpha(x)/2\right)\,\rho_{1\epsilon}^2(x) + \tilde{b}(x)\rho_{1\epsilon}(x) + \tilde{c}(x) = 0,\tag{4.8}$$

where

$$\begin{split} \tilde{b}(x) &:= -\int_x^b \left(\alpha'(y) - \beta(y) \right) (\rho_{1\epsilon}(y) dy - \epsilon u'(b) - \alpha(b) \theta_1(\zeta(b) + \theta_1(\zeta(y))), \\ \tilde{c}(x) &:= -\int_a^x \left(\alpha'/2 - \beta \right) (y) \tilde{\rho}_{1\epsilon}^2(y) dy - \\ &- \int_a^x \rho_{1\epsilon}'(y) \Big[\epsilon U'(y) - \left(\alpha(y) - \alpha(a) \right) \theta_1(\zeta(y)) \Big] dy - \\ &- \int_a^x \Big[\Big(\beta(y) - \alpha'(y) \Big) \theta_1(\zeta(y)) \rho_{1\epsilon}(y) dy - \epsilon \int_a^x \left(\rho_{1\epsilon}' \right)^2(y) dy. \end{split}$$

By (4.4), one obtains that $\tilde{c}(x)=O(\epsilon)$. Integrating (4.6) on [a,b], one obtains $\epsilon u'(b)=O(\sqrt{\epsilon})$, hence $\tilde{b}(x)=O(\sqrt{\epsilon})$.

Finally, from

$$(1/2)\alpha(x)\rho_{1\epsilon}^2(x) + O(\sqrt{\epsilon})\rho_{1\epsilon}(x) + O(\epsilon) = 0 \text{ a.e. in } (a,b),$$
$$\alpha(x)/2 \le \alpha_0/2, < 0 \text{ in } [a,b],$$

we can deduce that $| \rho_{1\epsilon}(x) | \leq C \sqrt{\epsilon}, x \in [a, b]$, so we have $||r_{1\epsilon}||_{C[a, b]} = O(\sqrt{\epsilon})$.

References

- L. Barbu and Gh. Morosanu, On a class of singularly perturbed, coupled boundary value problems, *Math. Sci. Res. Hot-Line* 4(6) (2000), 25-37.
- [2] L. Barbu and Gh. Moroşanu, Asymptotic Analysis of Some Boundary Value Problems with Singular Perturbations, *Editura Academiei, Bucharest*, 2000 (in Romanian).
- [3] C.A. Coclici, Gh. Moroşanu and W.L. Wendland, On the viscous-viscous and the viscous-inviscid interactions in Computational Fluid Dynamics, *Comput. Visualization Sci.* 2 (1999), 95-105.
- [4] C.A. Coclici, Gh. Moroşanu and W.L. Wendland, One-dimensional singularly perturbed coupled boundary value problems, *Math. Sci. Res. Hot-Line* 3(10) (1999), 1-21.
- [5] C.A. Coclici, Gh. Moroşanu and W.L. Wendland, The coupling of hyperbolic and elliptic boundary value problems with variable coefficients, *Math. Meth. Appl. Sci.* 23 (2000), 401-440.

- [6] F. Gastaldi and A. Quarteroni, On the coupling of hyperbolic and parabolic systems: analytical and numerical approach, Appl. Numer. Math. 6 (1990), 3-31.
- [7] A.B. Vasilieva, V.F. Butuzov and I.V. Kalashev, The Boundary Function Method for Singular Perturbation Problems, SIAM, Philadelphia, 1995.

"Ovidius" University of Constantza, Faculty of Mathematics and Informatics, Mamaia Bd., 124, 8700 Constantza, Romania