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TAMELY RAMIFIED EXTENSION’S

STRUCTURE

Denis Ibadula

Dedicated to Professor Mirela Ştefănescu on the occasion of her 60th birthday

Abstract

The structure of an algebraic tamely ramified extension of a henselian
valued field is studied. We will prove, in theorem 3.2, the following
statement: A finite extension L/K is tamely ramified if and only if

the field L is obtained from the maximal unramified extension T by

adjoining the radicals m
√

t, with t ∈ T, m ∈ N, m ≥ 1, (m, p) = 1,
where p is the characteristic of the residue class field .

At the end of the paper some examples are presented.

1. Preliminaries

In this paper we fix a base valued field K = (K, v) which is henselian
with respect to a nonarchimedean valuation v. We denote the valuation ring,
the maximal ideal and the residue class field by OK ,mK ,K respectively. If
L/K is an algebraic extension, the valuation v extend uniquely to a valuation
on L, denoted v too. The corresponding invariants are labelled OL,mL, L
respectively.

Definition 1.1. Let L/K be a finite extension of valued fields.
e := e(L/K) := (vL : vK) is called the ramification index.
f := f(L/K) := [L : K] is called the inertia degree.

Definition 1.2. An extension of valued fields L/K is called immediate
if e(L/K) = f(L/K) = 1 (i.e. vK = vL and L = K).
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Definition 1.3. A finite extension L/K of valued fields is called defect-
less if [L : K] = e(L/K)· f(L/K). An extension L/K (not necessary finite) of
valued fields is called defectless if each finite subextension of L is defectless.

2. Unramified Extensions

A particularly important role in theory of valued fields is played by the
unramified extensions, which are defined as follows.

Definition 2.1. A finite extension L/K of valued fields is called unram-
ified if the extension L/K of the residue class fields is separable and one
has

[L : K] = [L : K].

An arbitrary algebraic extension L/K is called unramified if any finite
subextension F of L/K is unramified.

We are presenting now, without proofs, a few results concerning the un-
ramified extension.

Proposition 2.2. Let L/K and K
′

/K be two algebraic extensions of
the same valued henselian field K and let L

′

= LK
′

. If L/K is unramified,
then L

′

/K
′

is unramified too. Each subextension of an unramified extension is
unramified.2

Corollary 2.3. The composite of two unramified extensions of K is again
unramified. 2

Definition 2.4. Let L/K be an algebraic extension. The composite T/K
of all unramified subextensions is called the maximal unramified subex-
tension of L/K .

Proposition 2.5. The residue class field of T , denoted T ,is the separable
closure of K̄ in the residue class field extension L/K of L/K, whereas the
value group of T equals that of K (i.e. vT = vK).�
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3. Tamely Ramified Extensions

If the characteristic p = char(K) of the residue class field is positive,
then one has the following weaker notion accompanying that of an unramified
extension.

Definition 3.1. An algebraic extension L/K is called tamely ramified
if the extension L/K of the residue class field is separable and one has ([L :
T ], p) = 1, where p is the characteristic of K and T denotes the maximal

unramified extension of L/K.
In the infinite case this latter condition is taken to mean that the degree

of each finite subextension of L/T is prime to p.

Theorem 3.2. (The structure theorem of the tamely ramified extensions).
Let L/K be an algebraic extension. Then L/K is tamely ramified if and only
if the extension L/T is generated by radicals:

L = T (α ∈ L|∃m ≥ 1, αm ∈ T, (m, p) = 1},

where p is the characteristic of K and T is the maximal unramified extension

of L/K.
Moreover, if L/K is tamely ramified,then L/K is defectless.

Proof. Before we start proving the theorem, we must make a few remarks.
We may reduce the problem to a finite extension L/K because, if L/K is an
arbitrary algebraic extension, we may represent L as an filtrated inductive
limit of his finite subextensions. We may also assume that K = T because
L/K is obviously tamely ramified if and only if L/T is tamely ramified.

Let’s prove the necessity: we suppose that L/K is tamely ramified. Let

L′ := T (t(L/K)(p
′

)), where

t(L/K) := {x ∈ L×|∃m ≥ 1 such that xm∈K}

contains the elements of L, which are radicals over K. We consider now a
subgroup of this set:

t(L/K)(p
′) := {x ∈ L×|∃m ≥ 1, (m, p) = 1 such that xm ∈ K}.

