

An. Şt. Univ. Ovidius Constanța

TAMELY RAMIFIED EXTENSION'S STRUCTURE

Denis Ibadula

Dedicated to Professor Mirela Stefănescu on the occasion of her 60th birthday

Abstract

The structure of an algebraic tamely ramified extension of a henselian valued field is studied. We will prove, in theorem 3.2, the following statement: A finite extension L/K is tamely ramified if and only if the field L is obtained from the maximal unramified extension T by adjoining the radicals $\sqrt[m]{t}$, with $t \in T, m \in \mathbb{N}$, $m \geq 1$, (m, p) = 1, where p is the characteristic of the residue class field.

At the end of the paper some examples are presented.

1. Preliminaries

In this paper we fix a base valued field K = (K, v) which is henselian with respect to a nonarchimedean valuation v. We denote the valuation ring, the maximal ideal and the residue class field by $O_K, \underline{m}_K, \overline{K}$ respectively. If L/K is an algebraic extension, the valuation v extend uniquely to a valuation on L, denoted v too. The corresponding invariants are labelled $O_L, \underline{m}_L, \overline{L}$ respectively.

Definition 1.1. Let L/K be a finite extension of valued fields. e := e(L/K) := (vL : vK) is called the **ramification index**. $f := f(L/K) := [\overline{L} : \overline{K}]$ is called the **inertia degree**.

Definition 1.2. An extension of valued fields L/K is called **immediate** if e(L/K) = f(L/K) = 1 (i.e. vK = vL and $\overline{L} = \overline{K}$).

Received: June, 2001

69

Definition 1.3. A finite extension L/K of valued fields is called **defect**less if $[L:K] = e(L/K) \cdot f(L/K)$. An extension L/K (not necessary finite) of valued fields is called **defectless** if each finite subextension of L is defectless.

2. Unramified Extensions

A particularly important role in theory of valued fields is played by the unramified extensions, which are defined as follows.

Definition 2.1. A finite extension L/K of valued fields is called **unram**ified if the extension $\overline{L}/\overline{K}$ of the residue class fields is separable and one has

$$[L:K] = [\overline{L}:\overline{K}].$$

An arbitrary algebraic extension L/K is called **unramified** if any finite subextension F of L/K is unramified.

We are presenting now, without proofs, a few results concerning the unramified extension.

Proposition 2.2. Let L/K and K'/K be two algebraic extensions of the same valued henselian field K and let L' = LK'. If L/K is unramified, then L'/K' is unramified too. Each subextension of an unramified extension is unramified. \Box

Corollary 2.3. The composite of two unramified extensions of K is again unramified. \Box

Definition 2.4. Let L/K be an algebraic extension. The composite T/K of all unramified subextensions is called the **maximal unramified subextension of** L/K.

Proposition 2.5. The residue class field of T, denoted \overline{T} , is the separable closure of \overline{K} in the residue class field extension $\overline{L}/\overline{K}$ of L/K, whereas the value group of T equals that of K (i.e. vT = vK).

3. Tamely Ramified Extensions

If the characteristic $p = char(\overline{K})$ of the residue class field is positive, then one has the following weaker notion accompanying that of an unramified extension.

Definition 3.1. An algebraic extension L/K is called **tamely ramified** if the extension $\overline{L}/\overline{K}$ of the residue class field is separable and one has ([L : T], p) = 1, where p is the characteristic of \overline{K} and T denotes the maximal unramified extension of L/K.

In the infinite case this latter condition is taken to mean that the degree of each finite subextension of L/T is prime to p.

Theorem 3.2. (The structure theorem of the tamely ramified extensions). Let L/K be an algebraic extension. Then L/K is tamely ramified if and only if the extension L/T is generated by radicals:

$$L = T(\alpha \in L | \exists m \ge 1, \, \alpha^m \in T, (m, p) = 1 \},$$

where p is the characteristic of \overline{K} and T is the maximal unramified extension of L/K.

Moreover, if L/K is tamely ramified, then L/K is defectless.

Proof. Before we start proving the theorem, we must make a few remarks. We may reduce the problem to a finite extension L/K because, if L/K is an arbitrary algebraic extension, we may represent L as an filtrated inductive limit of his finite subextensions. We may also assume that K = T because L/K is obviously tamely ramified if and only if L/T is tamely ramified.

Let's prove the necessity: we suppose that L/K is tamely ramified. Let $L' := T(t(L/K)^{(p')})$, where

$$t(L/K) := \{ x \in L^{\times} | \exists m \ge 1 \text{ such that } x^m \in K \}$$

contains the elements of L, which are radicals over K. We consider now a subgroup of this set:

$$t(L/K)^{(p')} := \{ x \in L^{\times} | \exists m \ge 1, (m, p) = 1 \text{ such that } x^m \in K \}.$$

The results obtained may be summarized in the following picture:

$$K = T \subseteq L' := T(t(L/K)^{(p')}) \subseteq L$$

$$\overline{K} = \overline{T} = \overline{L'} = \overline{L}$$

$$vK = vT \subseteq vL' \subseteq vL.$$

To justify that L = L', which proves the first implication, we will use a few lemmata.

Lemma 3.3. Let L/K be an immediate and tamely ramified extension. Then one has L = K.

Lemma 3.4. Let L/K be an immediate and tamely ramified extension and let T be the maximal unramified extension of L/K. Then the composite

$$t(L/K)^{(p')} \to vL \twoheadrightarrow \frac{vL}{vK}$$
$$x \longmapsto vx \longmapsto vx \mod vK$$

induces a group isomorphism $t(L/K)^{(p')}/T^{\times} \rightarrow vL/vK = vL/vT$.

