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GENERAL RESULTS ON THE EXISTENCE
AND GLOBAL EXPONENTIAL STABILITY
OF PERIODIC SOLUTIONS FOR
GENERALIZED SHUNTING INHIBITORY
CELLULAR NEURAL NETWORKS WITH
DELAYS

Xinsong Yang, Chuangxia Huang

Abstract

In this paper, with the help of the Leray-Schauder fixed point theo-
rem, differential inequality techniques and suitable Lyapunov functional,
several novel sufficient conditions on the existence and global exponen-
tial stability of periodic solutions for the generalized shunting Inhibitory
cellular neural networks are developed, which improve some published
results. Particularly, the precise convergence rate index is also obtained.
One example with its numerical simulation is employed to illustrate the
generalized results.

1 Introduction and preliminaries

In recent years, the shunting inhibitory cellular neural networks (SICNNs) have
been extensively studied and found many important applications in different

Key Words: Shunting inhibitory cellular neural networks; Global exponential stability;

Periodic solution
2010 Mathematics Subject Classification: 34C25; 34K13; 34K25

The corresponding author: Xinsong Yang

This work was supported in part by the Foundation of Chinese Society for Electrical
Engineering (2008), the Excellent Youth Foundation of Educational Committee of Hunan
Provincial under Grant No. 10B002, the Scientific Research Fund of Hunan Provincial Sci-
ence and Technology Department of China under Grant No. 2009FJ3103 and the Scientific
Research Fund of Yunnan Province.

Received: August, 2009

Accepted: January, 2010

295



296 XINSONG YANG, CHUANGXIA HUANG

areas such as psychophysics, speech, perception, robotics, adaptive pattern
recognition, vision, and image processing. To date, many interesting results
on stability of SICNNs have been obtained. In particular, some results on the
existence and exponential stability of (almost) periodic solutions for SICNNs
with delays have been reported in [1, 3, 4, 5, 6, 7, 8]. However, SICNNs in [1,
3,4,5,6, 7, 8] are all with constant coefficients. Non-autonomous phenomena
often occur in many realistic systems, hence, it is of prime importance to
study the existence and exponential stability of periodic solutions and almost
periodic solutions of SICNNs with variable coefficients. In this paper, we
consider the following general SICNNs with delays, which includes SICNNs in
[1, 3, 4, 6] as special cases.

w(t) = —a(ta )+ > BE®) itz t)a;(t)
BFLEN, (,5)
+ Y CH Mgt wrt — 7 ()mii (8) + T (1), (1.1)
CKkLeN,(i,5)
where i =1,2,--- ,n,j =1,2,--- ,m. 7;;(t) represents axonal signal transmis-

sion delays and continuous with 0 < 7;(¢t) < 7; C;;(t) denotes the cell at the
(4,7) position of the lattice at the ¢, the r-neighborhood N,.(4, j) of C;;(t) is

N,(i,7) = {C*(t) : max(|k —i|, |l — j|) <1<k <m,1<1<n}

x;;(t) is the activity of the cell C;;(t), I;;(t) is the external input to Cj;(t) ,
a;;(t, x;;(t)) represents the passive decay function of the cell activity; ijl (t) is
the connection or coupling strength of postsynaptic activity of the cell trans-
mitted to the cell C;;(t), the activity function f;;(¢,-) is a continuous func-
tion representing the output or firing rate of the cell C¥(t); ¢;;(t) is the
initial function, and is assumed to be bounded and continuous on [—7,0].
a;;(t), ijl (1), fij(t,-), Li;(t), @i;(t) are all continuous periodic functions.

For convenience, we introduce the notations: 7 = max; ;){7i;(t)[t € [0,w]},

Iij = maxye o0 | T35 (t)], 1, = Mingefo ) Hij (1),

T
T = (‘T117.'L'12,"' sy Timy ' s Tnly Tn2, 7xnm)

be a column vector, in which the symbol T denotes the transpose of a vector.
The initial condition ¢ = (11, P1m, " s Pl > Prm)? of (1.1) is of
the form

ng(s) = ¢ij(5)a S (77—7 O]v

where ¢;;(s),i=1,2,---,n,j =1,--- ,m, are continuous w-periodic solutions.
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Definition 1.1. Let 2*(¢) be an w-periodic solution of (1.1) with initial value
¢*. If there exist constants o > 0 and P > 1 such that for every solution x(t)
of (1.1) with initial value ¢,

|24 (t) — 23;(t)] < Pllg — ¢*lle™®", Vt>0,i=1,2,---,n,j=1,2,---,m,

where [|¢ — ¢*|| = max(; j) Sup_,<s<o{|i;(s) — ¢;(s)|}. Then z*(¢) is said to
be globally exponentially stable.

