RÜCKERT NULLSTELLENSATZ FOR NORMED, NON-DISCRETE FIELDS USING NON-STANDARD ANALYSIS

Angela Păsărescu
Dedicated to Professor Mirela Ştefănescu on the occasion of her 60th birthday

Abstract

Rückert Nullstellensatz is the analogous for convergent series over K^{n} (K-normed, non-discrete, complete field) of the well-known Hilbert Nullstellensatz for polynomials over an algebraically closed field. For K an arbitrary algebraically closed (normed, non-discrete, complete) field, the Rückert Nullstellensatz is proved in [A] using algebraic methods. The particular case $K=\mathbf{C}$ ($=$ the field of complex numbers) is proved, for instance, in $[\mathrm{Tg}]$ using Puiseux series and in [Ro2] using generic points in a non-standard context. In this note we prove a new version of the Rückert Nullstellensatz for the extension $K \subset \tilde{K}$, where K is a normed, non-discrete, complete field and \tilde{K} is the completion of the algebraic closure of K (see Theorem 2.2). When K is algebraically closed, we obtain, as a Corollary (Corollary 2.3), the Rückert Nullstellensatz fom [A]. The proof consists in clarifications and adaptations of the proof from $[\mathrm{Ro} 2]$ to the present context. We also use $[\mathrm{I}]$.

1 Germs on K^{n}

For the non-standard context we use the notations, terminology and Principles from [Ro1], [Dv] and for the standard context the notations, terminology and Theorems from [ACJ], part. I.
1.1. Let K be a normed (the norm will be denoted by $|\cdot|$), non-discrete, complete field; then K^{n} becomes, naturally, a (complete) metric space. We define on $\mathcal{P}\left(K^{n}\right)$ the following (equivalence) relation: if $p \in K^{n}$ and $A_{1}, A_{2} \subset$

[^0]$K^{n}, p \in A_{1} \cap A_{2}$, then $A_{1} \sim A_{2}$ if and only if there is an open neighborhood U of p in K^{n} such that $A_{1} \cap U=A_{2} \cap U$. The classes of equivalence of the previous relation are called the germs of sets in p.

We consider the following (well-defined) relations:

1) If α, β are germs of sets in p, then $\alpha \leq \beta$ if and only if $(\exists) A_{1} \in \alpha$, ($\exists) A_{2} \in \beta,(\exists) U=$ open neighborhood of p in K^{n} such that $A_{1} \cap U \subseteq A_{2} \cap U$. It follows that $\alpha=\beta$ if and only if $\alpha \leq \beta$ and $\beta \leq \alpha$.
2) If α, β, γ are germs of sets in p, then $\gamma=\alpha \wedge \beta$ if and only if (\exists) $A_{1} \in \alpha$, ($\exists) A_{2} \in \beta,(\exists) A_{3} \in \gamma$, such that $A_{1} \cap A_{2}=A_{3}$.
3) If α, β, γ are germs of sets in p, then $\gamma=\alpha \vee \beta$ if and only if (\exists) $A_{1} \in \alpha$, $(\exists) A_{2} \in \beta,(\exists) A_{3} \in \gamma$, such that $A_{1} \cup A_{2}=A_{3}$.

Let there be (cf. [ACJ])

$$
\mathcal{A}_{n, p}:\left\{f: A \subset K^{n} \rightarrow K \mid f \text { analytic on } A \text { and }(\exists) \cup \subset K^{n},\right.
$$ open neighborhood of $p, U \subset A\}=\mathcal{A}_{n, p, K}$.

We consider on $\mathcal{A}_{n, p}$ the following (equivalence) relation: $f_{1} \sim f_{2}$ if and only if $(\exists) U \subset K^{n}$, open neighborhood of p, such that $\left.f_{1}\right|_{U}=\left.f_{2}\right|_{U}$. A class of functions as before is called a germ of analytic function in p. Let's denote by $\mathcal{O}_{n, p}$ the set of germs of analytic functions in p. Since K is a (commutative) ring, it is easy to see that $\mathcal{O}_{n, p}=\left(\mathcal{O}_{n, p},+, \cdot\right)$ can be naturally organized as a (commutative) ring with identity. If necessary, we also write $\mathcal{O}_{n, p}=\mathcal{O}_{n, p, K}$.

Let $K \subset L$ be an extension of normed, non-discrete, complete fields.
If $p \in K^{n}$ and $S \subset \mathcal{O}_{n, p}$ is a finite set, the associated variety of S in L is

$$
\mathcal{V}_{L}(S):=\wedge\left\{\varphi^{-1}(0) \mid \varphi \in S\right\} ;
$$

here $\varphi^{-1}(0)$ is the class of $f^{-1}(0)$ for some $f \in \varphi$.
If $p \in K^{n}$ and α is a germ of sets from L^{n} in p, then the ideal of α is the set

$$
\mathcal{I}(\alpha):=\left\{\varphi \in \mathcal{O}_{n, p, K} \mid \alpha \leq \varphi^{-1}(0)\right\} \in \operatorname{Id}\left(\mathcal{O}_{n, p, K}\right) .
$$

If I is an ideal in some ring R, then the radical of I is

$$
\sqrt{I}:=\left\{x \in R \mid(\exists) n \in \mathbf{N}^{*}, x^{n} \in I\right\} .
$$

The germs of sets are not usual sets and the germs of analytic functions are not usual analytic functions. We'll show how, by using non-standard methods, we can replace the germs of sets by sets and the germs of analytic functions by analytic functions (following [Ro2]).
1.2. We recall here some results from [Ro1] and [Dv].