First of all, let's see how we apply this two lemmata to prove that L = L'. In accordance with lemma 3.3., we have to show that the extension L/L' is tamely ramified and immediate. Because the degree of extension [L:T(L/L')] (where T(L/L') is the maximal unramified extension of L/L') divides [L:T], which is prime with p, we have ([L:T(L/L')], p) = 1. Since the residue class field extension is trivial $(\overline{L} = \overline{L'})$, we conclude that L/L' is tamely ramified.

We have to show now that L/L' is immediate, which means $\overline{L} = \overline{L'}$ and vL = vL'. As L/K is tamely ramified, the extension $\overline{L}/\overline{K}$ is separable and, by proposition 2.5, we have $\overline{L} = \overline{T} = \overline{K}$, so that $\overline{L} = \overline{L'}$. Let's prove now that vL = vL'. Because it is obvious that $vL' \subseteq vL$, we will show that $vL \subseteq vL'$, which will result from the surjectivity of the homomorphism from lemma 3.4.

Let $\gamma \in vL$. The surjectivity of the homomorphism from lemma 3.4 implies that there exists $a \in t(L/K)^{(p')}$ such that $v(a) \equiv \gamma \pmod{vK}$, i.e. $v(a) = \gamma + v(b)$, $b \in K$. We have $\gamma = v(ab^{-1})$, where $ab^{-1} \in t(L/K)^{(p')}$, so that $\gamma \in v(t(L/K)^{(p')})$, which shows that $vL \subseteq v(t(L/K)^{(p')})$. As $vL' \subseteq vL \subseteq v(t(L/K)^{(p')}) \subseteq vL'$, we may conclude that vL' = vL, which implies that L/L' is an immediate extension, so that L = L'. We have now to justify the two lemmata which will prove this first implication.

Proof (of lemma 3.3). Let's first remark that L/K is a separable extension. Let now m := [L : K], with (m, p) = 1, and $Hom_K(L, \tilde{K}) = \{\sigma_1, ..., \sigma_m\}$, where \tilde{K} is an algebraic closure of K. The additive homomorphism

$$\begin{array}{rcl} Tr & : & L \to K \\ x & \longmapsto & Tr(x) := \sum_{i=1}^m \sigma_i(x) \end{array}$$

induces the additive homomorphism

$$\begin{array}{rcl} \overline{Tr} & : & \overline{L} = \overline{K} \to \overline{K} \\ \overline{x} & \longmapsto & \overline{Tr}(\overline{x}) := \overline{Tr(x)} \end{array}$$

Let us show $\overline{Tr(x)} = m\overline{x}$. Let $\overline{x} \equiv x \pmod{\underline{m}_L} \in \overline{L}, x \in O_L$. As $\overline{K} = \overline{L}$, there exists $a \in O_K$ such that $\overline{x} = \overline{a}$, which means $x - a \in \underline{m}_L$. Let x - a = b, with $b \in \underline{m}_L$. We have $Tr(x) = Tr(a) + Tr(b) = \sum_{i=1}^m \sigma_i(a) + Tr(b)$, so that $\overline{Tr}(\overline{x}) = \overline{Tr(x)} = m \cdot \overline{a} = m \cdot \overline{x}$. Since (m, p) = 1, the additive homomorphism \overline{Tr} is injective.

We have to show now that L = K. Suppose that there exists an element $a \in L \setminus K$. As $vL^{\times} = vK^{\times}$, we may choose $b \in K^{\times}$ such that va = vb and obtain the unit $u := a/b \in O_L^{\times}$. Because $a - \frac{1}{m}Tr(a) \in L \setminus K$ has the trace zero, we may assume that $a \in L \setminus K$ and Tr(a) = 0. The unit $u \in O_L^{\times}$ has the trace $Tr(u) = \frac{0}{b} = 0$. Hence $\overline{Tr(u)} = \overline{Tr(u)} = \overline{0}$, and thus $m \cdot \overline{u} = \overline{0}$, $m \equiv 0 \pmod{p}$, which contradicts (m, p) = 1. \Box

Proof (of lemma 3.4). Let's show first that the composite homomorphism has the kernel equal to T^{\times} . Assume that x is an element from the kernel, $x = a \cdot u$, with $a \in K^{\times}$ and $u \in O_L^{\times}$ such that there exists $m \ge 1$ with $x^m = b, b \in K, (m, p) = 1$. Since $x^m = b = a^m u^m$, we may denote $u^m = c$, for some c in K. We have to prove now $u \in K^{\times}$, which implies immediately $x \in K^{\times}$. As $\overline{L} = \overline{K}$, we may write $u = d \cdot u'$, where $d \in O_K^{\times}$ and u' is a unit in $O_L^{\times}, \overline{u'} = \overline{1} \equiv 1 \pmod{\underline{m}_L}$. Since $u'^m = \frac{u^m}{d^m} = \frac{c}{d^m}$, with $\overline{u'} = \overline{1}$, we may assume that $u \in O_L^{\times}$ and $\overline{u} = \overline{1}$. By Hensel's lemma the equation $x^m - c = 0$ has a

solution $\alpha \in O_K$ such that $\overline{\alpha} = \overline{1}$. Moreover, since $u\alpha^{-1}$ is a root of unity of order m, (m, p) = 1, we have $u\alpha^{-1} \in T = K$, which implies $u \in K$ and $x \in K$. Because the other implication is trivial, we obtain that the homomorphism has the kernel equal to T^{\times} .

We want to check now the surjectivity of the homomorphism

$$\begin{array}{cccc} t(L/K)^{(p')} & \longrightarrow & vL \\ x & \longmapsto & vx \end{array}$$

which will end the proof.