Lemma 1.1(Leray-Schauder). Let E be a Banach space, and let the operator
A : E — E be completely continuous. If the set {||z|||z € E,z = Az,0 <
A < 1} is bounded, then A has a fixed point in T, where

T ={z|z € E,|z|| < R}, R =sup{||z|||z = MAz,0 < X < 1}.

Lemma 1.2 [2]. For any z,y > 0,¢ > 0.5, the inequality

Eajﬂq + inQ

R 2q 2q

holds.

Obviously, when ¢ = 0.5, the above inequality also holds. Hence, for any
z,y > 0,9 > 1, we have

201y < -1, + lyq. (1.2)
q q

The main purpose of this paper is to obtain sufficient conditions for the
existence and global exponential stability of periodic solutions for (1.1). The
main methods used in this paper are Leray-Schauder’s fixed point theorem,
differential inequality techniques and Lyapunov functional. The results of this
paper generalize and complement some published results. One example is
employed to illustrate our feasible results.

Throughout this paper, we assume that

(Hy) BJ(t), CHH(t),7i;(t) > 0,1;;(t) are continuous w-periodic functions. w >
0 is a constant, 1 =1,2,--- ,n, j=1,2,--- ,m;

(Hs) ai;(t,u) € C(R?, R) are w-periodic about the first argument, a;;(¢,0) =0
and there are positive continuous w-periodic functions p;;(t) such that
W > /J,”(t), 8(1%57“) are bounded, i= 152? N, .7 = 1a27 s,y

(Hs) fij(t,u),gi;(t,u) € C(R? R) are w-periodic about the first argument.
There are continuous w-periodic solutions 4;;(t) and ~;;(t) such that
(Sij(t) = SUDueRr |fij(t7u)|a Vij(t) = SUPyer |gij(t7u)|’ =12 ,n,
j: 1a27"' , 5
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(Hy) max(; j) Supp<s<,, RIO)

and 0 < 1;

855 ()3 prten, iy |1 BE O+ (0) X crten, i) cf;an} _ 9

(Hs) There are non-negative continuous w-periodic solutions a;;(t) and §;;(t)
such that

aij(t) = SUDPy £y ) ﬂzg(t) = SUPyy
all wywweR u#v,i=1,2,---,nj=1,2,---,m.

fi (t7u)7fij (t,v)

uUu—7v

uU—v

for

The organization of this paper is as follows. In Section 2, we study the
existence of periodic solutions of system (1.1) by using the Leray-Schauder’s
fixed point theorem. In Section 3, by constructing Lyapunov functional, we
shall derive new sufficient conditions for the global exponential stability of the
periodic solution of system (1.1). Moreover, we compare our results with some
of previously know results. At last, an example is employed to illustrate the
feasible results of this paper.

2 Existence of periodic solutions

Let &, =1,2,--- ,n,j =1,2,--- ,m be positive constants. Make the change
of variables

Lij :§ijlj(t)7 1= 1a27"' ,TL,j = 1727"' , 1M, (21)

then (1.1) can be reformulated as

vt = =& a6 Gwi )+ Y BE®) Fii (£ Sy ()i (2)

BklENr(iaj)

+ Z CH ()95 (t; Eryra (t — T (0)) i (8) + &5, L (1) (2.2)
CHLEN,(i,7)

System (2.2) can be rewritten as

yis(t) = —dij(tyis ()i () + Y BE () fij(t, Eaym ()i (t)
B*LeN,.(1,5)

+ Y CH®)gii(t Gy (t — T (0)yis (1) + &5 T (1), (2.3)
CkleN,.(i,7)

- Oaqj(t, s
where d;;(t,y;;(t)) = %h:du’ d;; is between 0 and &;;y;;(t), dij € R.
By (Hsz), we obtain a;;(t, &;;y.;) is strictly monotone increasing about y;;.
Hence, d;;(t,y;;(t)) is unique for any y;;(t). Obviously, d;;(t,y;;(t)) is contin-
uous w-periodic about the first argument and d;; (¢, y;;(¢)) > ;i (t).
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Lemma 2.1. Suppose that (H;p)-(Hz) hold and let x(¢) be an w-periodic
solution of (1.1). Then,

yis(t) = /Owaj(t,s)[ S BE(S) i (5, Grama())uis ()

BklENr(iaj)

+ Y CH8)gii (s, Gaym (s — Tra(5)))wii (5) + &5 Ty (s) | ds,
CKLeN,.(i,5)
te0,wi=1,2-,nj=12--,m, (2.4)

where,

—JEdij(v,y5(0))dv

o 0<s<t<w

7Y (t,s) = 1o & i (wu; (dw ) R A )
ij\L, 8) = o= U8 dijyij ()dv—[F dij (0,55 (0))dw

1—e— 1§ dij(vsyij(v))dv

)
,0<t<s<w.

