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Abstract

Rückert Nullstellensatz is the analogous for convergent series over
K

n (K-normed, non-discrete, complete field) of the well-known Hilbert
Nullstellensatz for polynomials over an algebraically closed field. For
K an arbitrary algebraically closed (normed, non-discrete, complete)
field, the Rückert Nullstellensatz is proved in [A] using algebraic meth-
ods. The particular case K = C (= the field of complex numbers) is
proved, for instance, in [Tg] using Puiseux series and in [Ro2] using
generic points in a non-standard context. In this note we prove a new
version of the Rückert Nullstellensatz for the extension K ⊂ K̃, where
K is a normed, non-discrete, complete field and K̃ is the completion of
the algebraic closure of K (see Theorem 2.2). When K is algebraically
closed, we obtain, as a Corollary (Corollary 2.3), the Rückert Nullstel-
lensatz fom [A]. The proof consists in clarifications and adaptations of
the proof from [Ro2] to the present context. We also use [I].

1 Germs on K
n

For the non-standard context we use the notations, terminology and Principles
from [Ro1], [Dv] and for the standard context the notations, terminology and
Theorems from [ACJ], part. I.

1.1. Let K be a normed (the norm will be denoted by | · |), non-discrete,
complete field; then Kn becomes, naturally, a (complete) metric space. We
define on P(Kn) the following (equivalence) relation: if p ∈ Kn and A1, A2 ⊂
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110 A. Păsărescu

Kn, p ∈ A1 ∩ A2, then A1 ∼ A2 if and only if there is an open neighborhood
U of p in Kn such that A1 ∩ U = A2 ∩ U . The classes of equivalence of the
previous relation are called the germs of sets in p.

We consider the following (well-defined) relations:
1) If α, β are germs of sets in p, then α ≤ β if and only if (∃)A1 ∈ α,

(∃)A2 ∈ β, (∃)U = open neighborhood of p in Kn such that A1 ∩U ⊆ A2 ∩U .
It follows that α = β if and only if α ≤ β and β ≤ α.

2) If α, β, γ are germs of sets in p, then γ = α∧ β if and only if (∃)A1 ∈ α,
(∃)A2 ∈ β, (∃)A3 ∈ γ, such that A1 ∩A2 = A3.

3) If α, β, γ are germs of sets in p, then γ = α∨ β if and only if (∃)A1 ∈ α,
(∃)A2 ∈ β, (∃)A3 ∈ γ, such that A1 ∪A2 = A3.

Let there be (cf. [ACJ])

An,p : {f : A ⊂ Kn → K|f analytic on A and (∃)∪ ⊂ Kn,

open neighborhood of p, U ⊂ A} = An,p,K .

We consider on An,p the following (equivalence) relation: f1 ∼ f2 if and
only if (∃)U ⊂ Kn, open neighborhood of p, such that f1|U = f2|U . A class of
functions as before is called a germ of analytic function in p. Let’s denote by
On,p the set of germs of analytic functions in p. Since K is a (commutative)
ring, it is easy to see that On,p = (On,p,+, ·) can be naturally organized as a
(commutative) ring with identity. If necessary, we also write On,p = On,p,K .

Let K ⊂ L be an extension of normed, non-discrete, complete fields.
If p ∈ Kn and S ⊂ On,p is a finite set, the associated variety of S in L is

VL(S) := ∧{ϕ−1(0)|ϕ ∈ S};

here ϕ−1(0) is the class of f−1(0) for some f ∈ ϕ.
If p ∈ Kn and α is a germ of sets from Ln in p, then the ideal of α is the

set
I(α) := {ϕ ∈ On,p,K |α ≤ ϕ−1(0)} ∈ Id(On,p,K).

If I is an ideal in some ring R, then the radical of I is
√
I := {x ∈ R|(∃)n ∈ N∗, xn ∈ I}.

The germs of sets are not usual sets and the germs of analytic functions are
not usual analytic functions. We’ll show how, by using non-standard methods,
we can replace the germs of sets by sets and the germs of analytic functions
by analytic functions (following [Ro2]).