Let
$$\alpha \in vL$$
, $\alpha = v(a)$, $a \in L$. Then $v(N_{L/K}(a)) = v(\prod_{i=1}^{m} \sigma_i(a)) = \sum_{i=1}^{m} v(\sigma_i(a)) = \sum_{i=1}^{m} v(\sigma_i(a)$

 $m \cdot \alpha$, where m := [L:T], (m,p) = 1 and $Hom_K(L,K) = \{\sigma_1,...,\sigma_m\}$. Now let $b := N_{L/K}(a) \in K^{\times}$; since $v(b) = m \cdot v(a) = v(a^m)$, $a^m = b \cdot u$, with $u \in O_L^{\times}$. As $\overline{L} = \overline{K}$ we may write $u = c \cdot u'$, with $u' \in O_L^{\times}$, $\overline{u'} = \overline{1}$. So we have $a^m = b \cdot u = b \cdot c \cdot u' = d \cdot u'$, with $d \in T^{\times}$. We want to show now that $u' = u''^m$, with $u'' \in O_K^{\times}$, which will implies that there exists $\frac{x}{u''}$ such that $(\frac{x}{u''})^m = \frac{x}{u'} = d \in T^{\times}$, i.e. that an radical over T of order m, prime with p, with $v(\frac{x}{u''}) = \alpha$. It suffices to show that $1 + m_K \subseteq O_K^{\times m}$, where $(m,p) = 1, p = char \overline{K} > 0$. Let $u \equiv 1(\text{mod } \underline{m}_K)$. Consider the polynomial $f(X) = X^m - u \in O_K[X]$. Since $1 \in \overline{K}$ is a simple root of \overline{f} , by Hensel's lemma there exists one and only one $\omega \in O_K$ such that $f(\omega) = 0$, and so $\omega^m = u, \overline{\omega} = 1.\Box$

An immediate consequence of this lemma is the fact that the tamely ramified extension has no defect. Assume that L/K is tamely ramified and, by the first proved implication, $L = L' := T(t(L/K)^{(p')})$. Let's prove now that

$$[L':T] = (vL':vT),$$

in fact, that $[L':T] \leq m$, where m := (vL':vT). Since L/K is a finite extension, $t(L/K)^{(p')}/K^{\times}$ and vL/vK are finite too and L' is obtained from T by adjoining a finite number of elements. We want to find some generators $t_1, \ldots, t_m \in L'$ such that any element from L' may be written as a combination of t_1, \ldots, t_m with coefficients in T. This will implies $m \geq [L':T]$ which will prove the fact that a tamely ramified extension is defectless.

Now, let $t_1, ..., t_m \in t(L/K)^{(p')}$, with $v(t_i) \pmod{vT}$, for $i = \overline{1, m}$, be a system of representatives for the quotient vL/vT. By the isomorphism from lemma 3.5, we have $t(L/K)^{(p')} = \bigcup_{i=1}^m t_i T^{\times}$, which implies $L' = T(t_1, ..., t_m)$.

It remains to show that $L' = \sum_{i=1}^{m} Tt_i$. A polynomial from L' is a sum of monomials of form $c \cdot \prod_{i=1}^{m} t_i^{r_i}$, $c \in T$. Since any product of two elements $t_i t_j$, $1 \leq i, j \leq m$ can be written as $t_K \cdot \lambda$, with $\lambda \in T^{\times}$, $1 \leq k \leq m$, it follows that [L':T] = (vL':vT).

Before we prove the other implication of theorem 3.2, let's make a few comments. Since $\frac{t(L/K)^{(p')}}{T^{\times}} \simeq \frac{vL}{vK}$ and the quotient vL/vK may be written as a direct sum of cyclical groups $\frac{vL}{vK} = \bigoplus_{i=1}^{r} \frac{\mathbb{Z}}{m_i\mathbb{Z}}$, we have

$$t(L/K)^{(p')} = \left\{ \left(\prod_{i=1}^r t_i^{s_i}\right) x | \ 0 \le s_i < m_i, \ x \in T^{\times} \right\},\$$

where t_i are the generators of cyclical groups $\mathbb{Z}/m_i\mathbb{Z}$, for $i = \overline{1, m}$. Then $L = T(t_1, ..., t_r)$, with $t_i^{m_i} = c_i \in T^{\times}, m_i | [L:T]$; therefore $(m_i, p) = 1$.

In order to prove that an extension $L = T(t_1, ..., t_r)$ is tamely ramified, it suffices to look at the case r = 1, i.e. L = K(t), with $t^m = a, a \in T$, (m, p) = 1. The general case then follows by induction.

We may assume, without loss of generality, that \overline{K} is separably closed. This is seen by passing to the maximal unramified extension $T' := K_{nr}$, which has the separable closure $\overline{T'} = \overline{K}_{nr} = \overline{K}^{sep}$ as its residue class field. We obtain the following diagram

where $L \cap T' = T = K$ and $L' := L \cdot T' = T'(t)$. If now L'/T' is tamely ramified, then $\overline{L'}/\overline{T'}$ is separable; therefor $\overline{L'} = \overline{T'}$. Hence $\overline{T} \subseteq \overline{L} \subseteq \overline{L'} = \overline{T'}$ and $\overline{T'}/\overline{T}$ is separable, $\overline{L}/\overline{T}$ is also separable. Moreover, since $p \nmid [L' : T'] = [L : T]$ it follows that L/T is also tamely ramified.

