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Abstract

In this paper we consider the degree theory for a mapping f from

an oriented compact connected manifold X to a oriented, compact, con-

nected manifold Y of the same dimension and some elementary problems

of fixed points.

1. Topological degree on manifolds.

There are many approaches to the introduction of the notion of degree and
the background involved in each of them may differ considerably.We briefly
introduce the notion of topological degree on manifolds and for more details
we refer the reader to Nirenberg,L., [N] and Berger,M. & Gostiaux,B., [BG].

Let X be an n−dimensional Cq
′

manifolds and q, r integers such that
0 ≤ q ≤ q

′

− 1 and 0 ≤ r ≤ n. Let ω be a Cq differential form of degree r, or
r − form, on X. The space of r − forms of class Cq on X will be denoted
by Ωr

q(X). In this section everything is of class C∞, and Ωr = Ωr
∞(X).

Definition. Let X and Y be two oriented compact connected manifolds of
same dimension d, and f ∈ C∞(X;Y ) a map. There exists an integer, called
the degree of f and denoted by deg(f), such that:

(i) if ω ∈ Ωd(Y ) we have
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∫
X

f∗ω = deg(f)
∫

Y
ω.

(ii) if y is a regular value for f we have

deg(f) =
∑

x∈f−1(y)sgn(Jx(f)).

In particular, if f−1(y) = Φ the degree is zero.

We have the following properties of the degree:

P1 (Normalization): If IdX is the identity map on X, IdX(x) = x

∀ x ∈ X, then deg(IdX) = 1.

P2 (Existence of solution): If deg(f) 6= 0, then f : X → Y is surjective.

Indeed, if f is not surjective from Sard’s Lemma for manifolds there is
y ∈ Y a regular value such that f−1(y) = Φ and from definition deg(f) = 0,
contradiction.

P3 (Homotopy invariance):

Definition. Let X and Y be manifolds. Two maps f, g ∈ C∞(X;Y ) are
said to be homotopic if there exists a homotopy between f and g, that is, a
map F : [0, 1] × X → Y such that:

(i) For every t ∈ [0, 1] the map Ft : x 7→ F (t, x) is in C∞(X;Y );
(ii) The map TF : [0, 1] × TX → TY defined by (TF )(t, x) = TxFt is

continuous;
(iii) F0 = f and F1 = g.

Proposition.Let X and Y be oriented, compact, connected manifolds of

same dimension. If f ,g ∈ C∞(X;Y ) are homotopic we have deg(f) = deg(g).

Indeed, take ω ∈ Ωd(Y ) such that
∫

Y
ω 6= 0 and we have:

Ft ∈ C∞(X;Y ) ⇒ deg(Ft)
∫

Y
ω =

∫
X

F ∗
t ω ⇒ deg(Ft) =

∫
X

F∗

t
ω∫

Y

ω.

The map t ∈ [0, 1] 7→
∫

X
F ∗

t ω ∈ R is continuous, implying that the map
t ∈ [0, 1] 7→ deg(Ft) ∈ Z is continuous therefore deg(Ft) is constant ∀ t ∈ [0, 1]
⇒ deg(F0) = deg(F1) ⇒ deg(f) = deg(g).

P4 (Multiplication property):Let X, Y and Z be oriented, compact,
connected manifolds of same dimension d, and f ∈ C∞(X;Y ), g ∈ C∞(Y ;Z)
maps.We have deg(g ◦ f) = deg(g) · deg(f).
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Indeed, let ω ∈ Ωd(Z) and we have:∫
X

(g ◦ f)∗ω = deg(g ◦ f)
∫

Z
ω∫

X
(g ◦ f)∗ω =

∫
X

f∗ ◦ g∗ω =
∫

X
f∗(g∗ω) = deg(f)

∫
Y

g∗ω = deg(f) ·
deg(g)

∫
Z
ω

Therefore, deg(g ◦ f) = deg(g) · deg(f).
A basic fact is that this degree is independent of the choice of differential

form ω or the choice of the regular value y. If we switch the orientation of
both X and Y the degree does not change.

Degree extends to continuous maps f from X to Y because of the funda-
mental fact that if f, g ∈ C1(X;Y ), and are close in the C0 topology, then they
have the same degree. Degree theory is often defined directly for continuous
maps via the action of the map on nth degree homology.