The results obtained may be summarized in the following picture:
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K = T ⊆ L′ := T (t(L/K)(p
′)) ⊆ L

K = T = L′ = L

vK = vT ⊆ vL′ ⊆ vL.

To justify that L = L′, which proves the first implication, we will use a
few lemmata.

Lemma 3.3. Let L/K be an immediate and tamely ramified extension.
Then one has L = K.

Lemma 3.4. Let L/K be an immediate and tamely ramified extension
and let T be the maximal unramified extension of L/K. Then the composite

t(L/K)(p
′) → vL �

vL

vK

x 7−→ vx 7−→ vx mod vK

induces a group isomorphism t(L/K)(p
′)/T×→̃vL/vK = vL/vT.

First of all, let’s see how we apply this two lemmata to prove that L = L′.
In accordance with lemma 3.3., we have to show that the extension L/L′ is

tamely ramified and immediate. Because the degree of extension [L : T (L/L′)]
(where T (L/L′) is the maximal unramified extension of L/L′) divides [L : T ],
which is prime with p, we have ([L : T (L/L′)], p) = 1. Since the residue class
field extension is trivial (L = L′), we conclude that L/L′is tamely ramified.

We have to show now that L/L′ is immediate, which means L = L′ and
vL = vL′. As L/K is tamely ramified, the extension L/K is separable and,
by proposition 2.5, we have L = T = K, so that L = L′. Let’s prove now that
vL = vL′. Because it is obvious that vL′ ⊆ vL, we will show that vL ⊆ vL′,
which will result from the surjectivity of the homomorphism from lemma 3.4.

Let γ ∈ vL. The surjectivity of the homomorphism from lemma 3.4 im-
plies that there exists a ∈ t(L/K)(p

′) such that v(a) ≡ γ(mod vK),i.e. v(a) =
γ + v(b), b ∈ K. We have γ = v(ab−1),where ab−1 ∈ t(L/K)(p

′),so that
γ ∈ v(t(L/K)(p

′)), which shows that vL ⊆ v(t(L/K)(p
′)). As vL′ ⊆ vL ⊆

v(t(L/K)(p
′)) ⊆ vL′, we may conclude that vL′ = vL, which implies that

L/L′ is an immediate extension, so that L = L′.
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We have now to justify the two lemmata which will prove this first impli-
cation.

Proof (of lemma 3.3). Let’s first remark that L/K is a separable ex-
tension. Let now m := [L : K], with (m, p) = 1, and HomK(L, K̃) =
{σ1,..., σm},where K̃ is an algebraic closure of K. The additive homomor-
phism

Tr : L → K

x 7−→ Tr(x) :=

m∑

i=1

σi(x)

induces the additive homomorphism

Tr : L = K → K

x 7−→ Tr(x) := Tr(x)

Let us show Tr(x) = mx. Let x ≡ x(mod mL) ∈ L, x ∈ OL. As K = L,
there exists a ∈ OK such that x = a, which means x− a ∈ mL. Let x− a = b,

with b ∈ mL. We have Tr(x) = Tr(a) + Tr(b) =
m∑

i=1

σi(a) + Tr(b), so that

Tr(x) = Tr(x) = m · a = m · x. Since (m, p) = 1, the additive homomorphism
Tr is injective.

We have to show now that L = K. Suppose that there exists an element
a ∈ L \ K. As vL× = vK×, we may choose b ∈ K× such that va = vb and
obtain the unit u := a/b ∈ O×L . Because a − 1

mTr(a) ∈ L \ K has the trace

zero, we may assume that a ∈ L \ K and Tr(a) = 0. The unit u ∈ O×L has

the trace Tr(u) = 0
b = 0. Hence Tr(u) = Tr(u) = 0, and thus m · u = 0,

m ≡ 0(mod p), which contradicts (m, p) = 1. �

Proof (of lemma 3.4). Let’s show first that the composite homomorphism
has the kernel equal to T×. Assume that x is an element from the kernel,
x = a · u, with a ∈ K× and u ∈ O×L such that there exists m ≥ 1 with
xm = b, b ∈ K, (m, p) = 1. Since xm = b = amum, we may denote um = c,
for some c in K. We have to prove now u ∈ K×,which implies immediately
x ∈ K×. As L = K, we may write u = d ·u′

, where d ∈ O×K and u′ is a unit in

O×L , u′ = 1 ≡ 1(mod mL). Since u
′m = um

dm = c
dm , with u′ = 1,we may assume

that u ∈ O×L and u = 1. By Hensel’s lemma the equation xm − c = 0 has a
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solution α ∈ OK such that α = 1. Moreover, since uα−1 is a root of unity of
order m, (m, p) = 1, we have uα−1 ∈ T = K, which implies u ∈ K and x ∈ K.
Because the other implication is trivial, we obtain that the homomorphism
has the kernel equal to T×.