We may assume, without loss of generality, that [L:K] = m, i.e. a can't be written as $a = a'^d$, where d is the greatest divisor of m such that $a' \in T$. Otherwise, since $t^m = \left(t^{\frac{m}{d}}\right)^d = a'^d$, and $\left(\frac{t^{\frac{m}{d}}}{a'}\right)^d = 1$, we have $\zeta := \frac{t^{\frac{m}{d}}}{a'}$ a root of unity of order d, with (d, p) = 1 and therefore ζ is an element of the residue class field which is separable closed and contains all roots of unity of order prime with the characteristic. So, $t^{\frac{m}{d}} = \zeta \cdot a' \in K$ and we can make this assumption. Let $\alpha := v(t) \in vL$ and let $n := ord \ (\alpha \mod vK)$. Since $m \cdot \alpha = m \cdot v(t) = v(t^m) = v(a) \in vK$, we have $m = d \cdot n$. It follows that $n \cdot \alpha = v(t^n) = v(b), b \in K$ and $v(b^d) = v(t^m) = v(a)$ and consequently $t^m = a = b^d u$, with $u \in O_K^{\times}$. As (d, p) = 1, the polynomial $\overline{f}(X) = X^d - u \in \overline{K}[X]$ is separable one. Since \overline{K} is separable closed, \overline{f} admits a solution $w \in \overline{K}$, hence also over K by Hensel's lemma. So there exists $c \in O_K$ such that $c^d - u = 0$ and $\overline{c} = w$. Therefore $t^m = a = b^d u = b^d c^d = (bc)^d$ and, by made assumption, we obtain d = 1, and hence m = n. Thus

$$m \le (vL:vK) \le m := [L:K],$$

in other words (vL : vK) = [L : K], and so $[\overline{L} : \overline{K}] = 1$, i.e. $\overline{L} = \overline{K}$. This shows that L/K is tamely ramified. \Box

Corollary 3.5. Let L/K and K'/K be two algebraic extensions over K and $L' := L \cdot K'$. Then we have

L/K tamely ramified $\Longrightarrow L'/K'$ tamely ramified.

Proof. We may assume, without loss of generality, that L/K is finite and consider the diagram

The inclusion $T \subseteq TK'$ follows from Proposition 2.2. If L/K is tamely ramified, then $L = T(\sqrt[m_1]{a_1}, ..., \sqrt[m_r]{a_r}), (m_i, p) = 1$; hence $L' = LK' = TK'(\sqrt[m_1]{a_1}, ..., \sqrt[m_r]{a_r}) \subseteq T''(\sqrt[m_1]{a_1}, ..., \sqrt[m_r]{a_r}) \subseteq L'$, where T' is the maximal unramified extension of L'/K', we have $L' = T'(\sqrt[m_1]{a_1}, ..., \sqrt[m_r]{a_r})$, so that L'/K' is also tamely ramified. \Box

Definition 3.6. Let L/K be an algebraic extension. then the composite V/K of all tamely ramified subextensions is called the **maximal tamely** ramified subextension of L/K.

Definition 3.7. A finite extension L/K is called **totally** (or **purely**) ramified if K = T.

Definition 3.8. A finite extension. L/K is called **wildly ramified** if it is not tamely ramified, i.e. if $L \neq V$.

4. Applications

We will consider now a few important extensions for which we will calculate the maximal unramified and tamely ramified subextensions.

4.1: Consider the extension $L := \mathbb{Q}_p(\zeta)/K := \mathbb{Q}_p$, for a primitive n-th. root of unity ζ . In the two cases (n, p) = 1 and $n = p^s$, the extension behaves completely differently. Let us first look at the case (n, p) = 1.

Proposition 4.1.1 (the case (n, p) = 1). Let $K := \mathbb{Q}_p, L := K(\zeta)$, and let O_L/O_K and L/K, be the extension of valuation rings, and respectively residue class fields, of L/K. Suppose that (n, p) = 1. Then one has:

(i) The extension L/K is unramified of degree f, where f is the smallest natural number such that $q^f \equiv 1 \mod n$, i.e. f is of order $p \mod n$ in the multiplicative group $\left(\frac{\mathbb{Z}}{n\mathbb{Z}}\right)^{\times}$.

(ii) The Galois group G(L/K) is canonically isomorphic to $G(\overline{L}/\overline{K})$ and is generated by the Frobenius automorphism $\zeta \mapsto \zeta^p$.

(iii) $O_L = O_K[\zeta]$, where O_K is the ring \mathbb{Z}_p of p-adic integers.

Proof. (i) Let P(X) be the minimal polynomial of ζ over K and $\overline{P}(X)$ its reduction modulo \underline{m}_K . Being a divisor of the separable polynomial $X^n - \overline{1}$, P(X) is separable; by henselianity of \mathbb{Q}_p , the polynomial $\overline{P}(X)$ is irreductible (any factorization of $\overline{P}(X)$ over residue class field "lifts" to a factorization of P(X) which is irreductible). So, the reduction $\overline{P}(X)$ is the minimal polynomial of $\overline{\zeta} \equiv \zeta \mod m_L$. P and \overline{P} have the same degree, so that $[L:K] = [\overline{K}(\zeta):$ $\overline{K}] = [\overline{L}:\overline{K}] =: f. L/K$ is therefore unramified.

Because the polynomial $X^n - 1$ splits over O_L (ζ is integral over O_K , so it's in O_L , the integral closure of O_K in L. Therefore all the roots of polynomial $X^n - 1$ are in O_L since they are powers of the primitive root ζ), and because $X^n - \overline{1}$ is separable, $X^n - 1$ splits over \overline{L} into distinct linear factors, so that $\overline{L} = \mathbb{F}_{p^f}$ contains the group of roots of unity of orders divisors of n and is obtained by adjoining them to $\overline{K} = \mathbb{F}_p$ (equivalently of *n*-th. primitive root $\overline{\zeta}$). Consequently, f is the smallest number such that the group of *n*-th unity roots is included in the cyclic group \overline{L}^{\times} of order $p^f - 1$, i.e. $n \mid p^f - 1$. This shows (i).

(ii) is immediate from (i).

(iii) Since L/K is unramified, we have $\underline{m}_K \cdot O_K = \underline{m}_L$, and since $1, \overline{\zeta}, ..., \overline{\zeta}^{f-1}$ represents a basis of $\overline{L}/\overline{K}$, we have $O_L = \overline{O_K[\zeta]} + \underline{m_K} \cdot O_L$, and $O_L = O_K[\zeta]$ by Nakayama's lemma (if A is local ring with maximal ideal \underline{m} , N an A-module finitely generated and $M \subseteq N$ a submodule such that $N = M + \underline{m}N$, then M = N).

