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Abstract

Riickert Nullstellensatz is the analogous for convergent series over
K" (K-normed, non-discrete, complete field) of the well-known Hilbert
Nullstellensatz for polynomials over an algebraically closed field. For
K an arbitrary algebraically closed (normed, non-discrete, complete)
field, the Riickert Nullstellensatz is proved in [A] using algebraic meth-
ods. The particular case K = C (= the field of complex numbers) is
proved, for instance, in [Tg] using Puiseux series and in [Ro2] using
generic points in a non-standard context. In this note we prove a new
version of the Riickert Nullstellensatz for the extension K C K, where
K is a normed, non-discrete, complete field and K is the completion of
the algebraic closure of K (see Theorem 2.2). When K is algebraically
closed, we obtain, as a Corollary (Corollary 2.3), the Riickert Nullstel-
lensatz fom [A]. The proof consists in clarifications and adaptations of
the proof from [Ro2] to the present context. We also use [I].

1 Germs on K"

For the non-standard context we use the notations, terminology and Principles
from [Rol], [Dv] and for the standard context the notations, terminology and

Theorems from [ACJ], part. L.
1.1. Let K be a normed (the norm will be denoted by | - |), non-discrete,

complete field; then K™ becomes, naturally, a (complete) metric space. We
define on P(K™) the following (equivalence) relation: if p € K™ and Ay, Ay C
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K™ pe A; N Ag, then A7 ~ As if and only if there is an open neighborhood
U of pin K™ such that Ay NU = As NU. The classes of equivalence of the
previous relation are called the germs of sets in p.

We consider the following (well-defined) relations:

1) If o, 0 are germs of sets in p, then o < § if and only if (3)4; € «,
(3)Az € B, ()U = open neighborhood of p in K™ such that Ay NU C A;NU.
It follows that @ = (§ if and only if < 8 and 8 < a.

2) If a, B,y are germs of sets in p, then v = a A 8 if and only if (3)A; € a,
(H)AQ (S ﬁ, (E')A:g €, such that A1 N Ay = Ag.

3) If o, B, are germs of sets in p, then v = aV § if and only if (3)A; € a,
(H)AQ S ,6, (E')Ag €, such that A; U Ay = As.

Let there be (cf. [ACJT])

App:{f:AC K" — K|f analytic on A and (3)U C K",
open neighborhood of p, U C A} = A, ,, k.

We consider on A, , the following (equivalence) relation: f; ~ fo if and
only if (3)U C K™, open neighborhood of p, such that fi|y = fa|y. A class of
functions as before is called a germ of analytic function in p. Let’s denote by
O,p the set of germs of analytic functions in p. Since K is a (commutative)
ring, it is easy to see that O, , = (O, p, +, ) can be naturally organized as a
(commutative) ring with identity. If necessary, we also write Oy, p, = Oy p K-

Let K C L be an extension of normed, non-discrete, complete fields.

If pe K™ and S C O, is a finite set, the associated variety of S in L is

VL(S) == Mo (0)|p € S}

here ¢ ~1(0) is the class of f1(0) for some f € ¢.
If pe K™ and « is a germ of sets from L™ in p, then the ideal of o is the
set

I(a) :=={p € Opnprla < 9071(0)} € 1d(On p, i)

If I is an ideal in some ring R, then the radical of I is
VT :={z € R|(I)n € N*, 2" € I}.

The germs of sets are not usual sets and the germs of analytic functions are
not usual analytic functions. We’ll show how, by using non-standard methods,
we can replace the germs of sets by sets and the germs of analytic functions
by analytic functions (following [Ro2]).

1.2. We recall here some results from [Rol] and [Dv].

We consider that all objects we need belong to a standard universe U,
endowed with a language £ = (=, €). Let’s denote by *U the corresponding
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non-standard universe (an enlargement of &) and by *£ = (* =,* €) the
corresponding language. If T is a standard object in U, we denote by *T its
enlargement in *U; if s is a sentence of £, we denote by *s its extension to *L
(i.e. we keep all the logic connectors and the bounded quantifiers and their
order; we replace the constants and objects T' from s with the corresponding
*T). In the non-standard universe some Principles hold. We recall here two
of them, useful in the sequel.
(T.P.) Transfer Principle: Let s be a sentence of L. Then

x="s if and only if | s.