1.2. We recall here some results from [Ro1] and [Dv].
We consider that all objects we need belong to a standard universe U ,

endowed with a language L = (≡,∈). Let’s denote by ∗U the corresponding
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non-standard universe (an enlargement of U) and by ∗L = (∗ ≡, ∗ ∈) the
corresponding language. If T is a standard object in U , we denote by ∗T its
enlargement in ∗U ; if s is a sentence of L, we denote by ∗s its extension to ∗L
(i.e. we keep all the logic connectors and the bounded quantifiers and their
order; we replace the constants and objects T from s with the corresponding
∗T ). In the non-standard universe some Principles hold. We recall here two
of them, useful in the sequel.

(T.P.) Transfer Principle: Let s be a sentence of L. Then

∗ |= ∗s if and only if |= s.

(We write |= s if and only if s holds in U and ∗ |= ∗s if and only if ∗ s holds
in ∗U .)

Let r be a binary relation r ∈ U . We denote by dom (r) := {x|(∃)y
such that (x, y) ∈ r}. The relation r is called concurrent if for any finite set
{a1, . . . , am} ⊂ dom (r), there is b such that (ai, b) ∈ r, i = 1,m.

(C.P.) Concurrence Principle: Let r be a concurrent relation in U . Then
there is an element b ∈ ∗U such that (∗a, b) ∈ ∗r, for all a ∈ dom (r).

1.3. Let’s consider now an extension ∗Kn of Kn; then ∗Kn is a normed,
non-discrete, non-complete space, Kn ⊂ ∗Kn. If p ∈ Kn, the halo of p is

haln(p) := {q ∈ ∗Kn|∗d(p, q) ' 0}.

Here, for x ∈ ∗R (= the field of hyperreal numbers), we write x ' 0 if
∗|x| < ε, (∀)ε ∈ R, ε > 0; ∗d is the extension with hyperreal values to ∗Kn of
the usual metric d on Kn. If p = (p1, . . . , pn) ∈ Kn, pi ∈ K, i = 1, r, then

haln(p) = hal1(p1) × hal1(p2) × . . .× hal1(pn).

We can see that

haln(p) = ∩{∗U |U is an open neighborhood of p in Kn}.

Let τ be the (metric) topology on Kn. Then the elements of ∗τ are the
∗-open sets from ∗Kn. It can be seen that there is a ∗-open set ν ⊆ haln(p)
(indeed, apply the Concurrence Principle (C.P.) to the concurrent relation:
UrV if and only if U, V ∈ τ and p ∈ V ⊆ U).

Definition 1.3.1. A set α ∈ ∗Kn is called a germ of non-standard sets in
p if (∃)A ⊆ Kn such that α = ∗A ∩ haln(p). A function ϕ : haln(p) → ∗K is
called a germ of non-standard analytic functions in p if (∃)ψ ∈ On,p, (∃)f ∈ ψ
such that ϕ = ∗f |haln(p) (it is easy to see that A ∼ B ⇒ ∗A ∩ haln(p) =
∗B ∩ haln(p) and f ∼ g ⇒ ∗f |haln(p) = ∗g|haln(p)).

Let’s denote by Gn,p the lattice of germs of sets in p, by Nn,p the lattice
of germs of non-standard sets in p (with the usual operations on sets) and by
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Γn,p the ring of germs of non-standard analytic functions in p (with the usual
operations on functions); we recall that On,p is the set of germs of analytic
functions in p. If necessary, we write Nn,p,K , Gn,p,K , Γn,p,K , On,p,K . We
define the following functions:

σ : Nn,p → Gn,p, δ : Γn,p → On,p by

σ(∗A ∩ haln(p)) = [A] (= the germ of sets in p with the representative A)

δ(∗f |haln(p)) = [f ] (= the germ of analytic functions in p with representative f).

Let’s prove that σ is well-defined. If ∗A ∩ haln(p) = ∗B ∩ haln(p), we
consider the sentence

s = (∃x ∈ τ)(p ∈ x ∧A ∩ x = B ∩ x).

Then
∗s = (∃x ∈ ∗τ)(p ∈ x ∧ ∗A ∩ x = ∗B ∩ x).

But ∗s is true, since any ∗-open set S ⊂ haln(p) satisfies ∗A ∩ ν = ∗B ∩ ν,
and we proved that such a ν exists (before the Definition 1.3.1). By the
Transfer Principle (T.P.) we deduce that s is true, so A ∼ B, hence [A] = [B].