2. Fixed points

In this section all maps are at least of class C0.

Proposition 1.
Let X = Y = Sd = {x ∈ R

d+1| ‖x‖ = 1}. The degree of antipodal map

g : Sd → Sd, g(x) = −x ∀ x ∈ Sd, is deg(g) = (−1)d+1.

Proof: If ω is the canonical volume form on Sd we have g∗ω = (−1)d+1ω.

⇒
∫

Sdg∗ω = (−1)d+1
∫

Sdω ⇒ deg(g) = (−1)d+1.

Proposition 2.
Let f : Sd → Sd be a continuous map such that deg(f) 6= (−1)d+1. Then

f has at least a fixed point.

Proof: Suppose that f(x) 6= x ∀ x ∈ Sd ⇒ −f(x) 6= −x, ∀ x ∈ Sd.

Let g : Sd → Sd, g(x) = −x, ∀ x ∈ Sd, the antipodal map.
Thus
g(x) = −x 6= −f(x)∀x ∈ Sd and f(x), g(x) ∈ Sd.

We obtain
‖(1 − t)f(x) + tg(x)‖ 6= 0, ∀ x ∈ Sd, ∀t ∈ [0; 1].
Then it results that F : [0; 1] × Sd → Sd is a homotopy between f and g,

where
F [t, x] = (1−t)f(x)+tg(x)

‖(1−t)f(x)+tg(x)‖ and F [0, x] = f(x), F [1, x] = g(x).

It follows from homotopy invariance that deg(f) = deg(g) = (−1)d+1, con-
tradiction.
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Proposition 3.
If d is even and if f : Sd → Sd is homotopic with IdSd , then f has a fixed

point.

Proof: Assuming that f has no fixed points we shall derive a con-
tradiction. Indeed by the proof of Proposition 2, we have that deg(f) =
(−1)d+1 = −1, since d is even. On the other hand,by multiplication prop-
erty, deg(IdSd) = deg(IdSd ◦ IdSd) = deg(IdSd) · deg(IdSd) and therefore
deg(IdSd) = +1. But by homotopy invariance, deg(f) = deg(IdSd), contra-
diction.

Proposition 4.
Any continuous mapping f : S2k → S2k, k ∈ N either has a fixed point

or sends some point into its antipode.If deg(f) 6= −1 then f always has a

fixed point. If deg(f) 6= 1 then there is a point on the sphere mapped into its

antipode.

Proof: Let g : S2k → S2k, g(x) = −x, ∀ x ∈ S2k be the antipodal map.Let
us first assume that deg(f) 6= −1, but the mapping has no fixed points.We
have f(x) 6= −g(x), ∀x ∈ S2k, and by the proof of Proposition 2, deg(f) =
deg(g) = (−1)2k+1 = −1, contradiction.

Let deg(f) 6= 1 and f(x) 6= −x ∀x ∈ S2k. We have f(x) 6= −IdS2k(x)
∀x ∈ S2k, and by the proof of proposition2, deg(f) = deg(IdS2k) = 1, con-
tradiction.Suppose that we have no prior information on the degree of the
mapping f. If it has no fixed points, then we can conclude, as before, that
deg(f) = −1. Assuming that no point x is mapped by f into its antipode,we
can again conclude, as before, that deg(f) = +1. The proposition is proved.

Proposition 5.

(i) If f, g : S2k → S2k, then at least one of the three mappings f, g, and

g ◦ f has a fixed point. In particular, the composition f ◦ f of any mapping f

with itself has a fixed point.

(ii) Any mapping f : S2k → S2k either has a fixed point or has a pair of

points that exchange their positions.

Proof: If deg(f) 6= −1 or deg(g) 6= −1 by Proposition 4, it results f or g

has a fixed point.
If deg(f) = −1 and deg(g) = −1, then deg(g ◦ f) = deg(g) · deg(f) = +1,

thus deg(g ◦ f) 6= −1 and g ◦ f has a fixed point.In particular, deg(f ◦ f) =
(deg(f))2 6= −1. Thus, ∃ x ∈ S2k such that f(f(x)) = x. Let y = f(x) and we
have f(y) = x. If x = y this is a fixed point,else f has a pair of points that



Some elementary applications of topological degree 107

exchange their positions.
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