Proof. From the system (2.3), we have
/
<yij(t)€]0 dm(S,ym(s))ds> — [ Z ijl(t)fij (t, Exayna (8))yiz () +
BREN,.(1,)

> CH gt Gayra(t — T (8))yis (1) + 5 T (l‘)} elo dis(swis()ds (9 5)
CFLEN,(i,5)

Integrating (2.5) from 0 to ¢, we have
t
Yij (t) — e*fo dij(s,yij(s))dsyij (0) + / |: Z ijl(s)fij(sy fklykl(s))yij (5) +
0 L Bren, (i)

Z ijl(s)gij (s, &ryri(s — Tr1(9)))yis (s) + §ij1[ij(s)} e s dij('”»yij(v))dvds.(2.6)
CkLeN,(i,5)

From z;;(w) = x;;(0) and (2.1), we have y;;(w) = y;;(0). By (2.6), we obtain
4i3(0) =
1 [ 5 e smom o +

_ o= S dij(s,yi5(s))ds
1—eo BMEN, (i,5)

Z C1(5)9i5 (5, Emyri (s — Tra()))wiz (s) + f&lfij(s)] e ) di(vwitoldvgs (2.7)
CHLEN, (i.))
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Substituting (2.7) into (2.6), we obtain

yis(t) =
e— Jo dij(s.yij(s))ds

1 — e Jo dij (vsys; (v)dv

/[ ST BEG) s Gamn(s)isls) +

BFeN,.(i,5)

S OB ) (s Enapna(s — ()i () + si;fz—xs)} o 1 s s () g

CHEN, (i.5)

+/o[ Z BEL(8) fii (8, Eruyna(8))yij (s) +

BFLEN,.(1,5)

Z CE (3)9i (s, Eryri (s — Tha()))ij (s) + fi}lfij(S)} e~ J2 dii (0wis (0))dv g g

CHLeN,.(i,7)

/ HY(t s)[ Z B (5) fij (5, Skryra(5))yis () +

BkLeN,.(i,5)

> CH(9)gii (5, Eayrils — Tri(5)))yis (5) + gigllij(s)} o

CkLEN,.(1,7)

This completes the proof. ]

In order to use Lemma 1.1, we take X = {y|y € C([0,w], R"™)}. Then X
is a Banach space with the norm

[yl = max{|yijlo}, [yijlo = sup [yiz(D)],i=1,---,n,j=1,---,m.
(4:9) 0<t<w

Take a mapping ® : X — X by setting
(@y)(t) = (Py)11(t), (PY)12(t), - (PY)m (1),
where

(@) /Ht[ S BE(s)fug (s, Euana(s))wis (5) +

B*EN,(i,7)

> CH(8)gii (5, (s — Tra(5)))yis (5) + &5 5 (s) | ds,
CHEN, (i.5)
t=12,--,nj=12-- m

It is easy to know the fact that the existence of w-periodic solution of (1.1)
is equivalent to the existence of fixed point of the mapping ¢ in X.
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Lemma 2.2. Suppose that (H;)-(Hy) hold. Then ® : X — X is completely
continuous.

Proof. Under our assumptions, it is clear that the operator ® is continuous.
Next, we show that ® is compact.

Since pi;(t),i = 1,2,--- ,n,j = 1,2,--- ,m are positive w-periodic solu-
tions, p,. > 0. For any constant D > 0, let Q@ = {yly € X, ||ly|| < D}. For any
y € Q, we have

ol = max sw {| [Casen] S B G

O<t<w BMEN, (i,5)

Y OB s s — mials)uis(s) + g-;lfij(s)} s

CFLeN,(i,5)
w
< max su HY (t,s [(51 s BFl(s
< o s { [Ty CEPCC
is(s) Z et >|)yz-j<s>+e;fij<s>}ds}
CkLeN,.(
<

T .
max su H (t, s)u; 0ds —|—max{ t }
(i.7) 0<t£w{/ iy (5) }ly” i) &ijhty;

< 9D+max{ ) }
(4,9) &jgij

this implies that ®(£2) is uniformly bounded, where,

w 1 t t
HY. - _ — [ dij(vyyij(v))dv
/0 i3 (b 8)pig (s)ds 1 — e Jo dis (v (v))dv { /O € pij(s)ds

e I i () / i iy (0)a0) (S)ds}
t

1 t
= L pig(v)do
1 e Jo dis (0ys ())dv { /O € pij (5)ds

w
e I o ) / ol dw«wmw)dvdij(s,yij<s>>ds}

IA

{1 e o mia(9)dv g o= [ dij(v,yi; (v)dv (eff dij (v,yi; (v)dv) _ 1) }

1—e f() i3 (0,45 (v))dv
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{1 — e Jomig()dv o o= [g dij(vyis()dv _ o= [ dij(v)yz'j(v))dv}