As for δ, if ∗f |haln(p) = ∗g|haln(p), then for any ∗-open set ν ⊂ haln(p)
we have ∗f |ν = ∗g|ν. Again by the Transfer Principle (T.P.) we deduce that
the sentence

(∃x ∈ τ)(p ∈ x ∧ f |x = g|x)
is true, so f ∼ g, hence [f ] = [g].

Further, it is straightforward to prove that σ and δ are isomorphisms (of
lattices and rings, respectively).

1.4. In 1.1 we defined, for K ⊂ L an extension of normed, non-discrete,
complete fields, the variety VL(S) associated to a finite set S ⊂ On,p,L of
germs of analytic functions in p ∈ Kn. Now we define the non-standard variety
VL(S) associated to a finite set S ⊂ Γn,p,L of germs of non-standard analytic
functions. So, let S ⊂ Γn,p,L be a set as before. Then, in this context

VL(S) := ∩{ϕ−1(0)|ϕ ∈ S}.

For p ∈ Kn ⊂ Ln, we denote by haln(p) = halKn (p) the halo of p in Kn and
by halLn (p) the halo of p in Ln (clearly, haln(p) ⊂ halLn (p)).

Now,

ϕ−1(0) = (∗f |haln(p))−1(0) = {x ∈ halLn (p)|∗f(x) = 0} ⊂ halLn (p)

is a set of points, so an usual set (here ϕ = ∗f |haln(p)).
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It is easy to see, since σ and δ are isomorphisms, that, if ϕi = ∗fi|haln(p),
i = 1,m, we have

σ(VL(ϕ1, . . . , ϕm)) = VL(δ(ϕ1), . . . , δ(ϕm))

(use the definitions of V(S) from 1.1 and 1.4).

1.5. Let f : V ⊂ Kn → K be an analytic function on an open neighbor-
hood V of the origin and put

f(t1, . . . , tn) =
∑

j≥0

fj(t1, . . . , tn),

where fj is a homogeneous polynomial of degree j, for any j ≥ 0. We say that
f is regular in tn of order k > 0 if fj ≡ 0, (∀)j < k and tkn has a non-zero

coefficient in fk. If f =
∑

j≥k

fj , fk 6≡ 0, it is easy to find a non-singular linear

transformation tj → t′j , transforming f into a regular function of order k in
t′n.

Let On := On,0. A Weierstrass polynomial of degree k > 0 in tn is a
function h ∈ On of the form

h(t1, . . . , tn) = tkn + a1(t1, . . . , tn−1)t
k−1
n + . . .+ ak(t1, . . . , tn−1),

where aj ∈ On−1 and aj(0, . . . , 0) = 0, j = 1, k.

A germ of non-standard analytic functions regular in tn of order k > 0
(resp. of non-standard polynomials in tn, resp. of non-standard Weierstrass
polynomials of degree k > 0 in tn) is f∗|haln(0), where f is an analytic function
regular in tn of degree k > 0 (resp. a polynomial in tn, resp. a Weierstrass
polynomial of degree k > 0 in tn). By the Transfer Principle (P.T.) we have
the following non-standard versions of the well-known (see [ACJ]) Weierstrass
Preparation and Division Theorems:

Theorem 1.5.1. (non-standard Weierstrass Preparation): Let ϕ be a
germ of non-standard analytic functions in the origin, regular of order k > 0
in tn. Then there is a germ of non-standard Weierstrass polynomials of degree
k in tn, denoted by ω, and a germ of non-standard analytic functions in the
origin, denoted by ψ, such that ψ(0) 6= 0 and ϕ = ω.ψ.

Theorem 1.5.2. (non-standard Weierstrass Division): Let ω be a germ
of non-standard Weierstrass polynomials of degree k in tn and ϕ a germ of
non-standard analytic functions in the origin. Then, there is a germ of non-
standard analytic functions, denoted by ∆, and a germ of non-standard poly-
nomials of degree < k in tn, denoted by ρ, such that ϕ = ω.∆ + ρ.
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2 Rückert Nullstellensatz

Let K be a non-discrete, complete normed field K = (K, | · |K). Let K̄ be an
algebraic closure of K. One knows that |·|K extends uniquely to a non-discrete
norm | · |K̄ on K̄ ([La], page 291), not necessarily complete. Let’s denote by

K̃ = ˆ̄K (the completion of K̄) (see [La], page 286), K̃ = (K̃, | · |K̃).