We want to check now the surjectivity of the homomorphism

t(L/K)(p
′

) −→ vL

x 7−→ vx

which will end the proof.

Let α ∈ vL, α = v(a), a ∈ L. Then v(NL/K(a)) = v(
m∏

i=1

σi(a)) =
m∑

i=1

v(σi(a)) =

m · α, where m := [L : T ], (m, p) = 1 and HomK(L, K̃) = {σ1,..., σm}. Now
let b := NL/K(a) ∈ K×; since v(b) = m · v(a) = v(am), am = b · u, with

u ∈ O×L . As L = K we may write u = c · u′, with u′ ∈ O×L , u′ = 1. So we
have am = b · u = b · c · u′ = d · u′, with d ∈ T×. We want to show now
that u′ = u

′′m, with u′′ ∈ O×K , which will implies that there exists x
u′′ such

that ( x
u′′ )

m = x
u′ = d ∈ T×,i.e. that an radical over T of order m, prime

with p, with v( x
u′′ ) = α. It suffices to show that 1 + mK ⊆ O×m

K , where

(m, p) = 1, p = char K > 0. Let u ≡ 1(mod mK). Consider the polynomial
f(X) = Xm − u ∈ OK [X]. Since 1 ∈ K is a simple root of f , by Hensel’s
lemma there exists one and only one ω ∈ OK such that f(ω) = 0, and so
ωm = u, ω = 1.�

An immediate consequence of this lemma is the fact that the tamely ram-
ified extension has no defect. Assume that L/K is tamely ramified and, by
the first proved implication, L = L′ := T (t(L/K)(p

′)). Let’s prove now that

[L′ : T ] = (vL′ : vT ),

in fact, that [L′ : T ] ≤ m, where m := (vL′ : vT ). Since L/K is a finite
extension, t(L/K)(p

′)/K× and vL/vK are finite too and L′ is obtained from
T by adjoining a finite number of elements. We want to find some generators
t1, ..., tm ∈ L′ such that any element from L′ may be written as a combination
of t1, ..., tm with coefficients in T . This will implies m ≥ [L′ : T ] which will
prove the fact that a tamely ramified extension is defectless.

Now, let t1, ..., tm ∈ t(L/K)(p
′), with v(ti)(mod vT ), for i = 1,m, be a

system of representatives for the quotient vL/vT. By the isomorphism from

lemma 3.5, we have t(L/K)(p
′) =

m⋃
i=1

tiT
×,which implies L′ = T (t1, ..., tm).
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It remains to show that L′ =
m∑

i=1

Tti. A polynomial from L′ is a sum of

monomials of form c ·
m∏

i=1

tri

i , c ∈ T . Since any product of two elements titj ,

1 ≤ i, j ≤ m can be written as tK · λ, with λ ∈ T×, 1 ≤ k ≤ m, it follows that
[L′ : T ] = (vL′ : vT ).

Before we prove the other implication of theorem 3.2, let’s make a few

comments. Since t(L/K)(p′)

T× ' vL
vK and the quotient vL/vK may be written as

a direct sum of cyclical groups vL
vK =

r⊕
i=1

Z
miZ

, we have

t(L/K)(p
′) =

{(
r∏

i=1

tsi

i

)
x| 0 ≤ si < mi, x ∈ T×

}
,

where ti are the generators of cyclical groups Z/miZ, for i = 1,m. Then
L = T (t1, ..., tr), with tmi

i = ci ∈ T×, mi|[L : T ]; therefore (mi, p) = 1.

In order to prove that an extension L = T (t1, ..., tr) is tamely ramified,
it suffices to look at the case r = 1, i.e. L = K(t), with tm = a, a ∈ T ,
(m, p) = 1. The general case then follows by induction.

We may assume, without loss of generality, that K is separably closed.
This is seen by passing to the maximal unramified extension T ′ := Knr, which
has the separable closure T ′ = Knr = K

sep
as its residue class field. We

obtain the following diagram

L = T (t)
� �

K = T L · T ′ = T ′(t) =: L′,
� �

Knr =: T ′

where L∩T ′ = T = K and L′ := L·T ′ = T ′(t). If now L′/T ′ is tamely ramified,
then L′/T ′ is separable; therefor L′ = T ′. Hence T ⊆ L ⊆ L′ = T ′ and T ′/T
is separable, L/T is also separable. Moreover, since p - [L′ : T ′] = [L : T ] it
follows that L/T is also tamely ramified.