We consider that all objects we need belong to a standard universe \mathcal{U}, endowed with a language $\mathcal{L}=(\equiv, \in)$. Let's denote by * \mathcal{U} the corresponding
non-standard universe (an enlargement of \mathcal{U}) and by ${ }^{*} \mathcal{L}=\left({ }^{*} \equiv,{ }^{*} \in\right)$ the corresponding language. If T is a standard object in \mathcal{U}, we denote by ${ }^{*} T$ its enlargement in ${ }^{*} \mathcal{U}$; if s is a sentence of \mathcal{L}, we denote by ${ }^{*} s$ its extension to ${ }^{*} \mathcal{L}$ (i.e. we keep all the logic connectors and the bounded quantifiers and their order; we replace the constants and objects T from s with the corresponding ${ }^{*} T$). In the non-standard universe some Principles hold. We recall here two of them, useful in the sequel.
(T.P.) Transfer Principle: Let s be a sentence of \mathcal{L}. Then

$$
* \mid{ }^{*} s \quad \text { if and only if } \quad \models s
$$

(We write $\models s$ if and only if s holds in \mathcal{U} and $* \models{ }^{*} s$ if and only if $* s$ holds in * \mathcal{U}.)

Let r be a binary relation $r \in \mathcal{U}$. We denote by $\operatorname{dom}(r):=\{x \mid(\exists) y$ such that $(x, y) \in r\}$. The relation r is called concurrent if for any finite set $\left\{a_{1}, \ldots, a_{m}\right\} \subset \operatorname{dom}(r)$, there is b such that $\left(a_{i}, b\right) \in r, i=\overline{1, m}$.
(C.P.) Concurrence Principle: Let r be a concurrent relation in \mathcal{U}. Then there is an element $b \in{ }^{*} \mathcal{U}$ such that $\left({ }^{*} a, b\right) \in{ }^{*} r$, for all $a \in \operatorname{dom}(r)$.
1.3. Let's consider now an extension ${ }^{*} K^{n}$ of K^{n}; then ${ }^{*} K^{n}$ is a normed, non-discrete, non-complete space, $K^{n} \subset{ }^{*} K^{n}$. If $p \in K^{n}$, the halo of p is

$$
\operatorname{hal}_{n}(p):=\left\{\left.q \in^{*} K^{n}\right|^{*} d(p, q) \simeq 0\right\}
$$

Here, for $x \in{ }^{*} \mathbf{R}$ ($=$ the field of hyperreal numbers), we write $x \simeq 0$ if ${ }^{*}|x|<\varepsilon,(\forall) \varepsilon \in \mathbf{R}, \varepsilon>0 ;{ }^{*} d$ is the extension with hyperreal values to ${ }^{*} K^{n}$ of the usual metric d on K^{n}. If $p=\left(p_{1}, \ldots, p_{n}\right) \in K^{n}, p_{i} \in K, i=\overline{1, r}$, then

$$
\operatorname{hal}_{n}(p)=h a l_{1}\left(p_{1}\right) \times h a l_{1}\left(p_{2}\right) \times \ldots \times h a l_{1}\left(p_{n}\right)
$$

We can see that

$$
h a l_{n}(p)=\cap\left\{{ }^{*} U \mid U \text { is an open neighborhood of } p \text { in } K^{n}\right\} .
$$

Let τ be the (metric) topology on K^{n}. Then the elements of ${ }^{*} \tau$ are the ${ }^{*}$-open sets from ${ }^{*} K^{n}$. It can be seen that there is a ${ }^{*}$-open set $\nu \subseteq h a l_{n}(p)$ (indeed, apply the Concurrence Principle (C.P.) to the concurrent relation: $U r V$ if and only if $U, V \in \tau$ and $p \in V \subseteq U)$.

Definition 1.3.1. A set $\alpha \in{ }^{*} K^{n}$ is called a germ of non-standard sets in p if $(\exists) A \subseteq K^{n}$ such that $\alpha={ }^{*} A \cap \operatorname{hal}_{n}(p)$. A function $\varphi: \operatorname{hal}_{n}(p) \rightarrow{ }^{*} K$ is called a germ of non-standard analytic functions in p if $(\exists) \psi \in \mathcal{O}_{n, p},(\exists) f \in \psi$ such that $\varphi={ }^{*} f \mid h a l_{n}(p)$ (it is easy to see that $A \sim B \Rightarrow{ }^{*} A \cap \operatorname{hal}_{n}(p)=$ ${ }^{*} B \cap \operatorname{hal}_{n}(p)$ and $\left.f \sim g \Rightarrow^{*} f\left|\operatorname{hal}_{n}(p)={ }^{*} g\right| \operatorname{hal}_{n}(p)\right)$.

Let's denote by $\mathcal{G}_{n, p}$ the lattice of germs of sets in p, by $\mathcal{N}_{n, p}$ the lattice of germs of non-standard sets in p (with the usual operations on sets) and by
$\Gamma_{n, p}$ the ring of germs of non-standard analytic functions in p (with the usual operations on functions); we recall that $\mathcal{O}_{n, p}$ is the set of germs of analytic functions in p. If necessary, we write $\mathcal{N}_{n, p, K}, \mathcal{G}_{n, p, K}, \Gamma_{n, p, K}, \mathcal{O}_{n, p, K}$. We define the following functions:

$$
\sigma: \mathcal{N}_{n, p} \rightarrow \mathcal{G}_{n, p}, \quad \delta: \Gamma_{n, p} \rightarrow \mathcal{O}_{n, p} \quad \text { by }
$$