Lemma 2.1. K ⊂ K̃ and K̃ is an algebraically closed, non-discrete,
complete normed field.

Proof. If K = (K, | · |K) is archimedean, then the characteristic of K is
zero (if not, | · |K |P , P = the prime field of K is bounded, so | · |K is non-
archimedean, by [IM], page 12), so Q ⊂ K. We denote by | · |Q := | · |K |Q, so

| · |Q = | · |α, 0 < α ≤ 1, where | · | is the usual module on Q, by Ostrovschi

Theorem ([IM], page 15). But K is complete, so K ⊃ Q̂ = R (the completion
of Q, any two norms on R being equivalent, by [La], Prop. 3, page 288). By
Ghelfand-Mazur Theorem ([La], page 290), we deduce that K = R or K = C,
so K̄ = C, so K̃ = C, i.e. an algebraically closed, non-discrete, complete
normed field.

If K is non-archimedean, take K̄ = the algebraic closure of K, which

is again a non-archimedean field. But then K̃ = ˆ̄K (the completion of K̄)
remains algebraically closed by [R], page 146.

�

Let On := On,0,K and Õn := On,0,K̃ (see 1.1). Clearly, On ⊂ Õn. Consid-

ering the extension K ⊂ K̃ of normed, non-discrete, complete fields, we recall
that we defined in 1.1 VK̃(S), for S ⊂ Õn a finite set and I(α) if α ∈ Gn,0,K̃
(notation from 1.3). If I ∈ Id(On) is an ideal, it is finitely generated (use
noetherianity) by, say, ϕ1, . . . , ϕm. Then VK̃(I) := VK̃(ϕ1, . . . , ϕm). In this
paragraph we prove the following extension of the classical Rückert Nullstel-
lensatz:

Theorem 2.2. Let K be a normed, non-discrete, complete field and I ∈
Id(On) be an ideal. Then

I(VK̃(I)) =
√
I.

Corollary 2.3. (Rückert Nullstellensatz from [A]) If K is a normed, non-
discrete, complete, algebraically closed field, then I(V(I)) =

√
I, for any ideal

I ∈ Id(On).
Proof. We have K = K̃ in this case.

�

We shall prove an analogous of the previous Theorem 2.2 for germs of non-
standard analytic functions (Theorem 2.16 ); then the Theorem 2.2 will follow
using the isomorphisms σ and δ from Section 1.3, using the last equality from
Section 1.4 (see §1).
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We put Γn := Γn,0,K , Γ̃n := Γn,0,K̃ (see 1.3). We have 0 ∈ Kn ⊂ K̃n. We

put haln(0) := halKn (0) and ĥaln(0) := halK̃n (0) (see 1.4). We have haln(0) ⊆
ĥaln(0).

Definition 2.4. If I ⊂ Γn is an ideal, then p ∈ ĥaln(0) is a generic point
for I if I = I(p) (= {ϕ ∈ Γn|ϕ(p) = 0}).

Lemma 2.5. The ideal (0) from Γn has a generic point in haln(0) (so it

has a generic point in ĥaln(0)).
Proof. We define the binary relation (f, U)rW if and only if f is analytic

and non-zero on the open neighborhood U of the origin and W ⊆ U is a non-
empty open subset such that f(x) 6= 0, (∀)x ∈ W . It is easy to see that r is
a concurrent relation. By the Concurrence Principle (C.P.), we find a ∗-open
set ν 6= ∅ such that for any f ∈ Γn \ {0}, f analytic on U implies ν ⊆ ∗U
and f(x) 6= 0, (∀)x ∈ ν. It follows that ν ⊆ ∩{∗U |U open neighborhood of
0} = haln(0). Then (0) = I(ξ), for any ξ ∈ ν.

�

If P ⊆ Γn is an ideal, P 6= 0, it is easy to see that P ⊆ I(0), which is the
only maximal ideal of Γn, so Γn \ I(0) is the set of invertible elements of the
local ring Γn.