We may assume, without loss of generality, that [L : K] = m, i.e. a can’t
be written as a = a

′d, where d is the greatest divisor of m such that a′ ∈ T .

Otherwise, since tm =
(
t

m
d

)d
= a

′d, and
(

t
m
d

a′

)d

= 1, we have ζ := t
m
d

a′ a

root of unity of order d, with (d, p) = 1 and therefore ζ is an element of the
residue class field which is separable closed and contains all roots of unity of
order prime with the characteristic. So, t

m
d = ζ ·a′ ∈ K and we can make this

assumption.
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Let α := v(t) ∈ vL and let n := ord (α mod vK). Since m · α = m · v(t) =
v(tm) = v(a) ∈ vK, we have m = d ·n. It follows that n ·α = v(tn) = v(b), b ∈
K and v(bd) = v(tm) = v(a) and consequently tm = a = bdu, with u ∈ O×K . As
(d, p) = 1, the polynomial f(X) = Xd − u ∈ K[X] is separable one. Since K
is separable closed, f admits a solution w ∈ K, hence also over K by Hensel’s
lemma. So there exists c ∈ OK such that cd − u = 0 and c = w. Therefore
tm = a = bdu = bdcd = (bc)d and, by made assumption, we obtain d = 1, and
hence m = n. Thus

m ≤ (vL : vK) ≤ m := [L : K],

in other words (vL : vK) = [L : K], and so [L : K] = 1,i.e.L = K. This shows
that L/K is tamely ramified.2

Corollary 3.5. Let L/K and K ′/K be two algebraic extensions over K
and L′ := L · K ′. Then we have

L/Ktamely ramified =⇒ L′/K
′
tamely ramified.

Proof . We may assume, without loss of generality, that L/K is finite and
consider the diagram

L
� �

T L · K ′ =: L′.
� � �

K T · K ′
� �

K ′

The inclusion T ⊆ TK ′ follows from Proposition 2.2. If L/K is tamely
ramified, then L = T ( m1

√
a1, ...,

mr
√

ar), (mi, p) = 1; hence L′ = LK ′ =
TK ′( m1

√
a1, ...,

mr
√

ar) ⊆ T ′′( m1
√

a1, ...,
mr
√

ar) ⊆ L′, where T ′ is the maxi-
mal unramified extension of L′/K ′, we have L′ = T ′( m1

√
a1, ...,

mr
√

ar), so that
L′/K ′ is also tamely ramified.2

Definition 3.6. Let L/K be an algebraic extension. then the composite
V/K of all tamely ramified subextensions is called the maximal tamely
ramified subextension of L/K.

Definition 3.7. A finite extension L/K is called totally (or purely)
ramified if K = T.
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Definition 3.8. A finite extension. L/K is called wildly ramified if it
is not tamely ramified, i.e. if L 6= V.

4.Applications

We will consider now a few important extensions for which we will calculate
the maximal unramified and tamely ramified subextensions.

4.1: Consider the extension L := Qp(ζ)/K := Qp, for a primitive n−th.

root of unity ζ. In the two cases (n, p) = 1 and n = ps, the extension behaves
completely differently. Let us first look at the case (n, p) = 1.

Proposition 4.1.1 (the case (n, p) = 1). Let K := Qp, L := K(ζ), and
let OL/OK and L/K, be the extension of valuation rings, and respectively
residue class fields, of L/K. Suppose that (n, p) = 1. Then one has:

(i) The extension L/K is unramified of degree f , where f is the smallest
natural number such that qf ≡ 1 mod n, i.e. f is of order p mod n in the
multiplicative group ( Z

nZ
)×.

(ii) The Galois group G(L/K) is canonically isomorphic to G(L/K) and
is generated by the Frobenius automorphism ζ 7→ ζp.

(iii) OL = OK [ζ] , where OK is the ring Zp of p-adic integers.