$\sigma\left({ }^{*} A \cap h a l_{n}(p)\right)=[A](=$ the germ of sets in p with the representative $A)$
$\delta\left({ }^{*} f \mid h a l_{n}(p)\right)=[f](=$ the germ of analytic functions in p with representative $f)$.
Let's prove that σ is well-defined. If ${ }^{*} A \cap \operatorname{hal}_{n}(p)={ }^{*} B \cap h a l_{n}(p)$, we consider the sentence

$$
s=(\exists x \in \tau)(p \in x \wedge A \cap x=B \cap x) .
$$

Then

$$
{ }^{*} s=\left(\exists x \in{ }^{*} \tau\right)\left(p \in x \wedge^{*} A \cap x={ }^{*} B \cap x\right)
$$

But ${ }^{*} s$ is true, since any ${ }^{*}$-open set $S \subset \operatorname{hal}_{n}(p)$ satisfies ${ }^{*} A \cap \nu={ }^{*} B \cap \nu$, and we proved that such a ν exists (before the Definition 1.3.1). By the Transfer Principle (T.P.) we deduce that s is true, so $A \sim B$, hence $[A]=[B]$.

As for δ, if ${ }^{*} f\left|\operatorname{hal}_{n}(p)={ }^{*} g\right| h a l_{n}(p)$, then for any ${ }^{*}$-open set $\nu \subset \operatorname{hal}_{n}(p)$ we have ${ }^{*} f\left|\nu={ }^{*} g\right| \nu$. Again by the Transfer Principle (T.P.) we deduce that the sentence

$$
(\exists x \in \tau)(p \in x \wedge f|x=g| x)
$$

is true, so $f \sim g$, hence $[f]=[g]$.
Further, it is straightforward to prove that σ and δ are isomorphisms (of lattices and rings, respectively).
1.4. In 1.1 we defined, for $K \subset L$ an extension of normed, non-discrete, complete fields, the variety $\mathcal{V}_{L}(S)$ associated to a finite set $S \subset \mathcal{O}_{n, p, L}$ of germs of analytic functions in $p \in K^{n}$. Now we define the non-standard variety $\mathcal{V}_{L}(S)$ associated to a finite set $S \subset \Gamma_{n, p, L}$ of germs of non-standard analytic functions. So, let $S \subset \Gamma_{n, p, L}$ be a set as before. Then, in this context

$$
\mathcal{V}_{L}(S):=\cap\left\{\varphi^{-1}(0) \mid \varphi \in S\right\} .
$$

For $p \in K^{n} \subset L^{n}$, we denote by $\operatorname{hal}_{n}(p)=h a l_{n}^{K}(p)$ the halo of p in K^{n} and by $\operatorname{hal}_{n}^{L}(p)$ the halo of p in $L^{n}\left(\right.$ clearly, $\left.\operatorname{hal}_{n}(p) \subset \operatorname{hal}_{n}^{L}(p)\right)$.

Now,

$$
\varphi^{-1}(0)=\left({ }^{*} f \mid h a l_{n}(p)\right)^{-1}(0)=\left\{\left.x \in h a l_{n}^{L}(p)\right|^{*} f(x)=0\right\} \subset h a l_{n}^{L}(p)
$$

is a set of points, so an usual set (here $\left.\varphi={ }^{*} f \mid h a l_{n}(p)\right)$.

It is easy to see, since σ and δ are isomorphisms, that, if $\varphi_{i}={ }^{*} f_{i} \mid h a l_{n}(p)$, $i=\overline{1, m}$, we have

$$
\sigma\left(\mathcal{V}_{L}\left(\varphi_{1}, \ldots, \varphi_{m}\right)\right)=\mathcal{V}_{L}\left(\delta\left(\varphi_{1}\right), \ldots, \delta\left(\varphi_{m}\right)\right)
$$

(use the definitions of $\mathcal{V}(S)$ from 1.1 and 1.4).
1.5. Let $f: V \subset K^{n} \rightarrow K$ be an analytic function on an open neighborhood V of the origin and put

$$
f\left(t_{1}, \ldots, t_{n}\right)=\sum_{j \geq 0} f_{j}\left(t_{1}, \ldots, t_{n}\right)
$$

where f_{j} is a homogeneous polynomial of degree j, for any $j \geq 0$. We say that f is regular in t_{n} of order $k>0$ if $f_{j} \equiv 0,(\forall) j<k$ and t_{n}^{k} has a non-zero coefficient in f_{k}. If $f=\sum_{j \geq k} f_{j}, f_{k} \not \equiv 0$, it is easy to find a non-singular linear transformation $t_{j} \rightarrow t_{j}^{\prime}$, transforming f into a regular function of order k in t_{n}^{\prime}.

Let $\mathcal{O}_{n}:=\mathcal{O}_{n, 0}$. A Weierstrass polynomial of degree $k>0$ in t_{n} is a function $h \in \mathcal{O}_{n}$ of the form

$$
h\left(t_{1}, \ldots, t_{n}\right)=t_{n}^{k}+a_{1}\left(t_{1}, \ldots, t_{n-1}\right) t_{n}^{k-1}+\ldots+a_{k}\left(t_{1}, \ldots, t_{n-1}\right),
$$

where $a_{j} \in \mathcal{O}_{n-1}$ and $a_{j}(0, \ldots, 0)=0, j=\overline{1, k}$.
A germ of non-standard analytic functions regular in t_{n} of order $k>0$ (resp. of non-standard polynomials in t_{n}, resp. of non-standard Weierstrass polynomials of degree $k>0$ in $\left.t_{n}\right)$ is $f^{*} \mid h a l_{n}(0)$, where f is an analytic function regular in t_{n} of degree $k>0$ (resp. a polynomial in t_{n}, resp. a Weierstrass polynomial of degree $k>0$ in t_{n}). By the Transfer Principle (P.T.) we have the following non-standard versions of the well-known (see [ACJ]) Weierstrass Preparation and Division Theorems:

Theorem 1.5.1. (non-standard Weierstrass Preparation): Let φ be a germ of non-standard analytic functions in the origin, regular of order $k>0$ in t_{n}. Then there is a germ of non-standard Weierstrass polynomials of degree k in t_{n}, denoted by ω, and a germ of non-standard analytic functions in the origin, denoted by ψ, such that $\psi(0) \neq 0$ and $\varphi=\omega \cdot \psi$.