Lemma 2.6: If P ∈ Spec(Γ1), P 6= 0, then P = I(0).
Proof. Let ϕ 6= 0, ϕ ∈ P . Then ϕ(0) = 0, so ϕ(z) = zkψ(z), with

ψ(0) 6= 0. Hence ϕ ∈ P , ψ /∈ P , P prime, so zk ∈ P , so z ∈ P .
�

Theorem 2.7: If P ∈ Spec(Γn), P 6= Γn, then P has a generic point in

ĥaln(0).
Proof. If P = 0, use Lemma 2.5. If P 6= 0, we use induction on n. If

n = 1, use Lemma 2.6. Suppose now that we know the Theorem 2.7 for Γn
and we want to prove it for Γn+1.

Let P ∈ Spec(Γn+1), P 6= 0. Put P ′ := P ∩ Γn and P ′′ := P ∩ Γn[tn+1].
It is easy to see that if P is proper then P ′ and P ′′ are also proper ideals and
P ′ ∈ Spec(Γn). By the induction hypothesis, we know that P ′ has a generic

point (ξ1, . . . , ξn) ∈ ĥaln(0). Let’s define ε : Γn → ∗K̃ by ε(ϕ) := ϕ(ξ1, . . . , ξn)
the evaluation morphism. We have P ′ = Ker ε. We get the embedding
G : Γn/P

′ → ∗L′, induced by ε.
Let l : Γn+1 → Γn+1/P be the canonical projection and i : Γn ↪→ Γn+1 be

the natural inclusion. Then Γn
l◦i→ Γn+1/P . We have Ker(l◦i) = P ∩Γn = P ′,

so we get the extension of rings Γn/P
′ ↪→ Γn+1/P .

Lemma 2.8: Let P ∈ Spec(Γn), P 6= 0. Then there is a non-standard
Weierstrass polynomial ω ∈ P .

Proof: Let ϕ ∈ P , ϕ 6= 0. We may suppose that ϕ is regular of order
k > 0 in tn. By Theorem 1.5.1, we have ϕ = ωπ, where π ∈ Γn is invertible
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and ω is a non-standard Weierstrass polynomial. ϕ = ωπ ∈ P , π /∈ P , hence
ω ∈ P .

�

Lemma 2.9: Γn+1/P is an integral extension of Γn/P
′.

Proof. Take ω ∈ P a non-standard Weierstrass polynomial of degree m in
tn+1 (cf. Lemma 2.8). Then

0 = l(ω) = l(tn+1)
m +

m−1∑

j=0

l(aj)l(tn+1)
j ,

where l(aj) ∈ Γn/P
′, for 0 ≤ j ≤ m− 1. So l(tn+1) is integer over Γn/P

′.
Let now ν ∈ Γn+1. By Theorem 1.5.2 there is ∆ ∈ Γn+1 and ρ ∈ Γn[tn+1]

such that ν = ω∆ + ρ. So l(ν) = l(ω)l(∆) + l(ρ) = l(ρ) (ω ∈ P , so l(ω) = 0).
Since ρ ∈ Γn[tn+1], l(ρ) (hence l(ν)) is a polynomial in l(tn+1) with coefficients
in Γn/P

′. Since we already proved that l(tn+1) is integral over Γn/P
′ we have

the lemma.
�

Lemma 2.10: Let p be a polynomial over the ring of continuous functions
on an open neighborhood V of the origin of K̃n with values in K̃. Suppose
that

p(z1, . . . , zn+1) = zkn+1 +

k−1∑

j=0

aj(z1, . . . , zn)z
j
n+1,

where a0, . . . , ak−1 are continuous functions on V and aj(0, . . . , 0) = 0, 0 ≤
j ≤ k − 1. Let (ξ1, . . . , ξn) ∈ ĥaln(0). Then any root of the polynomial
q(z) := p(ξ1, . . . , ξn, z) from ∗K̃ is infinitesimal.

Proof. Let ξ ∈ ∗K̃ be a root of q. If ξ = 0, O.K. If ξ 6= 0, we have

0 = ξk +
k−1∑

j=0

bj(ξ1, . . . , ξn)ξ
j | : ξk 6= 0 so − 1 =

k−1∑

j=0

bj(ξ1, . . . , ξn)ξ
j−k.

If ξ is not infinitesimal, then ξj−k is finite for any j, 0 ≤ j ≤ k−1. Because
the functions bj are all continuous that bj(ξ1, . . . , ξn) are all infinitesimal. So,
1 is infinitesimal, a contradiction.