Proof. (i) Let P (X) be the minimal polynomial of ζ over K and P (X) its
reduction modulo mK . Being a divisor of the separable polynomial Xn − 1,
P (X) is separable; by henselianity of Qp, the polynomial P (X) is irreductible
(any factorization of P (X) over residue class field ”lifts” to a factorization of
P (X) which is irreductible). So, the reduction P (X) is the minimal polynomial
of ζ ≡ ζ mod mL. P and P̄ have the same degree, so that [L : K] = [K(ζ) :
K] = [L : K] =: f . L/K is therefore unramified.

Because the polynomial Xn−1 splits over OL (ζ is integral over OK , so it’s
in OL, the integral closure of OK in L. Therefore all the roots of polynomial
Xn − 1 are in OL since they are powers of the primitive root ζ), and because
Xn − 1 is separable, Xn − 1 splits over L into distinct linear factors, so that
L = Fpf contains the group of roots of unity of orders divisors of n and is

obtained by adjoining them to K = Fp (equivalently of n-th. primitive root
ζ). Consequently, f is the smallest number such that the group of n-th unity

roots is included in the cyclic group L
×

of order pf − 1, i.e. n| pf − 1.This
shows (i).

(ii)is immediate from (i).
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(iii) Since L/K is unramified, we have mK ·OK = mL, and since 1,ζ, ..., ζ
f−1

represents a basis of L/K, we have OL = OK [ζ]+mK ·OL, and OL = OK [ζ] by
Nakayama’s lemma (if A is local ring with maximal ideal m, N an A-module
finitely generated and M ⊆ N a submodule such that N = M + mN , then
M = N).

Proposition 4.1.2 (the case n = pm) Let ζ be a primitive pm -th root of
the unity. Then one has:

(i) L/K is purely ramified of degree ϕ(pm) = (p − 1)pm−1.

(ii) G(L/K) '
(

Z
pmZ

)×
.

(iii) OL = OK [ζ] , i.e. Zp[ζ] is the valuation ring of Qp(ζ).
(iv) 1 − ζ is a prime element (a local uniformizer) of OL = Zp[ζ] which

means that generates the maximal ideal mL of the discrete valuation ring OL,
i.e. is an element of minimal positive valuation) with norm over K equal to
p.

Proof: µ = ζpm−1

is a primitive p-th root of the unity, i.e.

µp−1 + µp−2 + ... + 1 = 0, hence

ζ(p−1)pm−1

+ ζ(p−2)pm−1

+ ... + 1 = 0.

Therefore, ζ − 1 is a root of the polynomial

P (X) = (X + 1)(p−1)pm−1

+ (X + 1)(p−2)pm−2

+ ... + 1.

Since P (0) = p and P̄ (X) = X(p−1)pm−1

, P (X) satisfies Eisenstein’s criterion
and is irreducible over K. Therefore [L : K] = [Qp(ζ) : Qp] = ϕ(pm). The
canonical injection

G(L/K) →
(

Z

pmZ

)×

σ 7−→ n(σ),

where σ(ζ) = ζn(σ), is therefore bijective, since both groups have order ϕ(pm).
Thus

NL/K(1 − ζ) =
∏

σ∈G(L/K)

σ(1 − ζ) =
∏

σ∈G(L/K)

(1 − σ(ζ)) = P (0) = p.
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Writing w for the extension of the p-adic valuation vp to L,we find furthermore
that

1 = vp(p) = w(p) = w(
∏

σ∈G(L/K)

σ(1 − ζ)) =
∑

σ∈G(L/K)

w(σ(1 − ζ)) =

=
∑

σ∈G(L/K)

w(ζ − 1) = ϕ(pm)w(ζ − 1),

i.e. L/K is totally ramified and 1− ζ is a prime element (a local uniformizer)
of the (discrete) valued field L. The powers (ζ −1)i, for i = 0, 1, ..., ϕ(pm)−1,
determine a base of L/K. Denoting by M the OK −module generated by this
base, we obtain easily:

OL = M + (ζ − 1)ϕ(pm)OL = M + mKOL.

Since L/K is separable, OL is a finitely generated OK − module and, by
Nakayama’s Lemma, OL = M. This concludes the proof.

Remark 4.1.3. Since L/K is separable, the discriminant of every base of
L/K is a nonzero element of K. In particular, the discriminant of the above
base is a nonzero element of OK , dOL ⊆ M and OL

dOL
finitely generated over

OK

dOK
and finite too. Consequently, OL is a finitely generated OK-module. We

can avoid Nakayama’s Lemma here (in case 1, iii, too) if we consider the fact
that L is complete and so OL is a projective limit of quotient rings OL

piOL
which

determines a cofinal system in the family of quotient rings of OL .