Proposition 4.1.2 (the case $n = p^m$) Let ζ be a primitive p^m -th root of the unity. Then one has:

- (i) L/K is purely ramified of degree $\varphi(p^m) = (p-1)p^{m-1}$.
- (ii) $G(L/K) \simeq \left(\frac{\mathbb{Z}}{p^m \mathbb{Z}}\right)^{\times}$.

(iii) $O_L = O_K[\zeta]$, i.e. $\mathbb{Z}_p[\zeta]$ is the valuation ring of $\mathbb{Q}_p(\zeta)$. (iv) $1 - \zeta$ is a prime element (a local uniformizer) of $O_L = \mathbb{Z}_p[\zeta]$ which means that generates the maximal ideal \underline{m}_L of the discrete valuation ring O_L , i.e. is an element of minimal positive valuation) with norm over K equal to p.

Proof: $\mu = \zeta^{p^{m-1}}$ is a primitive *p*-th root of the unity, i.e.

$$\mu^{p-1} + \mu^{p-2} + \dots + 1 = 0, \text{ hence}$$

$$\zeta^{(p-1)p^{m-1}} + \zeta^{(p-2)p^{m-1}} + \dots + 1 = 0.$$

Therefore, $\zeta - 1$ is a root of the polynomial

$$P(X) = (X+1)^{(p-1)p^{m-1}} + (X+1)^{(p-2)p^{m-2}} + \dots + 1.$$

Since P(0) = p and $\overline{P}(X) = X^{(p-1)p^{m-1}}, P(X)$ satisfies Eisenstein's criterion and is irreducible over K. Therefore $[L:K] = [\mathbb{Q}_p(\zeta):\mathbb{Q}_p] = \varphi(p^m)$. The canonical injection

$$\begin{array}{rccc} G(L/K) & \to & \left(\frac{\mathbb{Z}}{p^m \mathbb{Z}}\right)^{\times} \\ \sigma & \longmapsto & n(\sigma), \end{array}$$

where $\sigma(\zeta) = \zeta^{n(\sigma)}$, is therefore bijective, since both groups have order $\varphi(p^m)$. Thus

$$N_{L/K}(1-\zeta) = \prod_{\sigma \in G(L/K)} \sigma(1-\zeta) = \prod_{\sigma \in G(L/K)} (1-\sigma(\zeta)) = P(0) = p.$$

Writing w for the extension of the p-adic valuation v_p to L, we find furthermore that

$$\begin{aligned} 1 &= v_p(p) = w(p) = w(\prod_{\sigma \in G(L/K)} \sigma(1-\zeta)) = \sum_{\sigma \in G(L/K)} w(\sigma(1-\zeta)) = \\ &= \sum_{\sigma \in G(L/K)} w(\zeta-1) = \varphi(p^m)w(\zeta-1), \end{aligned}$$

i.e. L/K is totally ramified and $1-\zeta$ is a prime element (a local uniformizer) of the (discrete) valued field L. The powers $(\zeta - 1)^i$, for $i = 0, 1, ..., \varphi(p^m) - 1$, determine a base of L/K. Denoting by M the O_K – module generated by this base, we obtain easily:

$$O_L = M + (\zeta - 1)^{\varphi(p^m)} O_L = M + \underline{m}_K O_L.$$

Since L/K is separable, O_L is a finitely generated O_K – module and, by Nakayama's Lemma, $O_L = M$. This concludes the proof.

Remark 4.1.3. Since L/K is separable, the discriminant of every base of L/K is a nonzero element of K. In particular, the discriminant of the above base is a nonzero element of O_K , $dO_L \subseteq M$ and $\frac{O_L}{dO_L}$ finitely generated over $\frac{O_K}{dO_K}$ and finite too. Consequently, O_L is a finitely generated O_K -module. We can avoid Nakayama's Lemma here (in case 1, iii, too) if we consider the fact that L is complete and so O_L is a projective limit of quotient rings $\frac{O_L}{p^iO_L}$ which determines a cofinal system in the family of quotient rings of O_L .

Case 3 $(n = n'p^m, (n', p) = 1, m \in \mathbb{N})$. The general case of a *n*-th root of the unity ζ , with $n = n'p^m$, (n', p) = 1, $m \in \mathbb{N}$) yields from the two extreme cases, above treated.

We can assume $m \neq 0$ (otherwise we obtain the case 1). The maximal unramified extension of L/K is $T = K(\zeta_{n'}) = \mathbb{Q}_p(\zeta_{n'})$, the cyclotomic extension of K, of order n, and the maximal tamely ramified extension of L/K is $V = T(\zeta_p) = K(\zeta^{p^{m-1}}) = \mathbb{Q}_p(\zeta^{p^{m-1}})$, the cyclotomic extension of K, with degree n'p. We have :

$$K = \mathbb{Q}_p \subseteq T = \mathbb{Q}_p(\zeta_{n'}) \subseteq V = T(\zeta_p) \subseteq \mathbb{Q}_p(\zeta_n) = L.$$

The results obtained may be summarized in the following way:

$$\begin{array}{rcl} L/K \text{ unramified} & \Longleftrightarrow & m=0;\\\\ L/K \text{ tamely ramified} & \Longleftrightarrow & m=0 \text{ or } m=1;\\\\ L/K \text{ purely ramified} & \Longleftrightarrow & n'=1;\\\\ L/K \text{ nontrivial, tamely and purely ramified} & \Longleftrightarrow & m=1; \text{ and } n'=1, \text{ i.e. } n=p. \end{array}$$

At limit, if n tends to ∞ , we have that L is the maximal cyclotomic extension of K, \mathbb{Q}_p , the maximal unramified extension is $T = K_{nr} = K(\zeta_n | (n, p) = 1)$, with G(L/K) isomorphic with $\hat{\mathbb{Z}}$, topologically generated by Frobenius automorphism $\zeta_n \mapsto \zeta_n^p$, (n, p) = 1, and the maximal tamely ramified extension $V = T(\zeta_p)$, with Galois group G(V/T) of order p-1 (to remark that for p = 2, we have V = T).