= < .
1 — e Jo dij(v,yi;(v))dv s1

By (Hs), there exists a constant M > 0 such that
|dij(t,yij(t))| < ]\47 fort e [0,0.)] X Q,i = 1,2, e ,n,j = 1,2,~ ce,m.
In view of the definition of ®, we have

@iy = ([ s ¥ B e aml) ) +

BFLEN,(i,5)

Z CE (3)9i5 (s, Eryri (s — Tra(s)))yij (s) + fi;llij(s)} ds)

CHEN, (i)

= —di(t,yi (0@ () + D Bl () fist Gayma (6)yis () +
BFLEN, (i)

ST CE)gi(t Srayra (t — ()i (8) + €5 L (1).

CFLEN,(1,5)

Hence,

(@)}, ()] < M(emmax{fw}) s

(7)) (SijH,
ki _ I,
m_aX{ S Bys Dt Y CymD+ gj}
G2\ g ény i) CHLEN, (i,]) Y

where B} = supicig.o) [BY (8)], 3ij = supycip.u) 315 (8) Tty = supyego o |CH (1),
Vij = SUPseo,w) Vij(t). So, ®(2) C X is a family of uniformly bounded and
equi-continuous subsets. By using the Arzela-Ascoli Theorem, ® : X — X is
compact. Therefore, ® : X — X is completely continuous. This completes
the proof. [

Theorem 2.1. Suppose that (H;)-(Hs) hold. Let &;;,i = 1,2,---,n,j =
1,2,--- ,m be positive constants. Then the system (1.1) has an w-periodic
solution z*(t) with ||2*|| < max(; j){&:;;} R = Ro, where

Tij
_ MAXG) {51‘_7’#.. }
R= —,
1-6
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Proof. Let y € X, t € [0,w]. We consider the operator equation
y= APy, A € (0,1). (2.8)

If y is a solution of (2.8), for t € [0,w], we obtain

I,
Iyl < I8yl < ol +ma.x{ j }
(4,9) Eijﬁij

This and (Hy) imply that
lyll < R.

In view of Lemma 1.1, we obtain that ® has a fixed point y*(¢) with ||y*|| < R.
Hence, system (2.3) has one w-periodic solution
Y = (Wi Yias Wi Ynts Ynas Yo
with [|y*|| < R. It follows from (2.1) that
ot (t) = (271 (1), 272 (1), @i (1), (8, 2a (1), 25 ()T =
= (Guayin E20in,  Eum¥ims 5 EntYng En2tnas s EnmYm)

is one w-periodic solution of (1.1) with
[l < Ipa§<{€ij}§ = Ry.
0.

This completes the proof. [ ]
3 Global exponential stability of periodic solution

In this Section, we shall construct a suitable Lyapunov functional to derive
sufficient conditions ensuring that (1.1) has a unique w-periodic solution and
all solutions of (1.1) exponentially converge to its unique w-periodic solution.

Theorem 3.1. Assume (H;)-(H3), (Hs) and (Hg); where (Hg) is

(Hg) There are positive constants p > land &;;,¢=1,2,--- ,n,j =1,2,--- ,m,
such that
{pAf}(t)&j + Ro(p — 1)D ()& + RoF (€, p. 1) }
max sup <1,
(i,9) 0<t<w prij ()i



304 XINSONG YANG, CHUANGXIA HUANG

where,
A =550 S IBEOI+w0 S CH W),
B*EN,(i,5) CHLEN,(1,5)
DH@W = > [BHWI+ > ICH®),
BFLEN,(,7) CHLEN,(i,5)
il (& pt) = Z | BY ()€ (t) + Z |CH () 1€ BT ().
BFLEN,.(i,5) CFLEN,(i,5)

Then the system (1.1) has exactly one w-periodic solution, which is globally
exponentially stable.