Case 3 (n = n′pm, (n′, p) = 1,m ∈ N).The general case of a n-th root of

the unity ζ, with n = n′pm, (n′, p) = 1, m ∈ N) yields from the two extreme
cases, above treated.

We can assume m 6= 0 (otherwise we obtain the case 1). The maximal
unramified extension of L/K is T = K(ζn′) = Qp(ζn′), the cyclotomic exten-
sion of K, of order n, and the maximal tamely ramified extension of L/K is

V = T (ζp) = K(ζpm−1

) = Qp(ζ
pm−1

), the cyclotomic extension of K, with
degree n′p. We have :

K = Qp ⊆ T = Qp(ζn′) ⊆ V = T (ζp) ⊆ Qp(ζn) = L.

The results obtained may be summarized in the following way:
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L/K unramified ⇐⇒ m = 0;

L/K tamely ramified ⇐⇒ m = 0 or m = 1;

L/K purely ramified ⇐⇒ n′ = 1;

L/K nontrivial, tamely and purely ramified ⇐⇒ m = 1; and n′ = 1, i.e. n = p.

At limit, if n tends to ∞, we have that L is the maximal cyclotomic extension
of K, Qp , the maximal unramified extension is T = Knr = K(ζn|(n, p) = 1),

with G(L/K) isomorphic with Ẑ, topologically generated by Frobenius auto-
morphism ζn 7→ ζp

n, (n, p) = 1, and the maximal tamely ramified extension
V = T (ζp), with Galois group G(V/T ) of order p−1 (to remark that for p = 2,
we have V = T ).

The infinite galoissian extension L/T is purely ramified, with T̄ = L̄ = ˜̄K
(where denotes the algebraic closure of prime field K̄ = Fp), abelian with
G(L/T ), the inertia group of Galois (abelian) extension L/K, canonically iso-

morphic with lim
←−−−
m≥1

(
Z

pmZ

)×
, the inversable elements group of p−adic integers

ring. This extension has a unique p−Sylow closed subgroup, isomorphic (al-
gebraic and topologic) to lim

←−−−
m≥1

Z
pmZ

, the aditive group of p-adic integers.

Finally, let us remark that G(L/V ) is the kernel of canonical epimorphism

G(L/T ) ' Z×p → Hom(
vL

vK
, L̄×) ' F×p ,

which leads an invertible element of the ring of p−adic integers to its class
modulo the maximal ideal pZp. Therefor G(L/V ) is identified with the sub-
group 1 + pZp of Zp’s 1-units (the multiplicative profinite group 1 + pZp is
canonically isomorphic - algebraically and topologically - with the profinite
aditive group Zp,for p 6= 2)(cf.[N], chap.II, Prop.5.5).�

4.2 .Let us study now the case of a tamely ramified Galois extension, with
the base field henselian.

Proposition 4.2.1. Let K be a valuated field, L/K a tamely ramified
Galois extension (i.e. L = V ), G := G(L/K), Gi = Gi(L/K) the extension
inertia groups.

Then:
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(i) The inertia group Gi is abelian and it has a structure of G
Gi

-module.

(ii) There exists a canonical isomorphism Gi ' Hom(vL/vK, L̄×) of G
Gi

-
modules.

(iii) The group G is the semi-direct product of group χ
(

vL
vK

)
with Galois

group G(L̄/K̄) :

G ' χ

(
vL

vK

)
1 G(L̄/K̄),

where χ (A) denotes the profinite character group of torsion abelian group
A.

Proof. (i) Since K is henselian and the extension L/K is Galois tamely
ramified, we have the following result:

K = Z ⊆ T ⊆ V = L

The sequence

1 → Gr → Gi → Hom(vL/vK, L̄×) → 1

is exact and is induced by the surjective homomorphism:

Gi → Hom(vL/vK, L̄×)

σ 7−→ χσ,

where the associate homomorphism χσ : L̄× → L̄× is given by χσ(x) :=
σx
x = σx

x (mod)mL. More, the group Hom(vL/vK, L̄×) is canonically isomor-

phic with the character group χ
(

vL
vK

)
=
(

vL
vK

)(p′)
, where

(
vL
vK

)(p′)
denotes the

group vL
vK from which we eliminate the p−primary component, where p is the

characteristic exponent of K̄.
The exact sequence leads to the isomorphism Gi ' Hom(vL/vK, L̄×)

(since the extension is tamely ramified); in particular, the group Gi is abelian.
Moreover, every finite quotient of Gi has the order prime with p.