Theorem 1.5.2. (non-standard Weierstrass Division): Let ω be a germ of non-standard Weierstrass polynomials of degree k in t_{n} and φ a germ of non-standard analytic functions in the origin. Then, there is a germ of nonstandard analytic functions, denoted by Δ, and a germ of non-standard polynomials of degree $<k$ in t_{n}, denoted by ρ, such that $\varphi=\omega . \Delta+\rho$.

2 Rückert Nullstellensatz

Let K be a non-discrete, complete normed field $K=\left(K,|\cdot|_{K}\right)$. Let \bar{K} be an algebraic closure of K. One knows that $|\cdot|_{K}$ extends uniquely to a non-discrete norm $|\cdot|_{\bar{K}}$ on \bar{K} ([La], page 291), not necessarily complete. Let's denote by $\tilde{K}=\hat{K}$ (the completion of $\bar{K})\left(\right.$ see [La], page 286), $\tilde{K}=\left(\tilde{K},|\cdot|_{\tilde{K}}\right)$.

Lemma 2.1. $K \subset \tilde{K}$ and \tilde{K} is an algebraically closed, non-discrete, complete normed field.

Proof. If $K=\left(K,|\cdot|_{K}\right)$ is archimedean, then the characteristic of K is zero (if not, $\left.|\cdot|_{K}\right|_{P}, P=$ the prime field of K is bounded, so $|\cdot|_{K}$ is nonarchimedean, by $[\mathrm{IM}]$, page 12), so $\mathbf{Q} \subset K$. We denote by $|\cdot|_{\mathbf{Q}}:=\left.|\cdot|_{K}\right|_{\mathbf{Q}}$, so $|\cdot|_{\mathbf{Q}}=|\cdot|^{\alpha}, 0<\alpha \leq 1$, where $|\cdot|$ is the usual module on \mathbf{Q}, by Ostrovschi Theorem ([IM], page 15). But K is complete, so $K \supset \hat{\mathbf{Q}}=\mathbf{R}$ (the completion of \mathbf{Q}, any two norms on \mathbf{R} being equivalent, by [La], Prop. 3, page 288). By Ghelfand-Mazur Theorem ([La], page 290), we deduce that $K=\mathbf{R}$ or $K=\mathbf{C}$, so $\bar{K}=\mathbf{C}$, so $\tilde{K}=\mathbf{C}$, i.e. an algebraically closed, non-discrete, complete normed field.

If K is non-archimedean, take $\bar{K}=$ the algebraic closure of K, which is again a non-archimedean field. But then $\tilde{K}=\hat{\bar{K}}$ (the completion of \bar{K}) remains algebraically closed by [R], page 146 .

Let $\mathcal{O}_{n}:=\mathcal{O}_{n, 0, K}$ and $\tilde{\mathcal{O}}_{n}:=\mathcal{O}_{n, 0, \tilde{K}}$ (see 1.1). Clearly, $\mathcal{O}_{n} \subset \tilde{\mathcal{O}}_{n}$. Considering the extension $K \subset \tilde{K}$ of normed, non-discrete, complete fields, we recall that we defined in $1.1 \mathcal{V}_{\tilde{K}}(S)$, for $S \subset \tilde{\mathcal{O}}_{n}$ a finite set and $I(\alpha)$ if $\alpha \in \mathcal{G}_{n, 0, \tilde{K}}$ (notation from 1.3). If $I \in \operatorname{Id}\left(\mathcal{O}_{n}\right)$ is an ideal, it is finitely generated (use noetherianity) by, say, $\varphi_{1}, \ldots, \varphi_{m}$. Then $\mathcal{V}_{\tilde{K}}(I):=\mathcal{V}_{\tilde{K}}\left(\varphi_{1}, \ldots, \varphi_{m}\right)$. In this paragraph we prove the following extension of the classical Rückert Nullstellensatz:

Theorem 2.2. Let K be a normed, non-discrete, complete field and $I \in$ $\operatorname{Id}\left(\mathcal{O}_{n}\right)$ be an ideal. Then

$$
\mathcal{I}\left(\mathcal{V}_{\tilde{K}}(I)\right)=\sqrt{I}
$$

Corollary 2.3. (Rückert Nullstellensatz from [A]) If K is a normed, nondiscrete, complete, algebraically closed field, then $\mathcal{I}(\mathcal{V}(I))=\sqrt{I}$, for any ideal $I \in \operatorname{Id}\left(\mathcal{O}_{n}\right)$.

Proof. We have $K=\tilde{K}$ in this case.
We shall prove an analogous of the previous Theorem 2.2 for germs of nonstandard analytic functions (Theorem 2.16); then the Theorem 2.2 will follow using the isomorphisms σ and δ from Section 1.3, using the last equality from Section 1.4 (see §1).

We put $\Gamma_{n}:=\Gamma_{n, 0, K}, \tilde{\Gamma}_{n}:=\Gamma_{n, 0, \tilde{K}}$ (see 1.3). We have $0 \in K^{n} \subset \tilde{K}^{n}$. We put $h a l_{n}(0):=h a l_{n}^{K}(0)$ and $\widehat{\operatorname{hal}_{n}}(0):=\operatorname{hal}_{n}^{\tilde{K}}(0)$ (see 1.4). We have $h a l_{n}(0) \subseteq$ $\widehat{h a l_{n}}(0)$.