Proof. Obviously that (Hg) implies (Hy). By Theorem 2.1, there exists an
w-periodic solution x*(t) of (1.2) with initial value

and ||z*|] < Rp. Suppose that z(¢) is an arbitrary solution of system (1.1)
with initial value ¢(t) = (¢11(t), -, d1m(t), -+ 5 Pn1(t), -+ dnm(t))". Set
Z(t) = (le(t), T ZlM(t)v' o ,an(t)a' te 7an(t))T = Z(t) - Z*(t) Then,
from system (1.1) we have
25 (t) = —lag;(t, 2z (t)) — aiz(t, 27;(1))]
+ Y BE®Ui(taa()wi(t) — fiy (8 2 (0)25; (1))
BKLEN,. (i)
+ Z CE )[gij (t wra(t — Tt (1)) (t) — g (8, 2y (E — e (£))) 2} (£)].(3.1)
CkleN,.(4,5)

From (Hg) we have

—ppij(t)&ij + pAS (1) + Ro(p — 1) D ()5 + RoFJ (€, p,t) <0,

i=1,2, o =1,2,-- ,m. (3.2)
Set
hij(N) = A&ij — ppaj(t)&s; +PA?}(15)&;‘ + Ro(p — 1)ijl(t)§ij
oS IO 0+ 3 ICH 00
B*LeN,.(1,5) CkLeN,.(i,7)

Clearly, hi;(A\),i =1,2,--- ,n,j =1,2,--- ,m, are continuous functions on R.
Since h;;(0) < 0,
dhi; () )
o =G tARe 3o ICH@IBG 0 6 >0,
CHEN, (i,))
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and h;;(4+00) = 400, hence h;;(N),i=1,2,--- ,n,j=1,2,--- ,m, are strictly
monotone increasing functions. Therefore, for any i € {1,2,---,n}, j €
{1,2,--- ,m} and t > 0, there is unique A(¢) such that

A()&i; — puas()€ij + PALH(t)E; + Ro(p — 1) DI (1)&i;
tho( Y B0+ Y IO 0N <0
B*LeN,.(1,7) CkleN,.(1,7)
Let
Ajj = ing {)\(t)‘)\(t)fij — ppij(t)&ij + PAff(t)&j + Ro(p — 1)D;€jl(t)£ij

t>
+Ro( Y BEOel )+ Y |ij<t>|emﬁfj<t>e““f) - o}.
BkZENT(i,j) CkZENT(i,j)

Obviously, A2 0,4=1,2,---,n,5=12,---,m. Now, we shall prove that
)\fj > 0. Suppose this is not true. From (3.2), there exists a positive constant
1 such that

f {pﬂz‘j (to)&ij — PAH(t0)&ij — Ro(p — 1) D} (to)&ij — RoFJ (€, p, to) }
£>0,(4,5) &ij + LETRoBY (t) Xomen, i) |CH ()

Pick small € > 0, then there exists ty > 0 such that

>

0 < Aj(to) <e<m.

Let us recall the inequality e* < 1 + 1.5z for sufficiently small > 0. Then
we obtain

0 = A(to)&is — ppij(to)&ij + PAF (t0)&; + Ro(p — 1) D} (to)&i;
+R0( > BH () Iguali )+ Y |CH (to)gklﬁfj(to)ek(tO)T)
B*LeN,.(1,5) CkLeN,.(i,7)

< e&ij — phaj(to)&ij + AL (to)&i; + Ro(p — 1) DE (to)&i;
o X Bl )+ Y ICH e ) )
BMEN, (1)) CHEN, (i.])
< m&ij — puij(to)éij + PAY (to)éij + Ro(p — 1)DJY (t0)&s
+R0( S BH(t0)Igual;(t) + Y |CE (to)l&mBY(to) (1 + 15777))
B*LeN,(i,5) CrLEN,(i,5)
= —pui;(to)ij + pAJ) (to)&ij + Ro(p — 1)Df (t0)&i; + RoF1 (€, p, to)
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+n (@;j + 1.57Ro 3} (to) Z |C,.’§.l(t0)|§kl>
CHLEN, (i,5)
< —puij(to)éij + PAL (to)&ij + Ro(p — 1) D} (to)&i; + RoFJ (€, p,t0)
+pﬂij(t0)€ij — pAjj(to)&ij — Ro(p — 1)Df (t0)&; — RoF (€, p, to)
fij + 1'57—R06ipj(t0) chle]\a,(i,j) |Cikjl (to)‘gkl

<§ij + 1.57Roﬂfj(to) Z ‘ijl (t0)|§kl) =0,

CKLEN,(i,5)

which is a contradiction, and hence Aj; > 0,i=1,2,--- ,n,j=1,2,--- ,m.

Let € = ming; ;) {\};}. Obviously,
hij(e) = €§ij — ppiz (t)&ij +PA§}(t)§ij + Ro(p — 1)ijl(t)§ij

tho( S B0l 3 IO 0 ) <o

BKFLeN,.(,5) CkLeN,.(i,7)

We choose a constant d > 1 such that
pdéje” " > 1, fort € (—7,0],i=1,2,--+ ,n,j=1,2,---
It is obvious that
25 (O < 6= &7 < pdeisllg— 67 |Pe™, for ¢ € (—7,0] and i = 1,2,--- ,m,

j=1,2,---  m, where ||¢ — ¢*| is defined as that in Definition 1.1.