The exact sequence is induced by the epimorphism :

G(L/K) → G(L̄/K̄)

σ 7−→ σ̄,
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where σ̄(x̄) := σ(x), for every x̄ = x(mod mL) ∈ L̄; we can now identify
G
Gi

= G(L/K)
G(L/T ) ' G(T/K) with G(L̄/K̄).

The group Gi is abelian and we have natural action

G(T/K) × G(L/T ) → G(L/T )

given by

(σ, τ) 7−→ σ
′ ◦ τ ◦ σ

′−1,

where σ
′ ∈ G := G(L/K) such that σ

′ |T = σ (since σ ∈ G(T/K), we can
choose σ

′

as any prolongation to L; we can easily show that the definition
do not depends of chosen prolongation). We can immediately show that the
action is continue; it follows Gi becomes G

Gi
−module.

(ii) Since Gi ' Hom(vL/vK, L̄×) and Gi is G
Gi

−module, it remains to show

that Hom(vL/vK, L̄×) is G
Gi

−module, i.e. G(L̄/K̄)-module. Let G(L̄/K̄)

operate on Hom(vL/vK, L̄×)

G(L̄/K̄) × Hom(vL/vK, L̄×) → Hom(vL/vK, L̄×)

(σ, ϕ) 7→ σ ◦ ϕ,

σ · ϕ :
vL

vK
→ L̄×

σ · ϕ(α) : = σ(ϕ(α)), for every α ∈ vL

vK
.

Therefore, the isomorphism Gi ' Hom(vL/vK, L̄×) is a G
Gi

−module iso-
morphism.

(iii) Since Gi is G
Gi

, i.e. G(T/K)−module, we have an immediate descrip-
tion of G(L/K) as semi-direct product:

G(L/K) ' G(L/T ) 1 G(T/K) ' Gi 1 G(L̄/K̄) ' Gi 1
G

Gi
.

Therefore, we have

G(L/K) ' χ

(
vL

vK

)
1 G(L̄/K̄),

and the proof is now complete. �

Consequently, given a tamely ramified Galois extension, with a henselian
base field , we can calculate the value groups (so that vL

vK ) and the residue
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class fields (and we know the normal extension L̄/K̄); so we know two impor-
tant groups: χ

(
vL
vK

)
and G(L̄/K̄) which can describe the structure of group

G(L/K).

4.3. Let us now consider the power series field K = C((t)) and L = K̃ its
algebraic closure.

On K we have a discrete valuation defined as follows: if f =
∞∑

i≥n0

ait
i, with

n0 ∈ Z, ai ∈ C, then

v(f) := min{}{i ∈ Z | ai 6= 0}, if f 6= 0,∞, if f = 0.

The value group is vK = Z; let us now calculate the residue class field. The
value ring, respectively the maximal ideal, are:

OK = {f ∈ C((t)) | v(f) ≥ 0} = {
∑

i≥0

ait
i | ai ∈ C} = C[[t]],

mK = {
∑

i≥0

ait
i | ai ∈ C}.

The rings homomorphism:

OK → C∑

i≥0

ait
i 7→ a0,

is injective and has the kernel mK ; it follows that K = OK

mK
' C. Hence

K = C((t)) is the completion of discrete value field C(t), K is henselian,
cf.[N], Chap.II, Lemma 4.6.

Proposition 4.3.1. Let K = d let L = K be the algebraic closure of K.
Then: (i) The extension L/K is purely and tamely ramified;

(ii) The Galois group G(L/K) is isomorphic to Ẑ, the profinite completion
of Z.

Proof. (i) Since K is algebraically closed, we get that L̄ = ˜̄K = K̄.
Because G(T/K) is isomorphic to Galois group of residue class field extension
L/K, which in this case is identity, we have T = K, i.e. the extension is purely
ramified.
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Since the residue class field has the characteristic char K̄ = 0, L = V ;
therefore L/K is tamely ramified.

(ii) The Galois group G(L/K), which identifies itself with G(V/T ), is iso-
morphic to abelian characters group χ

(
vL
vK

)
. This implies that the extension

L/K is abelian. Also, since the value group vK of K is Z, vL is it’s divisible

closure, i.e.Q. Hence the character group χ
(

vL
vK

)
is equal to χ

(
Q
Z

)
, i.e. Ẑ. It

follows that G(L/K) ' Ẑ.2

Remark 4.3.2. By Galois theory point of view, C((t)) behaves like a finite
group, since its Galois group is isomorphic to a finite Galois group. Therefore,
for any n ≥ 1, there exists a unique extension of K, of degree n; by tamely
ramified extension structure’s theorem, we have:

K = C((t)) —Kn = C((t))[t
1
n ] = K(t

1
n ).