Definition 2.4. If $I \subset \Gamma_{n}$ is an ideal, then $p \in \widehat{h a l_{n}}(0)$ is a generic point for I if $I=\mathcal{I}(p)\left(=\left\{\varphi \in \Gamma_{n} \mid \varphi(p)=0\right\}\right)$.

Lemma 2.5. The ideal (0) from Γ_{n} has a generic point in $\operatorname{hal}_{n}(0)$ (so it has a generic point in $\left.\widehat{h a l_{n}}(0)\right)$.

Proof. We define the binary relation $(f, U) r W$ if and only if f is analytic and non-zero on the open neighborhood U of the origin and $W \subseteq U$ is a nonempty open subset such that $f(x) \neq 0,(\forall) x \in W$. It is easy to see that r is a concurrent relation. By the Concurrence Principle (C.P.), we find a *-open set $\nu \neq \emptyset$ such that for any $f \in \Gamma_{n} \backslash\{0\}, f$ analytic on U implies $\nu \subseteq{ }^{*} U$ and $f(x) \neq 0,(\forall) x \in \nu$. It follows that $\nu \subseteq \cap\left\{{ }^{*} U \mid U\right.$ open neighborhood of $0\}=h a l_{n}(0)$. Then $(0)=\mathcal{I}(\xi)$, for any $\xi \in \nu$.

If $P \subseteq \Gamma_{n}$ is an ideal, $P \neq 0$, it is easy to see that $P \subseteq \mathcal{I}(0)$, which is the only maximal ideal of Γ_{n}, so $\Gamma_{n} \backslash \mathcal{I}(0)$ is the set of invertible elements of the local ring Γ_{n}.

Lemma 2.6: If $P \in \operatorname{Spec}\left(\Gamma_{1}\right), P \neq 0$, then $P=\mathcal{I}(0)$.
Proof. Let $\varphi \neq 0, \varphi \in P$. Then $\varphi(0)=0$, so $\varphi(z)=z^{k} \psi(z)$, with $\psi(0) \neq 0$. Hence $\varphi \in P, \psi \notin P, P$ prime, so $z^{k} \in P$, so $z \in P$.

Theorem 2.7: If $P \in \operatorname{Spec}\left(\Gamma_{n}\right), P \neq \Gamma_{n}$, then P has a generic point in $\widehat{h a l_{n}}(0)$.

Proof. If $P=0$, use Lemma 2.5. If $P \neq 0$, we use induction on n. If $n=1$, use Lemma 2.6. Suppose now that we know the Theorem 2.7 for Γ_{n} and we want to prove it for Γ_{n+1}.

Let $P \in \operatorname{Spec}\left(\Gamma_{n+1}\right), P \neq 0$. Put $P^{\prime}:=P \cap \Gamma_{n}$ and $P^{\prime \prime}:=P \cap \Gamma_{n}\left[t_{n+1}\right]$. It is easy to see that if P is proper then P^{\prime} and $P^{\prime \prime}$ are also proper ideals and $P^{\prime} \in \operatorname{Spec}\left(\Gamma_{n}\right)$. By the induction hypothesis, we know that P^{\prime} has a generic point $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \widehat{\operatorname{hal}_{n}}(0)$. Let's define $\varepsilon: \Gamma_{n} \rightarrow{ }^{*} \tilde{K}$ by $\varepsilon(\varphi):=\varphi\left(\xi_{1}, \ldots, \xi_{n}\right)$ the evaluation morphism. We have $P^{\prime}=K e r \varepsilon$. We get the embedding $G: \Gamma_{n} / P^{\prime} \rightarrow{ }^{*} L^{\prime}$, induced by ε.

Let $l: \Gamma_{n+1} \rightarrow \Gamma_{n+1} / P$ be the canonical projection and $i: \Gamma_{n} \hookrightarrow \Gamma_{n+1}$ be the natural inclusion. Then $\Gamma_{n} \xrightarrow{l \circ i} \Gamma_{n+1} / P$. We have $\operatorname{Ker}(l \circ i)=P \cap \Gamma_{n}=P^{\prime}$, so we get the extension of rings $\Gamma_{n} / P^{\prime} \hookrightarrow \Gamma_{n+1} / P$.

Lemma 2.8: Let $P \in \operatorname{Spec}\left(\Gamma_{n}\right), P \neq 0$. Then there is a non-standard Weierstrass polynomial $\omega \in P$.

Proof: Let $\varphi \in P, \varphi \neq 0$. We may suppose that φ is regular of order $k>0$ in t_{n}. By Theorem 1.5.1, we have $\varphi=\omega \pi$, where $\pi \in \Gamma_{n}$ is invertible
and ω is a non-standard Weierstrass polynomial. $\varphi=\omega \pi \in P, \pi \notin P$, hence $\omega \in P$.