Define a Lyapunov functional V () = (Vi1(t),- -+, Vim(t), -+, Va1 (8), - -+, Vam (8),) T
by Vi;(t) = %eft\zi]—(tﬂp,i =1,2,---,n,5=1,2,--- ,m. In view of (1.2) and
(3.1), we obtain

+1/..
d‘(;iztj(t) = |zij (t)|1’*1@etsgn Zij{ - [aij (t,xij () — aij (t,a:;kj (t))]

+ Y BH@fi(t ()i () = fiy (t i (1)ah (2)]

BkleN,.(i,7)
+ Y CH®gi (ot — ma(1)wi () — gij (8 apy (¢ — Tkz(t)))wfj(t)]}
CKLEN,(,5)
€ et
+—e“|zi; (1)P
p |25 (t)]

< Zij(t)|p1€€t{ — iz O+ > IBEOI[Ifi i (t)]]2i5()]

BFLEN,(i,5)
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+| fig (t mri(£) = fij (E aig ()5 (8)]]
+ Y 1CEHMO1gi(t wra(t — ()21 ()]

CkLeN,.(i,5)

+gij (&, wri(t — T (8))) — g5 (E, 25, (8 = 700 (0))) |25 (8) 1] } + §€6t|zij(t)|p

Seet{(;‘uij(t)wij(t) oo BE®I 4w Y |Cff(t)|)|%(t)|p

BFLEN,(1,5) CKLeN, (i,5)

+Ro > IBE®lz )P iy ()] (?)]
BkleN,.(i,5)

S |Of;<t>||zij<t>|p1mj<t>|zkl<t—m<t>>|}

C*LEN,.(i,5)

< ( ~ ppasy(6) + pAE(D) + Rolp — 1>Df;<t>) Vis(t) +

+R0( Z |ij(t)|afj(t)vkl(t)+ Z ijl(t)|ﬁfj(t)efTVkl(trkl(t))).(3.4)

BMEN, (i,5) CkLeN, (i,7)

We claim that
1
Vvl](t) = ;?eet|zij(t)|p S d§ZJ||¢_¢*Hp7 1= 1727 e 7n7j = 1a2a e ,Mm, forall ¢ > 0.

(3.5)
Contrarily, there must exists some some i € {1,2,---,n}, j € {1,2,--- ,m}
and ¢ > 0 such that
- o ATV
Vi) = degy o — o°|, Vs
Vte (—7,t],i=1,2,--- ,n,j =1,2,--- ,m. Together with (3.4) and (3.6), we
obtain
dtvi (1)

0< —a <dl¢ - ¢>*||p{€§z‘j — ppij (H)&ij +pA?}(t)§ij + Ro(p — 1)ijl(t)€ij

> 0and Vi;(t) < d&illo — %I, (3.6)

+R‘)( 2 IBS@lenel(+ 3 Iijl<t>|sklﬂfj<t>eJ)}'

BMEN, (i) CHEN, (i,§)

Hence,
0 < €&y — ppsj(H)&ij + PAY ()& + Ro(p — 1) D ()&3;

+Ro( S B0l H - Y |c§l<t>|ekzﬁfj<t>e“),

B EN,(i,7) CkeN,(i,7)
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which contradicts (3.3). Hence, (3.5) holds. It follows that

iy (8) — 35 (8)] = 2g (8)] < (pd€i)7llg — @7 lle™ 7!, WE>0, i=1,2,-- n,
j=1,2,--- ,m. Let M = max(iyj){(pdfij)% + 1}. Then, we have

|z (t) — 3, ()] < Ml — ¢*[le”#", VE>0,i=1,2 ,nj=12- ,m

In view of Definition 1.1, the w-periodic solution x*(¢) of the system (1.1) is
globally exponentially stable. This completes the proof. [ |

Taking p = 1 in Theorem 3.1, we have the following corollary.

Corollary 3.1. Assume (H;)-(Hs), (Hs) and (Hg) hold, where

(Hf) There are positive constants &;;, ¢ = 1,2,--- ,n, j = 1,2,--- ,m, such
that

ARY )& + RoEF (€t
max su { 1]()5] 0 ’L](E )}<17

(4,3) 0<t<w i (£)&ij
where, Eff (€,1) = Z |BE (1) |€ricuij (8)+ Z |CE(8)|€ra Bis (t).-
BFEN, (i) CHEN, (i.))

Then the system (1.1) has exactly one w-periodic solution, which is globally
exponentially stable.

Remark 1. In [4], the authors studied the existence and exponential stability
of the following SICNNs with delays and variable coefficients

wi(t) = —hgOit) — Y T e (@ (t)wi;()
JRLEN(i,5)
— > WO @t — ()i () + T(t), (3.7)
WHkLEN,.(i,7)
where h;;(t) > 0, ijl(t) > 0, Wi’}l(t) > 0 and I;;(t) are all continuous w-
periodic solutions.