To describe the Galois group G(Kn/K) it suffices to show the action on the

primitive element t
1
n :

(
Z

nZ
,+

)
' µn ⊆ C× → G(Kn/K)

ζ 7→ σ
ζ
,

where σ
ζ
|K = 1K and σ

ζ
(t

1
n ) := ζ · t 1

n .2

4.4.Let us now analyze the case of extension L/K, where K is the power
series field in one undetermined t with coefficients in a field k of characteristic
zero and L = K̃ is the algebraic closure of K.

Proposition 4.4.1. Let L/K be an extension given by K = k((t)), where
k is a field of characteristic zero, and by L = K̃,where K is the algebraic
closure of K.

Then: (i) The maximal unramified extension is T = k̃((t)), where k̃ is the
algebraic closure of k.

(ii) The maximal tamely ramified extension is V = k̃((t))(t
1
n | n ≥ 1).

(iii) The extension’s Galois group is the semi-direct product of Ẑ with
absolute Galois group G(k̃/k).

Proof. As in case 4.3., we get K̄ = k, L̄ = k̃, vK = vT = Z, vL =
Q; since char K = char k = 0, the extension is tamely ramified; therefor

V = L. As G(L/K)
G(L/T ) ' G(L̄/K̄), we certainly have G(T/K) ' G(k̃/k); then
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the maximal unramified extension is T = k̃((t)). Thus, since the extension is

tamely ramified, by structure theorem 3.3, we have V = T (t
1
n | n ≥ 1) =

k̃((t))(t
1
n | n ≥ 1). The results obtained above may be summarized as follows:

K = k((t)) — T = k̃((t)) — V = k̃((t))(t
1
n |n ≥ 1) = L

K̄ = k — T̄ = k̃ = V̄ = L̄

vK = Z = vT — vV = vL = Q

Since G(T/K) is isomorphic to absolute Galois group of coefficients field

and G(L/T ) is isomorphic to Ẑ, we get the following description of given
extension Galois group:

G(L/K) ' Ẑ 1 G(k̃/k)

2

4.5. In the previous case, if we consider the base field equal to power series
field with real coefficients, we get:

K = R((t)) — T = C((t)) — V = C((t))(t
1
n |n ≥ 1) = L

K̄ = R — T̄ = C = V̄ = L̄

vK = Z = vT — vV = vL = Q

In this particular case, the Galois group of extension L/K is

G(L/K) ' Ẑ 1
Z

2Z
' lim
←−−
n≥1

Dn = D̂∞,

where D̂∞ denotes the profinite completion of the infinite dihedral group.2

4.6. Finally, let us consider the power series field of a finite field K =
Fq((t)), where q = ps, s ≥ 1, p is a prime number and L = K̃sep, where q = ps,

s ≥ 1, p is a prime number and L = K̃sep, where K̃sep denotes the algebraic-
separable closure of K.

Proposition 4.6.1. Let L/K be an extension with K = Fq((t)), q = ps,

s ≥ 1, p a prime number and L = K̃sep.Then:

(i) The maximal unramified extension is given by T = F̃p((t)), where F̃p is
the algebraic closure of Fp.

(ii) The maximal tamely ramified extension is V = T (t
1
n | (n, p) = 1).



86 D. Ibadula

Proof. Since Fq is a finite field (and so perfect), the residue class field

is L̄ = F̃q = F̃p; therefor the Galois group of residue class field extension is

G(L̄/K̄) = G(F̃q/Fq) = Ẑ. Let us remark that K is not a perfect field; the

perfect closure is Kper = K(t
1

pn | n ≥ 1). As before, we get T = Fq((t)) =

F̃p((t)). In this case, the extension is not tamely ramified; the ramification
group is Gr 6= (0). Let us determine now the Galois group of extension V/T :

G(V/T ) ' Hom(
Q

Z
, L̄ = F̃q

×
) = Hom(

Q

Z
, µ(F̃q)) = χ((

Q

Z
)(p

′)) '
∏

p6=p′

Ẑp.

It follows that the maximal tamely ramified extension is V = T (t
1
n |

(n, p) = 1).2
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