The infinite galoissian extension L/T is purely ramified, with $\overline{T} = \overline{L} = \overline{K}$ (where denotes the algebraic closure of prime field $\overline{K} = \mathbb{F}_p$), abelian with G(L/T), the inertia group of Galois (abelian) extension L/K, canonically isomorphic with $\lim_{\overline{m\geq 1}} \left(\frac{\mathbb{Z}}{p^m\mathbb{Z}}\right)^{\times}$, the inversable elements group of p-adic integers ring. This extension has a unique p-Sylow closed subgroup, isomorphic (algebraic and topologic) to $\lim_{\overline{m\geq 1}} \frac{\mathbb{Z}}{p^m\mathbb{Z}}$, the aditive group of p-adic integers.

Finally, let us remark that G(L/V) is the kernel of canonical epimorphism

$$G(L/T) \simeq \mathbb{Z}_p^{\times} \to Hom(\frac{vL}{vK}, \bar{L}^{\times}) \simeq \mathbb{F}_p^{\times},$$

which leads an invertible element of the ring of p-adic integers to its class modulo the maximal ideal $p\mathbb{Z}_p$. Therefor G(L/V) is identified with the subgroup $1 + p\mathbb{Z}_p$ of \mathbb{Z}_p 's 1-units (the multiplicative profinite group $1 + p\mathbb{Z}_p$ is canonically isomorphic - algebraically and topologically - with the profinite aditive group \mathbb{Z}_p , for $p \neq 2$)(cf.[N], chap.II, Prop.5.5). \Box

4.2 .Let us study now the case of a tamely ramified Galois extension, with the base field henselian.

Proposition 4.2.1. Let K be a valuated field, L/K a tamely ramified Galois extension (i.e. L = V), G := G(L/K), $G_i = G_i(L/K)$ the extension inertia groups.

Then:

(i) The inertia group G_i is abelian and it has a structure of $\frac{G}{G_i}$ -module.

(ii) There exists a canonical isomorphism $G_i \simeq Hom(vL/vK, \bar{L}^{\times})$ of $\frac{G}{G_i}$ -modules.

(iii) The group G is the semi-direct product of group $\chi\left(\frac{vL}{vK}\right)$ with Galois group $G(\bar{L}/\bar{K})$:

$$G\simeq \chi\left(\frac{vL}{vK}\right) \bowtie G(\bar{L}/\bar{K}),$$

where $\chi(A)$ denotes the profinite character group of torsion abelian group A.

Proof. (i) Since K is henselian and the extension L/K is Galois tamely ramified, we have the following result:

$$K = \mathbb{Z} \subseteq T \subseteq V = L$$

The sequence

$$1 \to G_r \to G_i \to Hom(vL/vK, \bar{L}^{\times}) \to 1$$

is exact and is induced by the surjective homomorphism:

$$\begin{array}{rcl} G_i & \to & Hom(vL/vK, \bar{L}^{\times}) \\ \sigma & \longmapsto & \chi_{\sigma}, \end{array}$$

where the associate homomorphism $\chi_{\sigma} : \bar{L}^{\times} \to \bar{L}^{\times}$ is given by $\chi_{\sigma}(x) := \frac{\sigma x}{x} (\text{mod}) \underline{m}_{L}$. More, the group $Hom(vL/vK, \bar{L}^{\times})$ is canonically isomorphic with the character group $\chi\left(\frac{vL}{vK}\right) = \left(\frac{vL}{vK}\right)^{(p')}$, where $\left(\frac{vL}{vK}\right)^{(p')}$ denotes the group $\frac{vL}{vK}$ from which we eliminate the *p*-primary component, where *p* is the characteristic exponent of \bar{K} .

The exact sequence leads to the isomorphism $G_i \simeq Hom(vL/vK, \bar{L}^{\times})$ (since the extension is tamely ramified); in particular, the group G_i is abelian. Moreover, every finite quotient of G_i has the order prime with p.

The exact sequence is induced by the epimorphism :

$$\begin{array}{rccc} G(L/K) & \to & G(\bar{L}/\bar{K}) \\ \\ \sigma & \longmapsto & \bar{\sigma}, \end{array}$$

where $\bar{\sigma}(\bar{x}) := \overline{\sigma(x)}$, for every $\bar{x} = x \pmod{\underline{m}_L} \in \bar{L}$; we can now identify $\frac{G}{G_i} = \frac{G(L/K)}{G(L/T)} \simeq G(T/K)$ with $G(\bar{L}/\bar{K})$. The group G_i is abelian and we have natural action

$$G(T/K) \times G(L/T) \to G(L/T)$$

given by

$$(\sigma, \tau) \longmapsto \sigma' \circ \tau \circ \sigma'^{-1},$$

where $\sigma' \in G := G(L/K)$ such that $\sigma'|_T = \sigma$ (since $\sigma \in G(T/K)$), we can choose σ' as any prolongation to L; we can easily show that the definition do not depends of chosen prolongation). We can immediately show that the action is continue; it follows G_i becomes $\frac{G}{G_i}$ -module.