�

Construction 2.11: Let Λ be the field of fractions of Γn/P
′(Λ = (Γn/P

′)0)-
see the beginning of the proof of Theorem 2.7, and put

p(X) := Xn +

m−1∑

j=0

l(aj)X
j , p ∈ Λ[X],
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where ω ∈ P , ω = tmn+1 +

m−1∑

j=0

ajt
j
n+1 is a Weierstrass polynomial, cf. Lemma

2.8. Then p(l(tn+1)) = 0 and let q ∈ Λ[X] be an irreducible factor of p
such that q(l(tn+1)) = 0. We extend G (induced by the evaluation morphism
ε), defined before Lemma 2.8 to an injective morphism, denoted also by G,

G : Λ ↪→ ∗K̃, in a natural way. Then Λ[X]
G
↪→ ∗K̃[X] and let ξn+1 be a zero

of G(q) in ∗K̃, since K̃ (so ∗K̃) is algebraically closed. Then G(p)(ξn+1) = 0
(because G(q)|G(p)) and

G(p)(X) = Xm +
m−1∑

j=0

G(l(aj))X
j = Xm +

m−1∑

j=0

âj(ξ1, . . . , ξn)X
j .

From Lemma 2.10 we deduce

Lemma 2.12. Let P ∈ Spec(Γn+1), 0 6= P 6= Γn+1 and suppose that

P ′ = P ∩ Γn has a generic point (ξ1, . . . , ξn) ∈ ĥaln(0). Then, if ξn+1 is from

Construction 2.11, we have (ξ1, . . . , ξn+1) ∈ ĥaln+1(0).

Lemma 2.13: If P, P ′, (ξ1, . . . , ξn) are as in the previous lemma and ξn+1

is from Construction 2.11, then (∀)ϕ ∈ Γn+1, (∃)ρ ∈ Γn[tn+1] such that
ϕ(ξ1, . . . , ξn+1) = ρ( xi1, . . . , ξn+1).

Proof. ξn+1 ∈ ∗K̃ is a zero of G(q). From Lemma 2.12, (ξ1, . . . , ξn+1) ∈
ĥaln+1(0) and we have for p ∈ Λ[X] (see Construction 2.11) with q as a factor:

0 = G(p)(ξn+1) = ξmn+1 +

m−1∑

j=0

aj(ξ1, . . . , ξn)ξ
j
n+1 = ω(ξ1, . . . , ξn+1), where ω is

the non-standard Weierstrass polynomial with coefficients
a1, . . . , am−1 ∈ Γn. From Theorem 1.5.2 we find ∆ ∈ Γn+1 and ρ ∈ Γn[tn+1],
degρ < m, such that ϕ = ω∆+ rho. But then ϕ(ξ1, . . . , ξn+1) = ρ(ξ1, . . . , ξn+1).

�

Construction 2.14: We recall that the evaluation morphism ε induces
the embedding G : Γn/P

′ ↪→ ∗K̃ (before Lemma 2.8). Let’s consider the
following fields: Λ := (Γn/P

′)0, Ω := (Γn[tn+1]/P
′′)0, Φ := (Γn+1/P )0. We

have the natural inclusions: Λ ↪→ Ω ↪→ Φ. From Lemma 2.9 we deduce that
the extension Λ ↪→ Φ is algebraic, so the extensions Λ ↪→ Ω and Ω ↪→ Φ
are also algebraic. So, if we consider the polynomial q from Construction
2.11, supposing that its dominant coefficient is 1, then q = Irr(l(tn+1),Ω).
Firstly, the canonical projection l : Γn[tn+1] → Γn[tn+1]/P

′′ factorizes to
l1 : (Γn/P

′)[tn+1] → Γn[tn+1]/P
′′ and extends to fractions l2 : Λ[tn+1] → Ω,

l2(tn+1) = l(tn+1) (i.e. tn+1 (mod P ′′)). Secondly, the evaluation map ε
extends to ε′ : Γn[tn+1] → ∗K̃ by π 7→ π(ξ1, . . . , ξn+1). Because (ξ1, . . . , ξn) is
a generic point for P ′, we deduce that ε′ factorizes to ε1 : (Γn/P

′)[tn+1] → ∗K̃
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and extends to fractions ε̄′ : Λ[tn+1] → ∗K̃. We ex tend the embedding G to
G′ : Γn[tn+1]/P

′′ → ∗K̃ such that G′ ◦ l = ε′, putting G′(l(tn+1)) := ξn+1.
Finally, we get the following commutative diagram:

Γn[tn+1]/P
′′ Γn[tn+1]/P

′′ ∗K̃

Ω (Γn/P
′)[tn+1] ∗K̃

Ω Λ[tn+1] ∗K̃

^

?