Lemma 2.9: Γ_{n+1} / P is an integral extension of Γ_{n} / P^{\prime}.
Proof. Take $\omega \in P$ a non-standard Weierstrass polynomial of degree m in t_{n+1} (cf. Lemma 2.8). Then

$$
0=l(\omega)=l\left(t_{n+1}\right)^{m}+\sum_{j=0}^{m-1} l\left(a_{j}\right) l\left(t_{n+1}\right)^{j}
$$

where $l\left(a_{j}\right) \in \Gamma_{n} / P^{\prime}$, for $0 \leq j \leq m-1$. So $l\left(t_{n+1}\right)$ is integer over Γ_{n} / P^{\prime}.
Let now $\nu \in \Gamma_{n+1}$. By Theorem 1.5.2 there is $\Delta \in \Gamma_{n+1}$ and $\rho \in \Gamma_{n}\left[t_{n+1}\right]$ such that $\nu=\omega \Delta+\rho$. So $l(\nu)=l(\omega) l(\Delta)+l(\rho)=l(\rho)(\omega \in P$, so $l(\omega)=0)$. Since $\rho \in \Gamma_{n}\left[t_{n+1}\right], l(\rho)$ (hence $\left.l(\nu)\right)$ is a polynomial in $l\left(t_{n+1}\right)$ with coefficients in Γ_{n} / P^{\prime}. Since we already proved that $l\left(t_{n+1}\right)$ is integral over Γ_{n} / P^{\prime} we have the lemma.

Lemma 2.10: Let p be a polynomial over the ring of continuous functions on an open neighborhood V of the origin of \tilde{K}^{n} with values in \tilde{K}. Suppose that

$$
p\left(z_{1}, \ldots, z_{n+1}\right)=z_{n+1}^{k}+\sum_{j=0}^{k-1} a_{j}\left(z_{1}, \ldots, z_{n}\right) z_{n+1}^{j}
$$

where a_{0}, \ldots, a_{k-1} are continuous functions on V and $a_{j}(0, \ldots, 0)=0,0 \leq$ $j \leq k-1$. Let $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \widehat{\operatorname{hal}_{n}}(0)$. Then any root of the polynomial $q(z):=p\left(\xi_{1}, \ldots, \xi_{n}, z\right)$ from ${ }^{*} \tilde{K}$ is infinitesimal.

Proof. Let $\xi \in{ }^{*} K$ be a root of q. If $\xi=0$, O.K. If $\xi \neq 0$, we have

$$
0=\xi^{k}+\sum_{j=0}^{k-1} b_{j}\left(\xi_{1}, \ldots, \xi_{n}\right) \xi^{j} \mid: \xi^{k} \neq 0 \quad \text { so } \quad-1=\sum_{j=0}^{k-1} b_{j}\left(\xi_{1}, \ldots, \xi_{n}\right) \xi^{j-k}
$$

If ξ is not infinitesimal, then ξ^{j-k} is finite for any $j, 0 \leq j \leq k-1$. Because the functions b_{j} are all continuous that $b_{j}\left(\xi_{1}, \ldots, \xi_{n}\right)$ are all infinitesimal. So, 1 is infinitesimal, a contradiction.

Construction 2.11: Let Λ be the field of fractions of $\Gamma_{n} / P^{\prime}\left(\Lambda=\left(\Gamma_{n} / P^{\prime}\right)_{0}\right)-$ see the beginning of the proof of Theorem 2.7, and put

$$
p(X):=X^{n}+\sum_{j=0}^{m-1} l\left(a_{j}\right) X^{j}, \quad p \in \Lambda[X],
$$

where $\omega \in P, \omega=t_{n+1}^{m}+\sum_{j=0}^{m-1} a_{j} t_{n+1}^{j}$ is a Weierstrass polynomial, cf. Lemma 2.8. Then $p\left(l\left(t_{n+1}\right)\right)=0$ and let $q \in \Lambda[X]$ be an irreducible factor of p such that $q\left(l\left(t_{n+1}\right)\right)=0$. We extend G (induced by the evaluation morphism $\varepsilon)$, defined before Lemma 2.8 to an injective morphism, denoted also by G, $G: \Lambda \hookrightarrow{ }^{*} \tilde{K}_{2}$ in a natural way. Then $\Lambda[X] \stackrel{G}{\hookrightarrow} * \tilde{K}[X]$ and let ξ_{n+1} be a zero of $G(q)$ in ${ }^{*} \tilde{K}$, since $\tilde{K}\left(\right.$ so $\left.^{*} \tilde{K}\right)$ is algebraically closed. Then $G(p)\left(\xi_{n+1}\right)=0$ (because $G(q) \mid G(p)$) and

$$
G(p)(X)=X^{m}+\sum_{j=0}^{m-1} G\left(l\left(a_{j}\right)\right) X^{j}=X^{m}+\sum_{j=0}^{m-1} \hat{a}_{j}\left(\xi_{1}, \ldots, \xi_{n}\right) X^{j}
$$

From Lemma 2.10 we deduce
Lemma 2.12. Let $P \in \operatorname{Spec}\left(\Gamma_{n+1}\right), 0 \neq P \neq \Gamma_{n+1}$ and suppose that $P^{\prime}=P \cap \Gamma_{n}$ has a generic point $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \widehat{h a l}_{n}(0)$. Then, if ξ_{n+1} is from Construction 2.11, we have $\left(\xi_{1}, \ldots, \xi_{n+1}\right) \in \widehat{h a l}_{n+1}(0)$.

Lemma 2.13: If $P, P^{\prime},\left(\xi_{1}, \ldots, \xi_{n}\right)$ are as in the previous lemma and ξ_{n+1} is from Construction 2.11, then $(\forall) \varphi \in \Gamma_{n+1},(\exists) \rho \in \Gamma_{n}\left[t_{n+1}\right]$ such that $\varphi\left(\xi_{1}, \ldots, \xi_{n+1}\right)=\rho\left(x i_{1}, \ldots, \xi_{n+1}\right)$.