(ii) Since $G_i \simeq Hom(vL/vK, \bar{L}^{\times})$ and G_i is $\frac{G}{G_i}$ -module, it remains to show that $Hom(vL/vK, \bar{L}^{\times})$ is $\frac{G}{G_i}$ -module, i.e. $G(\bar{L}/\bar{K})$ -module. Let $G(\bar{L}/\bar{K})$ operate on $Hom(vL/vK, \bar{L}^{\times})$

$$\begin{array}{rcl} G(\bar{L}/\bar{K}) \times Hom(vL/vK, \bar{L}^{\times}) & \to & Hom(vL/vK, \bar{L}^{\times}) \\ & (\sigma, \varphi) & \mapsto & \sigma \circ \varphi, \\ & \sigma \cdot \varphi & : & \frac{vL}{vK} \to \bar{L}^{\times} \\ & \sigma \cdot \varphi(\alpha) & : & = \sigma(\varphi(\alpha)), \text{ for every } \alpha \in \frac{vL}{vK} \end{array}$$

Therefore, the isomorphism $G_i \simeq Hom(vL/vK, \bar{L}^{\times})$ is a $\frac{G}{G_i}$ -module isomorphism.

(iii) Since G_i is $\frac{G}{G_i}$, i.e. G(T/K)-module, we have an immediate description of G(L/K) as semi-direct product:

$$G(L/K) \simeq G(L/T) \bowtie G(T/K) \simeq G_i \bowtie G(\bar{L}/\bar{K}) \simeq G_i \bowtie \frac{G}{G_i}.$$

Therefore, we have

$$G(L/K) \simeq \chi\left(\frac{vL}{vK}\right) \bowtie G(\bar{L}/\bar{K}),$$

and the proof is now complete. \Box

Consequently, given a tamely ramified Galois extension, with a henselian base field, we can calculate the value groups (so that $\frac{vL}{vK}$) and the residue class fields (and we know the normal extension \bar{L}/\bar{K}); so we know two important groups: $\chi\left(\frac{vL}{vK}\right)$ and $G(\bar{L}/\bar{K})$ which can describe the structure of group G(L/K).

4.3. Let us now consider the power series field $K = \mathbb{C}((t))$ and $L = \tilde{K}$ its algebraic closure.

On K we have a discrete valuation defined as follows: if $f = \sum_{i \ge n_0}^{\infty} a_i t^i$, with $n_0 \in \mathbb{Z}, a_i \in \mathbb{C}$, then

$$\nu(f) := \min\{\}\{i \in \mathbb{Z} \mid a_i \neq 0\}, \text{ if } f \neq 0, \infty, \text{ if } f = 0.$$

The value group is vK = Z; let us now calculate the residue class field. The value ring, respectively the maximal ideal, are:

$$O_K = \{ f \in \mathbb{C}((t)) \mid v(f) \ge 0 \} = \{ \sum_{i \ge 0} a_i t^i \mid a_i \in \mathbb{C} \} = \mathbb{C}[[t]],$$

$$\underline{m}_K = \{ \sum_{i \ge 0} a_i t^i \mid a_i \in \mathbb{C} \}.$$

The rings homomorphism:

$$\begin{array}{rcccc}
O_K & \to & \mathbb{C} \\
\sum_{i \geq 0} a_i t^i & \mapsto & a_{0,i}
\end{array}$$

is injective and has the kernel \underline{m}_K ; it follows that $K = \frac{O_K}{\underline{m}_K} \simeq \mathbb{C}$. Hence $K = \mathbb{C}((t))$ is the completion of discrete value field $\mathbb{C}(t)$, K is henselian, cf.[N], Chap.II, Lemma 4.6.

Proposition 4.3.1. Let K = d let L = K be the algebraic closure of K. Then: (i) The extension L/K is purely and tamely ramified;

(ii) The Galois group G(L/K) is isomorphic to $\hat{\mathbb{Z}}$, the profinite completion of \mathbb{Z} .

Proof. (i) Since K is algebraically closed, we get that $\overline{L} = \overline{K} = \overline{K}$. Because G(T/K) is isomorphic to Galois group of residue class field extension L/K, which in this case is identity, we have T = K, i.e. the extension is purely ramified. Since the residue class field has the characteristic char $\bar{K} = 0$, L = V; therefore L/K is tamely ramified.

(ii) The Galois group G(L/K), which identifies itself with G(V/T), is isomorphic to abelian characters group $\chi\left(\frac{vL}{vK}\right)$. This implies that the extension L/K is abelian. Also, since the value group vK of K is \mathbb{Z} , vL is it's divisible closure, i.e.Q. Hence the character group $\chi\left(\frac{vL}{vK}\right)$ is equal to $\chi\left(\frac{Q}{\mathbb{Z}}\right)$, i.e. $\hat{\mathbb{Z}}$. It follows that $G(L/K) \simeq \hat{\mathbb{Z}}$. \Box

Remark 4.3.2. By Galois theory point of view, $\mathbb{C}((t))$ behaves like a finite group, since its Galois group is isomorphic to a finite Galois group. Therefore, for any $n \geq 1$, there exists a unique extension of K, of degree n; by tamely ramified extension structure's theorem, we have:

$$K = \mathbb{C}((t)) - K_n = \mathbb{C}((t))[t^{\frac{1}{n}}] = K(t^{\frac{1}{n}}).$$

To describe the Galois group $G(K_n/K)$ it suffices to show the action on the primitive element $t^{\frac{1}{n}}$:

$$\begin{pmatrix} \frac{\mathbb{Z}}{n\mathbb{Z}}, + \end{pmatrix} & \simeq & \mu_n \subseteq \mathbb{C}^{\times} \to G(K_n/K) \\ \zeta & \mapsto & \sigma_{\zeta}, \end{cases}$$

where $\sigma_{\varsigma}|_{K} = 1_{K}$ and $\sigma_{\varsigma}(t^{\frac{1}{n}}) := \zeta \cdot t^{\frac{1}{n}}.\Box$

4.4.Let us now analyze the case of extension L/K, where K is the power series field in one undetermined t with coefficients in a field k of characteristic zero and $L = \tilde{K}$ is the algebraic closure of K.