(We write |= s if and only if s holds in U and x = *s if and only if * s holds
in *U.)

Let r be a binary relation » € U. We denote by dom (r) = {z|(I)y
such that (z,y) € r}. The relation r is called concurrent if for any finite set
{a1,...,am} C dom (r), there is b such that (a;,b) € 7, i =1, m.

(C.P.) Concurrence Principle: Letr be a concurrent relation inU. Then
there is an element b € *U such that (*a,b) € *r, for all a € dom (7).

1.3. Let’s consider now an extension *K"™ of K™; then *K™ is a normed,
non-discrete, non-complete space, K™ C *K". If p € K™, the halo of p is

hal,(p) := {q € *K"|"d(p, q) ~ 0}.

Here, for z € *R (= the field of hyperreal numbers), we write  ~ 0 if
*lz] < e, (V)e € R, € > 0; *d is the extension with hyperreal values to *K™ of
the usual metric d on K". If p= (p1,...,pn) € K", p; € K, i =1,r, then

hal,, (p) = haly(p1) X haly(p2) X ... x haly(py).

We can see that
hal,, (p) = N{*U|U is an open neighborhood of p in K"}.

Let 7 be the (metric) topology on K™. Then the elements of *7 are the
*-open sets from *K™. It can be seen that there is a *-open set v C hal,(p)
(indeed, apply the Concurrence Principle (C.P.) to the concurrent relation:
UrV ifand only if U,V € 7 and pe V CU).

Definition 1.3.1. A set o € *K" is called a germ of non-standard sets in
pif (3)A C K™ such that o« = *A N hal,(p). A function ¢ : hal,(p) — *K is
called a germ of non-standard analytic functions in pif (3)p € Oy p, 3)f € ¢
such that ¢ = *f|hal,(p) (it is easy to see that A ~ B = *A N hal,(p) =
*BNhaly,(p) and f ~ g = *flhal,(p) = *glhal,(p)).

Let’s denote by Gy, , the lattice of germs of sets in p, by N, , the lattice
of germs of non-standard sets in p (with the usual operations on sets) and by
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I',, p the ring of germs of non-standard analytic functions in p (with the usual
operations on functions); we recall that O,,, is the set of germs of analytic
functions in p. If necessary, we write Ny p ky Gnp.ics Dnpis Onpr. We
define the following functions:

o :NnJ’ — gn,p7 d: Fn,p — On,p by

o(*AnNhal,(p)) = [A] (= the germ of sets in p with the representative A)
0(* flhal,(p)) = [f] (= the germ of analytic functions in p with representative f).

Let’s prove that o is well-defined. If *A N hal,(p) = *B N hal,(p), we
consider the sentence

s=3zeTr)pexNANz=BNz).

Then
*s=(Fze* ) perATANz="BNa).

But *s is true, since any *-open set S C hal,(p) satisfies *ANv =*BNv,
and we proved that such a v exists (before the Definition 1.3.1). By the
Transfer Principle (T.P.) we deduce that s is true, so A ~ B, hence [4] = [B].

As for 6, if * flhal,(p) = *g|hal,(p), then for any *-open set v C hal,(p)
we have * f|lv = *g|v. Again by the Transfer Principle (T.P.) we deduce that
the sentence

(Fzer)pexAflr=glx)

is true, so f ~ g, hence [f] = [¢].

Further, it is straightforward to prove that ¢ and ¢ are isomorphisms (of
lattices and rings, respectively).

1.4. In 1.1 we defined, for K C L an extension of normed, non-discrete,
complete fields, the variety V. (S) associated to a finite set S C O, , 1 of
germs of analytic functions in p € K™. Now we define the non-standard variety
V1 (S) associated to a finite set S C T'y p. 1 of germs of non-standard analytic
functions. So, let S CTI'y, 1 be a set as before. Then, in this context

VL(S) := {1 (0)]¢ € S}

For p € K™ C L™, we denote by hal,,(p) = halX (p) the halo of p in K™ and
by halZ(p) the halo of p in L™ (clearly, hal,(p) C halk(p)).
Now,