Proof. $\xi_{n+1} \in^{*} \tilde{K}$ is a zero of $G(q)$. From Lemma 2.12, $\left(\xi_{1}, \ldots, \xi_{n+1}\right) \in$ $\widehat{h a l}_{n+1}(0)$ and we have for $p \in \Lambda[X]$ (see Construction 2.11) with q as a factor: $0=G(p)\left(\xi_{n+1}\right)=\xi_{n+1}^{m}+\sum_{j=0}^{m-1} a_{j}\left(\xi_{1}, \ldots, \xi_{n}\right) \xi_{n+1}^{j}=\omega\left(\xi_{1}, \ldots, \xi_{n+1}\right)$, where ω is the non-standard Weierstrass polynomial with coefficients
$a_{1}, \ldots, a_{m-1} \in \Gamma_{n}$. From Theorem 1.5.2 we find $\Delta \in \Gamma_{n+1}$ and $\rho \in \Gamma_{n}\left[t_{n+1}\right]$, $\operatorname{deg} \rho<m$, such that $\varphi=\omega \Delta+r h o$. But then $\varphi\left(\xi_{1}, \ldots, \xi_{n+1}\right)=\rho\left(\xi_{1}, \ldots, \xi_{n+1}\right)$.

Construction 2.14: We recall that the evaluation morphism ε induces the embedding $G: \Gamma_{n} / P^{\prime} \hookrightarrow{ }^{*} \tilde{K}$ (before Lemma 2.8). Let's consider the following fields: $\Lambda:=\left(\Gamma_{n} / P^{\prime}\right)_{0}, \Omega:=\left(\Gamma_{n}\left[t_{n+1}\right] / P^{\prime \prime}\right)_{0}, \Phi:=\left(\Gamma_{n+1} / P\right)_{0}$. We have the natural inclusions: $\Lambda \hookrightarrow \Omega \hookrightarrow \Phi$. From Lemma 2.9 we deduce that the extension $\Lambda \hookrightarrow \Phi$ is algebraic, so the extensions $\Lambda \hookrightarrow \Omega$ and $\Omega \hookrightarrow \Phi$ are also algebraic. So, if we consider the polynomial q from Construction 2.11, supposing that its dominant coefficient is 1 , then $q=\operatorname{Irr}\left(l\left(t_{n+1}\right), \Omega\right)$. Firstly, the canonical projection $l: \Gamma_{n}\left[t_{n+1}\right] \rightarrow \Gamma_{n}\left[t_{n+1}\right] / P^{\prime \prime}$ factorizes to $l_{1}:\left(\Gamma_{n} / P^{\prime}\right)\left[t_{n+1}\right] \rightarrow \Gamma_{n}\left[t_{n+1}\right] / P^{\prime \prime}$ and extends to fractions $l_{2}: \Lambda\left[t_{n+1}\right] \rightarrow \Omega$, $l_{2}\left(t_{n+1}\right)=l\left(t_{n+1}\right)$ (i.e. $\left.t_{n+1}\left(\bmod P^{\prime \prime}\right)\right)$. Secondly, the evaluation map ε extends to $\varepsilon^{\prime}: \Gamma_{n}\left[t_{n+1}\right] \rightarrow^{*} \tilde{K}$ by $\pi \mapsto \pi\left(\xi_{1}, \ldots, \xi_{n+1}\right)$. Because $\left(\xi_{1}, \ldots, \xi_{n}\right)$ is a generic point for P^{\prime}, we deduce that ε^{\prime} factorizes to $\varepsilon_{1}:\left(\Gamma_{n} / P^{\prime}\right)\left[t_{n+1}\right] \rightarrow^{*} \tilde{K}$
and extends to fractions $\bar{\varepsilon}^{\prime}: \Lambda\left[t_{n+1}\right] \rightarrow^{*} \tilde{K}$. We ex tend the embedding G to $G^{\prime}: \Gamma_{n}\left[t_{n+1}\right] / P^{\prime \prime} \rightarrow^{*} \tilde{K}$ such that $G^{\prime} \circ l=\varepsilon^{\prime}$, putting $G^{\prime}\left(l\left(t_{n+1}\right)\right):=\xi_{n+1}$. Finally, we get the following commutative diagram:

with Λ and Ω from above.
As the extensions $\Lambda \hookrightarrow \Omega$ is algebraic and q is irreducible, it follows that Ker $l_{2}=<q>$. Using the definition of ε^{\prime}, we can see that $\bar{\varepsilon}^{\prime}(q)=0$, so $<q>\subseteq \operatorname{Ker} \bar{\varepsilon}^{\prime}$. But $<q>$ is a maximal ideal (because q is irreducible), so Ker $l_{2}=\operatorname{Ker} \bar{\varepsilon}^{\prime}=<q>$. Going up on the previous diagram, we deduce that $\operatorname{Ker} \varepsilon_{1}=\operatorname{Ker} l_{1}$ and $\operatorname{Ker} l=\operatorname{Ker} \varepsilon^{\prime}\left(=P^{\prime \prime}\right)$. So, the morphism G^{\prime} is injective. We proved