?

?

?

?

� -

� -

� -

G′

π

l ε′

l1 ε1

j
l2 ε′

with Λ and Ω from above.

As the extensions Λ ↪→ Ω is algebraic and q is irreducible, it follows that
Ker l2 =< q >. Using the definition of ε′, we can see that ε̄′(q) = 0, so
< q >⊆ Kerε̄′. But < q > is a maximal ideal (because q is irreducible), so
Ker l2 = Ker ε̄′ =< q >. Going up on the previous diagram, we deduce that
Ker ε1 = Ker l1 and Ker l = Ker ε′(= P ′′). So, the morphism G′ is injective.
We proved

Lemma 2.15: Ker ε′ = P ′′.

Now, we are ready to end the proof of Theorem 2.7. We recall that
we use induction on n. If P ∈ Spec(Γn+1), 0 6= P 6= Γn+1, then P ′ :=

P ∩ Γn ∈ Spec(Γn) and (ξ1, . . . , ξn) ∈ ĥaln(0) is a generic point for P ′.

From Lemma 2.12 we have (ξ1, . . . , ξn+1) ∈ ĥaln(0) such that (∀)ϕ ∈ Γn+1,
(∃)ρ ∈ Γn[tn+1] with ϕ(ξ1, . . . , ξn+1) = ρ(ξ1, . . . , ξn+1) (Lemma 2.13). But
l(ϕ) = l(ρ) (see the proof of Lemma 2.13 and Construction 2.11: ω ∈ P ).
So ϕ ∈ P (i.e. l(ϕ) = 0) if and only if ρ ∈ P ∩ Γn[tn+1] = P ′′ (i.e.
l(ρ) = 0). But P ′′ = Ker ε′ (Lemma 2.15), so ρ ∈ P ′′ if and only if ε′(ρ) = 0,
i.e. ρ(ξ1, . . . , ξn+1) = 0 (see the definition of ε′). So ϕ ∈ P if and only

if (ξ1, . . . , ξn+1) = 0, i.e. (ξ1, . . . , ξn+1) ∈ ĥaln+1(0) is a generic point for P ,
q.e.d. �

Theorem 2.16. (Rückert Nullstellensatz, Non-standard version): If I ∈
Id(Γn) is an ideal, then I(VK̃(I)) =

√
I.

Proof. Take ψ /∈
√
I. Put Aψ := {J ∈ Id(Γn)/I ⊆ J and ψ /∈

√
J}.

Then Aψ 6= ∅(I ∈ Aψ) and Aψ inductive set. By Zorn Lemma, we find
Pψ ∈ Aψ a maximal element. We prove that Pψ ∈ Spec(Γn). Suppose the
contrary and let x, y ∈ Γn such that xy ∈ Pψ and x /∈ Pψ, y /∈ Pψ. Then
Pψ+ < x >6⊇ Pψ, Pψ+ < y >6⊇ Pψ so Pψ+ < x >/∈ Aψ, Pψ+ < x >/∈ Aψ.
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We find that ψ ∈
√
Pψ+ < x >, ψ ∈

√
Pψ+ < y > so ψm = α + λx and

ψP = β + µy, α, β ∈ Pψ, λ, µ ∈ Γn for suitable m, p ∈ N. So ψm+p ∈ Pψ
(use xy ∈ Pψ) so ψ ∈

√
Pψ, a contradiction. Because Pψ ∈ Spec(Γn), by

Theorem 2.7, Pψ has a generic point in ĥaln(0). Because I ⊆ Pψ and ψ /∈ Pψ
it follows that f(ξ1, . . . , ξn) = 0, (∀)f ∈ I, but ψ(ξ1, . . . , ξn) 6= 0, where

(ξ1, . . . , ξn) ∈ ĥaln(0) is the generic point of Pψ. So ψ /∈ I(VK̃(I)). We

obtained I(VK̃(I)) ⊆
√
I. The converse inclusion being always true, we obtain

the desired equality. �
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