71 (0) = ("flhal,(p)71(0) = {z € haly (p)|"f(x) = 0} C haly; (p)

is a set of points, so an usual set (here ¢ = * flhal,(p)).
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It is easy to see, since o and § are isomorphisms, that, if p; = * f;|hal, (p),
1 =1, m, we have

o(Ve(er, - om)) = Vi(6(p1), -+, 0(om))

(use the definitions of V(S) from 1.1 and 1.4).
1.5. Let f:V C K™ — K be an analytic function on an open neighbor-
hood V of the origin and put

Fltr,otn) =D filtn, o tn),

J=0

where f; is a homogeneous polynomial of degree j, for any j > 0. We say that
f is regular in t, of order k > 0 if f; =0, (V)j < k and t¥ has a non-zero
coefficient in fy. If f = ij, fr Z0, it is easy to find a non-singular linear
Jj>k
transformation t; — t;-, transforming f into a regular function of order k in
t.
Let O,, := Ono. A Weierstrass polynomial of degree k > 0 in t, is a
function h € O,, of the form

h(tl,...,tn) = tﬁ —‘ral(tl,...,tn,l)ti_l —|—...+a;€(t1,...7tn,1),

where a; € O,,—1 and a;(0,...,0) =0, j = 1, k.

A germ of non-standard analytic functions regular in ¢, of order k£ > 0
(resp. of non-standard polynomials in ¢, resp. of non-standard Weierstrass
polynomials of degree k > 0 in t,,) is f*|hal,(0), where f is an analytic function
regular in ¢, of degree k > 0 (resp. a polynomial in ¢,, resp. a Weierstrass
polynomial of degree k > 0 in t,,). By the Transfer Principle (P.T.) we have
the following non-standard versions of the well-known (see [ACJ]) Weierstrass
Preparation and Division Theorems:

Theorem 1.5.1. (non-standard Weierstrass Preparation): Let ¢ be a
germ of non-standard analytic functions in the origin, reqular of order k > 0
int,. Then there is a germ of non-standard Weierstrass polynomials of degree
k in t,, denoted by w, and a germ of non-standard analytic functions in the
origin, denoted by 1, such that ¥(0) # 0 and ¢ = w.1p.

Theorem 1.5.2. (non-standard Weierstrass Division): Let w be a germ
of non-standard Weierstrass polynomials of degree k in t, and ¢ a germ of
non-standard analytic functions in the origin. Then, there is a germ of non-
standard analytic functions, denoted by A, and a germ of non-standard poly-
nomials of degree < k in t,,, denoted by p, such that p = w.A + p.
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2 Riuckert Nullstellensatz

Let K be a non-discrete, complete normed field K = (K, |- |x). Let K be an
algebraic closure of K. One knows that |-| ¢ extends uniquely to a non-discrete
norm | - |z on K ([Lal], page 291), not necessarily complete. Let’s denote by
K=K (the completion of K) (see [La], page 286), K = (K, |- |z).

Lemma 2.1. K C K and K is an algebraically closed, non-discrete,

complete normed field.
Proof. If K = (K, |- |k) is archimedean, then the characteristic of K is

zero (if not, | - |k|p, P = the prime field of K is bounded, so | - |k is non-
archimedean, by [IM], page 12), so Q C K. We denote by |- |Q = |K\Q, S0
| - |Q =1]-]% 0 < a <1, where | - | is the usual module on Q, by Ostrovschi

Theorem ([IM], page 15). But K is complete, so K D Q=R (the completion
of Q, any two norms on R being equivalent, by [La], Prop. 3, page 288). By
Ghelfand-Mazur Theorem ([La], page 290), we deduce that K = R or K = C,
so K = C, so K = C, i.e. an algebraically closed, non-discrete, complete
normed field.

If K is non-archimedean, take K = the algebrAaic closure of K, which
is again a non-archimedean field. But then K = K (the completion of K)
remains algebraically closed by [R], page 146.

O

Let Oy, := Oy 0,k and 0, = Omof( (see 1.1). Clearly, O,, C 0,,. Consid-
ering the extension K C K of normed, non-discrete, complete fields, we recall
that we defined in 1.1 Vz(S), for S C O,, a finite set and I(a) if a € 9ok
(notation from 1.3). If I € Id(O,) is an ideal, it is finitely generated (use
noetherianity) by, say, ¢1,...,¢m. Then Viz(I) := Vi (¢1,...,9m). In this
paragraph we prove the following extension of the classical Riickert Nullstel-
lensatz:

Theorem 2.2. Let K be a normed, non-discrete, complete field and I €
1d(0,,) be an ideal. Then

I(WVi(I) = VI

Corollary 2.3. (Riickert Nullstellensatz from [A]) If K is a normed, non-
discrete, complete, algebraically closed field, then T(V(I)) = V1, for any ideal
I € 1d(O,).