Lemma 2.15: $\operatorname{Ker} \varepsilon^{\prime}=P^{\prime \prime}$.
Now, we are ready to end the proof of Theorem 2.7. We recall that we use induction on n. If $P \in \operatorname{Spec}\left(\Gamma_{n+1}\right), 0 \neq P \neq \Gamma_{n+1}$, then $P^{\prime}:=$ $P \cap \Gamma_{n} \in \operatorname{Spec}\left(\Gamma_{n}\right)$ and $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \widehat{h a l}_{n}(0)$ is a generic point for P^{\prime}. From Lemma 2.12 we have $\left(\xi_{1}, \ldots, \xi_{n+1}\right) \in \widehat{h a l}_{n}(0)$ such that $(\forall) \varphi \in \Gamma_{n+1}$, $(\exists) \rho \in \Gamma_{n}\left[t_{n+1}\right]$ with $\varphi\left(\xi_{1}, \ldots, \xi_{n+1}\right)=\rho\left(\xi_{1}, \ldots, \xi_{n+1}\right)$ (Lemma 2.13). But $l(\varphi)=l(\rho)$ (see the proof of Lemma 2.13 and Construction 2.11: $\omega \in P$). So $\varphi \in P$ (i.e. $l(\varphi)=0$) if and only if $\rho \in P \cap \Gamma_{n}\left[t_{n+1}\right]=P^{\prime \prime}$ (i.e. $l(\rho)=0)$. But $P^{\prime \prime}=\operatorname{Ker} \varepsilon^{\prime}$ (Lemma 2.15), so $\rho \in P^{\prime \prime}$ if and only if $\varepsilon^{\prime}(\rho)=0$, i.e. $\rho\left(\xi_{1}, \ldots, \xi_{n+1}\right)=0$ (see the definition of ε^{\prime}). So $\varphi \in P$ if and only if $\left(\xi_{1}, \ldots, \xi_{n+1}\right)=0$, i.e. $\left(\xi_{1}, \ldots, \xi_{n+1}\right) \in \widehat{h a l}_{n+1}(0)$ is a generic point for P, q.e.d.

Theorem 2.16. (Rückert Nullstellensatz, Non-standard version): If $I \in$ $I d\left(\Gamma_{n}\right)$ is an ideal, then $\mathcal{I}\left(\mathcal{V}_{\tilde{K}}(I)\right)=\sqrt{I}$.

Proof. Take $\psi \notin \sqrt{I}$. Put $\mathcal{A}_{\psi}:=\left\{J \in I d\left(\Gamma_{n}\right) / I \subseteq J\right.$ and $\left.\psi \notin \sqrt{J}\right\}$. Then $\mathcal{A}_{\psi} \neq \emptyset\left(I \in \mathcal{A}_{\psi}\right)$ and \mathcal{A}_{ψ} inductive set. By Zorn Lemma, we find $P_{\psi} \in \mathcal{A}_{\psi}$ a maximal element. We prove that $P_{\psi} \in \operatorname{Spec}\left(\Gamma_{n}\right)$. Suppose the contrary and let $x, y \in \Gamma_{n}$ such that $x y \in P_{\psi}$ and $x \notin P_{\psi}, y \notin P_{\psi}$. Then $P_{\psi}+<x>\nsupseteq P_{\psi}, P_{\psi}+<y>\nsupseteq P_{\psi}$ so $P_{\psi}+<x>\notin \mathcal{A}_{\psi}, P_{\psi}+<x>\notin \mathcal{A}_{\psi}$.

We find that $\psi \in \sqrt{P_{\psi}+\langle x\rangle}, \psi \in \sqrt{P_{\psi}+\langle y>}$ so $\psi^{m}=\alpha+\lambda x$ and $\psi^{P}=\beta+\mu y, \alpha, \beta \in P_{\psi}, \lambda, \mu \in \Gamma_{n}$ for suitable $m, p \in \mathbf{N}$. So $\psi^{m+p} \in P_{\psi}$ (use $x y \in P_{\psi}$) so $\psi \in \sqrt{P_{\psi}}$, a contradiction. Because $P_{\psi} \in \operatorname{Spec}\left(\Gamma_{n}\right)$, by Theorem 2.7, P_{ψ} has a generic point in $\widehat{h a l}_{n}(0)$. Because $I \subseteq P_{\psi}$ and $\psi \notin P_{\psi}$ it follows that $f\left(\xi_{1}, \ldots, \xi_{n}\right)=0,(\forall) f \in I$, but $\psi\left(\xi_{1}, \ldots, \xi_{n}\right) \neq 0$, where $\left(\xi_{1}, \ldots, \xi_{n}\right) \in \widehat{h a l} l_{n}(0)$ is the generic point of P_{ψ}. So $\psi \notin \mathcal{I}\left(\mathcal{V}_{\tilde{K}}(I)\right)$. We obtained $\mathcal{I}\left(\mathcal{V}_{\tilde{K}}(I)\right) \subseteq \sqrt{I}$. The converse inclusion being always true, we obtain the desired equality.

References

[A] S.S. ABHYANKAR, Local Analytic Geometry, Acad. Press, 1964.
[ACJ] C.ANDREIAN-CAZACU, G. CONSTANTINESCU, M. JURCHESCU, Probleme moderne de teoria funcţiilor, Ed. Academiei R.P.R., Bucureşti, 1965.
[Dv] M. DAVIS, Applied Nonstandard Analysis, Wiley, New York, 1977.
[I] E.M. INSALL, Finding Generic Points, Univ. of Houston, 1987.
[IM] GH. ISAC, GH. MARINESCU, Analiză pe corpuri ultrametrice, Ed. Acad. RSR, 1976.
[La] S. LANG, Algebra, Addison-Wesley, 1965.
[R] A. ROBERT, Elliptic Curves, LNM 326, Springer, 1973.
[Ro1] A. ROBINSON, Nonstandard Analysis, Princeton 1996, Revised Edition.
[Ro2] A. ROBINSON, Germs, Proc. Int. Symp. Appl. of Model Theory to Algebra Analysis and Probability, Pasa. Calif. Holt, Rinehart and Winston, 1969.
[Tg] J.C. TOUGERON, Idéaux de fonctions dif and only iférentiables, Springer-Verlag, 1972.

University POLITEHNICA of Bucharest,
Department of Mathematics I,
Splaiul Independenţei 313
77207 Bucharest,
Romania
e-mail: ampasar@mathem.pub.ro

[^0]: Received: June, 2001