Theorem = (Li[4]). Assume that the following conditions are satisfied:
(F1) €ij,q;j € C(R,R) are bounded on R, i=1,2,--- ,n, j=1,2,--- ,m;

(F2) there exist positive numbers p;; and v;; such that |e;;(z) — e;5(y)| <
wijle —yl, g (x) —eij(y)| < vijle —y| for all z,y € R, i =1,2,--- ,n,
j: 1a25"' , 5



GENERAL RESULTS ON THE EXISTENCE AND GLOBAL EXPONENTIAL
STABILITY OF PERIODIC SOLUTIONS FOR GENERALIZED SHUNTING
INHIBITORY CELLULAR NEURAL NETWORKS WITH DELAYS 309

(F3) foreach i =1,2,---,n,j=1,2,---,m

hyy =My Y Ty — Ny > W

JFEN,(4,7) WHEN,(i,5)
I;; ki — K
K JKLEN,(i,5) WHhLEN,(i,5)

Then the system (3.7) has a unique w-periodic solution which is globally ex-
ponentially stable, where

h;; = mingc(o o) {hi; (1)}, Jf]l = ma'XtE[O,w]{Jikjl(t)}a WZZ = maxte[o,w]{Wilz’l(t)}a
Iij = maxyefo,w { i (D) |}, Mij = sup,ep{les;(w)l}, Nij = sup,e p{lgi; (u)[}.

One can easily sees that (F1)-(F3) are special cases of (H3), (Hs) and (Hg),
respectively. Taking &; =1,¢=1,2,---,n, j=1,2,--- ,m in Corollary 3.1,
it is obvious that Theorem 3.2 is direct corollary of Corollary 3.1.

Remark 2. It is worth noting that our results Theorem 2.1, Theorem 3.1 and
Corollary 3.1 are also applicable to SCINNs with distributed delays [5, 7, 8].
On the other hand, the results of this paper are also applicable to studying
the existence and exponential stability of almost periodic solution for SCINNs
with time-varying coefficients and delays. Consider the following SCINNs with
time-varying coefficients and delays:

2l () = =i (8w (t) = CF ()G (8, wra(t — T (1)) (8) + Tij (8),
Cl (3.8)
’I‘lj(t) = gﬁij(t), te [O,W]Z = 1,2,"’ ,n, ] = 1,2,"' ,m.
where t > 0,d;;(t) > 0, CH(t) > 0, gi;(t, ), 7i;(t) > 0, @i;(t), I;;(t) are all
continuous almost periodic functions.
We further assume that

(F}) gij(t,u) € C(R?% R) are almost periodic about the first argument. There
are continuous almost periodic solutions 7;;(¢) such that

?lj(t) = SUDPyer |§ij(t’u)|a 1=1,2--,n, Jj= 1,2, m

(F4) there are non-negative continuous almost periodic solutions E,»j(t) such
that
Bij (t) = Supu#v
j: 1a27"' , M

9ij (8, u)—7ij (t,v)
u—v ?

for all w,v€e Ru#v,i=1,2,---,n
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(F%) There are positive constants p > land &;;,¢1=1,2,--- ,n,j =1,2,--- ,m,
such that

{ Y emien, i) CH O Fig (D& + Rolp — 1) + RowBly (1)) } _

max sup (e

(i,3) teRr

where Ry = maX(i)j){fij}§7 R = max(; ;) {gljg}/(l —0), I;; =
maxe g |15(t)|, @ij = minge g ai;(t),

(05 bt M
max(; j) SUPye g {’Y' = ZC}C%EI-;V(;SL” 1 @ } =60<1.

Let &;,1=1,2,--- ,n,j = 1,2,--- ,m be positive constants, 1(t) be con-
tinuous almost periodic solution. Make the change of variables as that of (1.2).
We have the unique almost periodic solution from system (3.8)

t
O 1) = { / o= iy b (w)du

- [ ST OB Fi s, Exatha(s — maa(s)))ig (5) + si;lfms)] ds}.

CHKLEN,(i,5)

Similar to the proof of Theorem 2.1 and Theorem 3.1 of this paper, we
obtain the following theorem.

Theorem 3.2. Assume (F})-(F%) hold. Then the system (3.8) has exactly
one almost periodic solution, which is globally exponentially stable.
Take p =1 in Theorem 3.3 and obtain the following corollary:

Corollary 3.2. Assume (F}), (F4) hold and

(F%) There are positive constants &;;, i = 1,2,---,n, j = 1,2,--- ,m, such
that
{ S anmen, i) Ol () Fij ()€ + Ro&rBij (¢)) }
max sup = <1,
(i.d) teR aij(t)&j

where Ry is the same as that in (F%).