Proof. We have K = K in this case.

O

We shall prove an analogous of the previous Theorem 2.2 for germs of non-
standard analytic functions (Theorem 2.16 ); then the Theorem 2.2 will follow
using the isomorphisms o and § from Section 1.3, using the last equality from
Section 1.4 (see §1).
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We put I'y, ;=T 0k, T, = Fn,o.f( (see 1.3). We have 0 € K™ C K™ We
put hal,, (0) := halX (0) and hal,,(0) := halX (0) (see 1.4). We have hal,,(0) C
hal,, (0).

Definition 2.4. If ] C T';, is an ideal, then p € l;zl\n(O) is a gemeric point
for I'if I =TZ(p) (= {p € T'nlp(p) = 0}).

Lemma 2.5. The ideal (0) from Ty, has a generic point in hal,(0) (so it
has a generic point in fztl\n(O))

Proof. We define the binary relation (f,U)rW if and only if f is analytic
and non-zero on the open neighborhood U of the origin and W C U is a non-
empty open subset such that f(z) # 0, (V)x € W. It is easy to see that r is
a concurrent relation. By the Concurrence Principle (C.P.), we find a *-open
set v # () such that for any f € T',, \ {0}, f analytic on U implies v C *U
and f(z) # 0, (V)z € v. It follows that v C N{*U|U open neighborhood of
0} = hal,(0). Then (0) = Z(¢), for any £ € v.

O

If PCT, is an ideal, P # 0, it is easy to see that P C Z(0), which is the
only maximal ideal of T, so I';, \ Z(0) is the set of invertible elements of the
local ring T',.

Lemma 2.6: If P € Spec(T'y), P # 0, then P =Z(0).

Proof. Let ¢ # 0, ¢ € P. Then p(0) = 0, so ¢(z) = zFy(z), with
1(0) # 0. Hence ¢ € P, % ¢ P, P prime, so z*¥ € P, so z € P.

O

Theorem 2.7: If P € Spec(T',,), P # Ty, then P has a generic point in
haly, (0).

Proof. If P = 0, use Lemma 2.5. If P # 0, we use induction on n. If
n = 1, use Lemma 2.6. Suppose now that we know the Theorem 2.7 for T',,
and we want to prove it for I';,41.

Let P € Spec(Ty41), P #£0. Put P’ := PNT, and P" := PNT,[tut1]-
It is easy to see that if P is proper then P’ and P’ are also proper ideals and
P’ € Spec(T'y,). By the induction hypothesis, we know that P’ has a generic
point (&1, ..., &) € hal,(0). Let's define e : T, — *K by e(¢) 1= @(£1, ..., &n)
the evaluation morphism. We have P’ = Ker e. We get the embedding
G: T, /P — *L' induced by e.

Let [ : T'y41 — T'yy1/P be the canonical projection and i : ', — T’ 41 be

log

the natural inclusion. ThenT',, = T',,11/P. We have Ker(loi) = PNT,, = P,
so we get the extension of rings ', /P’ — T, 41/P.

Lemma 2.8: Let P € Spec(I'y,), P # 0. Then there is a non-standard
Weierstrass polynomial w € P.

Proof: Let ¢ € P, ¢ # 0. We may suppose that ¢ is regular of order
k > 01in t,. By Theorem 1.5.1, we have ¢ = wm, where 7 € T',, is invertible



116 A. PASARESCU

and w is a non-standard Weierstrass polynomial. ¢ = wr € P, m ¢ P, hence
we P.
O
Lemma 2.9: T, 1 /P is an integral extension of T,/ P'.
Proof. Take w € P a non-standard Weierstrass polynomial of degree m in
tnt1 (cf. Lemma 2.8). Then

m—1
0=1(w) =tns1)" + 3 _ Uaj)U(tns1)’
7=0

where I(a;) € T, /P’, for 0 < j <m —1. So I(t,+1) is integer over I',, /P’

Let now v € T, 1. By Theorem 1.5.2 there is A € T, 41 and p € Ty [tn41]
such that v = wA 4+ p. So I(v) = l(w)I(A) +1(p) = 1(p) (w € P, so l(w) = 0).
Since p € Ty [tn+1], 1(p) (hence I(v)) is a polynomial in I(¢,+1) with coefficients
in T',,/P’. Since we already proved that I(¢,1) is integral over I';, /P’ we have
the lemma.