Proposition 4.4.1. Let L/K be an extension given by K = k((t)), where k is a field of characteristic zero, and by $L = \tilde{K}$, where K is the algebraic closure of K.

Then: (i) The maximal unramified extension is $T = \tilde{k}((t))$, where \tilde{k} is the algebraic closure of k.

(ii) The maximal tamely ramified extension is $V = \tilde{k}((t))(t^{\frac{1}{n}} \mid n \ge 1)$.

(iii) The extension's Galois group is the semi-direct product of $\hat{\mathbb{Z}}$ with absolute Galois group $G(\tilde{k}/k)$.

Proof. As in case 4.3., we get $\overline{K} = k$, $\overline{L} = \tilde{k}$, vK = vT = Z, vL = Q; since char $K = char \ k = 0$, the extension is tamely ramified; therefor V = L. As $\frac{G(L/K)}{G(L/T)} \simeq G(\overline{L}/\overline{K})$, we certainly have $G(T/K) \simeq G(\tilde{k}/k)$; then

the maximal unramified extension is $T = \tilde{k}((t))$. Thus, since the extension is tamely ramified, by structure theorem 3.3, we have $V = T(t^{\frac{1}{n}} \mid n \geq 1) = \tilde{k}((t))(t^{\frac{1}{n}} \mid n \geq 1)$. The results obtained above may be summarized as follows:

$$\begin{array}{rcl} K &=& k((t)) - T = \tilde{k}((t)) - V = \tilde{k}((t))(t^{\frac{1}{n}}|n \geq 1) = L \\ \bar{K} &=& k - \bar{T} = \tilde{k} = \bar{V} = \bar{L} \\ vK &=& \mathbb{Z} = vT - vV = vL = \mathbb{Q} \end{array}$$

Since G(T/K) is isomorphic to absolute Galois group of coefficients field and G(L/T) is isomorphic to $\hat{\mathbb{Z}}$, we get the following description of given extension Galois group:

$$G(L/K) \simeq \hat{\mathbb{Z}} \bowtie G(\hat{k}/k)$$

4.5. In the previous case, if we consider the base field equal to power series field with real coefficients, we get:

$$\begin{split} K &= & \mathbb{R}((t)) - T = \mathbb{C}((t)) - V = \mathbb{C}((t))(t^{\frac{1}{n}} | n \ge 1) = L \\ \bar{K} &= & \mathbb{R} - \bar{T} = \mathbb{C} = \bar{V} = \bar{L} \\ vK &= & \mathbb{Z} = vT - vV = vL = \mathbb{Q} \end{split}$$

In this particular case, the Galois group of extension L/K is

$$G(L/K) \simeq \hat{\mathbb{Z}} \bowtie \frac{\mathbb{Z}}{2\mathbb{Z}} \simeq \lim_{n \ge 1} D_n = \hat{D}_{\infty},$$

where \hat{D}_{∞} denotes the profinite completion of the infinite dihedral group.

4.6. Finally, let us consider the power series field of a finite field $K = \mathbb{F}_q((t))$, where $q = p^s, s \ge 1, p$ is a prime number and $L = \tilde{K}^{sep}$, where $q = p^s$, $s \ge 1, p$ is a prime number and $L = \tilde{K}^{sep}$ denotes the algebraic-separable closure of K.

Proposition 4.6.1. Let L/K be an extension with $K = \mathbb{F}_q((t)), q = p^s, s \ge 1, p$ a prime number and $L = \tilde{K}^{sep}$. Then:

(i) The maximal unramified extension is given by $T = \widetilde{\mathbb{F}_p}((t))$, where $\widetilde{\mathbb{F}_p}$ is the algebraic closure of \mathbb{F}_p .

(ii) The maximal tamely ramified extension is $V = T(t^{\frac{1}{n}} \mid (n, p) = 1)$.

Proof. Since \mathbb{F}_q is a finite field (and so perfect), the residue class field is $\overline{L} = \widetilde{\mathbb{F}_q} = \widetilde{\mathbb{F}_p}$; therefor the Galois group of residue class field extension is $G(\overline{L}/\overline{K}) = G(\widetilde{\mathbb{F}_q}/\mathbb{F}_q) = \hat{\mathbb{Z}}$. Let us remark that K is not a perfect field; the perfect closure is $K_{per} = K(t^{\frac{1}{p_n}} \mid n \ge 1)$. As before, we get $T = \mathbb{F}_q((t)) = \widetilde{\mathbb{F}_p}((t))$. In this case, the extension is not tamely ramified; the ramification group is $G_r \neq (0)$. Let us determine now the Galois group of extension V/T:

$$G(V/T) \simeq Hom(\frac{\mathbb{Q}}{\mathbb{Z}}, \bar{L} = \widetilde{\mathbb{F}_q}^{\times}) = Hom(\frac{\mathbb{Q}}{\mathbb{Z}}, \mu(\widetilde{\mathbb{F}_q})) = \chi((\frac{\mathbb{Q}}{\mathbb{Z}})^{(p')}) \simeq \prod_{p \neq p'} \hat{\mathbb{Z}}_p.$$

It follows that the maximal tamely ramified extension is $V = T(t^{\frac{1}{n}} | (n,p) = 1).\square$

References

- [1] J. Ax, A Metamathematical Approach to Some Problems in Number Theory, AMS Symposium (73), 1969.
- [2] S.Basarab, Lectures notes, Ovidius University, 1999.
- [3] J. Neukirch, Algebraic Number Theory, Springer-Verlang, Berlin Heidelberg, 1999.

"Ovidius" University of Constanta, Department of Mathematics, 8700 Constanta, Romania e-mail: denis@univ-ovidius.ro