Then the system (3.8) has exactly one almost periodic solution, which is glob-
ally exponentially stable.

Remark 3. From (3.3), it is obvious that the convergent index e is more
precise than the estimation of convergent index in [1, 3, 4, 5, 6, 7, 8].



GENERAL RESULTS ON THE EXISTENCE AND GLOBAL EXPONENTIAL
STABILITY OF PERIODIC SOLUTIONS FOR GENERALIZED SHUNTING
INHIBITORY CELLULAR NEURAL NETWORKS WITH DELAYS 311

4 Application

In this Section, we give an example to illustrate the obtained results. Con-
sider the following generalized SICNNs with time-varying delays and coeffi-
cients

wi(t) = —a(tag())+ D CF(0)gi (6wt — mha(8))wi (8) + L (£),(4.1)
CkLeN, (i,5)

where r = 1. Take a11(¢,2) = a13(t,x) = a2 (¢, ) = aze(t, ) = 4z + sinz +
xsint, aia(t,z) = as(t,z) = as1(t,x) = asz(t,z) = dbr — sinz + z cost,
ass(t,z) =3z + cosx — xsint, g;;(t,r) = 0.1sinz, 7;;(t) = (cost)?, and

Ci1(t) Cia(t) Cis(t) 0.2cost 0.4sint 0.3cost
Ca1(t) Caa(t) Ca3(t) | = | 0.6cost 0 0.5sint |,
L C31(t) C32(t) 033(t) 0.5sint 0.6cost 0.5sint
[ L1 (t) Lio(t) ILis(t) 1.5cost 2sint 2cost
In1(t) Ina(t) Ias(t) | = | 3.5cost 4cost 2sint
I31(t) Iso(t) I33(t) S5sint 3cost 4sint
Then w = 2m, pii(t) = ps(t) = p2i(t) = pa2(t) = 3 + sint, pia(t) =

,LLQB(t) = /1,31(t) = /i33(t) =4 + COSt, MQQ(t) =2 - Sint, "/”(t) = ,Blj(t) = 01,
Do CHEN,(1,1) |CEL(t)| = 0.8| cost|+0.4| sin¢|, D CHEN, (1,2) CkL(t) = 1.1| cost|+
0.9]sint], Y onicn, (1.3) [CTA(E)] = 0.3[ cos t[+0.9] sint], Y mien, (2.1 [C51 (E)] =
1.4/ cost[+0.9]sint|, 3 e, (2.2 |CEL(t)| = 1.7| cos t|+1.9] sin ¢, Do CHEN,(2,3)
|CEL(#)| = 0.9] cost| + 1.4]sint], Do CHEN,(3.1) |CEL(#)| = 1.2| cost| + 0.5]sint],
D CHEN,(3,2) |CEL(#)| = 1.2| cost|+1.5|sint|, D CHEN,(3,3) |CEL(#)| = 0.6| cos t|+
| sint|.

Take &; = 1, 4,5 = 1,2,3. Computing by MATLAB, we have 6 ~
0.22358 < 1, Ry ~ 2.1466, and « ~ 0.7035 < 1. It’s easy to check that all
the conditions in Corollary 3.1 are hold. Therefore, system (4.1) has a unique
2m-periodic solution z*(t) with ||z*|| < Rp, which is globally exponentially
stable. The numerical simulations with the following initial conditions:

(1311(8),%12(8),$13(8),5521(8)73722(5)73323(5)73331(5)73332(5),$33(3))T
=(1,2,3,4,5,6,7,8,9)"
and
(211(s), 212(5), T13(8), 221 (8), 22(5), w23(s), 231(8), T32(5), w33(8)) "
= (_17 _2a _37 _4a _57 _6a _77 _8’ _Q)T
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for s € [-1,0]. For the trajectories of x;;(t),4,j = 1,2, 3, please see the below
Figure.

10

solution x

-10 L L L L L L I I I
0 1 2 3 4 5 6 7 8 9 10

time t

Fig. : Trajectories of x;;(t),4,j = 1,2, 3 for system (4.1).

Remark 4. The system (4.1) is a simple generalized SICNN with delays
and time-varying coefficients. Obviously, a;;(t,),4,j = 1,2, 3, are non-linear
about z, hence none of the the results in [1, 3, 4, 5, 6, 7, 8] and references
cited therein can be applied to (4.1). Moreover, the periodic solution z*(t)
satisfies ||z*|| < Rp, which has nothing to do with the initial value of (4.1).
Hence, the results of this paper generalize and complement some previously
known results.
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