U

Lemma 2.10: Let p be a polynomial over the ring of continuous functions
on an open neighborhood V of the origin of K™ with values in K. Suppose
that

k—1
_ k 2 : J
p(zlv"'vzn"rl) - Zn+1 + aj(zh""zn)zn—',-lv
Jj=0
where ag, . ..,ax—1 are continuous functions on 'V and a;(0,...,0) =0, 0 <

Jg < k—1. Let (&,...,8n) € fILZ\n(O). Then any root of the polynomial
q(2) == p(&1, .-+ &ny 2) from *K is infinitesimal.
Proof. Let £ € *K be a root of ¢q. If £ =0, O.K. If £ # 0, we have

k—1

0=6"+ b6, &) 1 €8 #0 s0 —1—2@51,...,5”5] k.

J=0

If ¢ is not infinitesimal, then &= is finite for any j, 0 < j < k—1. Because
the functions b; are all continuous that b; (&1, ..., &) are all infinitesimal. So,
1 is infinitesimal, a contradiction.

O

Construction 2.11: Let A be the field of fractions of T',, /P’ (A = (T, /P’ )o)-
see the beginning of the proof of Theorem 2.7, and put

)= X"+ mz l(a;)X?, peA[X],
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m—1
where w € P, w =17 | + Z ajthJrl is a Weierstrass polynomial, cf. Lemma
§=0
2.8. Then p(l(tn+1)) = 0 and let ¢ € A[X] be an irreducible factor of p
such that ¢(I(tp+1)) = 0. We extend G (induced by the evaluation morphism
¢), defined before Lemma 2.8 to an injective morphism, denoted also by G,

G:A— *IN(l in a natural way. Then A[X] & *K[X] and let &,41 be a zero
of G(q) in *K, since K (so *K) is algebraically closed. Then G(p)(&n+1) =0
(because G(q)|G(p)) and

m—1 m—1
Gp)(X)=X"+ Y Gla)X) = X"+ a;(6r,. .., )X
7=0 7=0

From Lemma 2.10 we deduce

Lemma 2.12. Let P € Spec(I'p41), 0 # P # T'y 1 and suppose that
P’ = PNT, has a generic point (&1,...,&,) € i;c;ln(O). Then, if £p41 is from
Construction 2.11, we have (&1,...,&w41) € ﬁ(;ln+1(0).

Lemma 2.13: If P, P’, (&1, ...,&,) are as in the previous lemma and &,41
is from Construction 2.11, then (Y)p € T'ypi1, (3)p € Tyltnt1] such that
90(517 .o 7§n+1) = p( ‘Z’.ih R 7§n+1)'

Proof. &,41 € *K is a zero of G(gq). From Lemma 2.12, (&1,...,&,41) €
EEZnH(O) and we have for p 6 A[X] (see Construction 2.11) with ¢ as a factor:

0= ( )(§n+l ’Zil—‘rza] gla"'agn §n+1_w(£17"'7£n+1)aWherewis

the non-standard Welerstrabs polynomial with coefficients
a,...,am—1 € 'y, From Theorem 1.5.2 we find A € T',,41 and p € Ty, [tn41],
degp < m, such that ¢ = wA+ rho. But then (&1, ..., &11) = p(&1y -+ Ent1)-
O
Construction 2.14: We recall that the evaluation morphism ¢ induces
the embedding G : T',,/P’ < *K (before Lemma 2.8). Let’s consider the
following fields: A := (I'y,/P")o, @ := (Tpltns1]/P")o, @ := (Tpy1/P)o. We
have the natural inclusions: A — Q < &. From Lemma 2.9 we deduce that
the extension A — & is algebraic, so the extensions A «—  and Q — &
are also algebraic. So, if we consider the polynomial ¢ from Construction
2.11, supposing that its dominant coefficient is 1, then ¢ = Irr(l(tn41), Q).
Firstly, the canonical projection I : T'y[tn11] — Tpltns1]/P” factorizes to
1: (Tn/Ptnt1] — Thltns1]/P” and extends to fractions la : Aftn41] — €,
la(tnt1) = U(tny1) (6. tpy1 (mod P”)). Secondly, the evaluation map e
extends to &’ : Ty, [tp41] — *K by 7 +— (&1, ..., €nt1). Because (&1,...,&,) is
a generic point for P’, we deduce that ¢’ factorizes to &1 : (I'yy/P’)[tny1] — *K
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and extends to fractions & : Aft,41] — *K. We ex tend the embedding G to
G’ : Tyltn+1]/P" — *K such that G’ ol = &', putting G'(I(tp+1)) := Ent1-
Finally, we get the following commutative diagram:

Gl
| l S\
Doltgi1l/P’ ~—— Tultanll/P” —  F
8 | = [
Iy ! €1 .
Q ~ (Fn/P )[tn+1} —_— *K
| J |
l !
0 2 Altwrt] —— R

with A and  from above.

As the extensions A — € is algebraic and ¢ is irreducible, it follows that
Ker ls =< q >. Using the definition of &', we can see that &(q) = 0, so
< g >C Keré'. But < ¢ > is a maximal ideal (because ¢ is irreducible), so
Kerly = Ker & =< q >. Going up on the previous diagram, we deduce that
Kerey = Kerly and Kerl = Kere'(= P”). So, the morphism G’ is injective.
We proved

Lemma 2.15: Kere' = P”.

Now, we are ready to end the proof of Theorem 2.7. We recall that
we use induction on n. If P € Spec(T'py1), 0 # P # T'y4q, then P =
PnNT, € Spec(I'y) and (&1,...,&,) € @ln(O) is a generic point for P’.
From Lemma 2.12 we have (£1,...,&.41) € i;a\ln(O) such that (V)¢ € Typiq,
Dp € Tyltnsa] with ©(&1,...,&nv1) = p(&1y -+, &ny1) (Lemma 2.13). But
I(p) = I(p) (see the proof of Lemma 2.13 and Construction 2.11: w € P).
So ¢ € P (ie. Ip) = 0) if and only if p € PN Tyltnt1] = P (ie.
I(p) =0). But P’ = Ker ¢’ (Lemma 2.15), so p € P” if and only if ¢/(p) = 0,
ie. p(&1y.--,&n+1) = 0 (see the definition of ¢’). So ¢ € P if and only
if (&1,...,&n41) =0, 1e. (&1,...,&n41) € i?c?lnﬂ(()) is a generic point for P,
q.e.d.

Theorem 2.16. (Riickert Nullstellensatz, Non-standard version): If I €
Id(T,,) is an ideal, then I(Vi(I)) = V1.

Proof. Take ¢ ¢ V1. Put Ay := {J € Id(T,,)/I C J and ¢ ¢ V/J}.
Then Ay, # 0(I € Ay) and Ay inductive set. By Zorn Lemma, we find
P, € A, a maximal element. We prove that Py € Spec(I';,). Suppose the
contrary and let z,y € I',, such that 2y € Py and « ¢ Py, y ¢ Py. Then
Py+ < x >2 Py, Py+ <y >2 Py so Py+ <z >¢ Ay, Pp+ <z >¢ Ay.
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We find that ¢ € /Py+ <z >, ¥ € /Pyp+ <y > so¢Y"™ = o+ Az and
VP = B+ uy, o, 3 € Py, \,u € T, for suitable m,p € N. So P € P,
(use zy € Py) so ¢ € /Py, a contradiction. Because Py € Spec(I',), by
Theorem 2.7, Py has a generic point in h/c;ln(O). Because I C Py and ¢ ¢ Py
it follows that f(&1,...,&,) = 0, V)f € I, but ¥(&1,...,&) # 0, where
(&1,...,&n) € f?c;ln(O) is the generic point of Py,. So ¢ ¢ Z(Vi(I)). We
obtained Z(Vj(I)) € VI. The converse inclusion being always true, we obtain
the desired equality. O
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