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Dedicated to Professor Mirela Stefanescu on the occasion of her 60th birthday

Abstract

The structure of an algebraic tamely ramified extension of a henselian
valued field is studied. We will prove, in theorem 3.2, the following
statement: A finite extension L/K is tamely ramified if and only if
the field L is obtained from the maximal unramified extension T by
adjoining the radicals “/t, witht € T,m € N, m > 1, (m,p) = 1,
where p is the characteristic of the residue class field .

At the end of the paper some examples are presented.

1. Preliminaries

In this paper we fix a base valued field K = (K,v) which is henselian
with respect to a nonarchimedean valuation v. We denote the valuation ring,
the maximal ideal and the residue class field by O, my, K respectively. If
L/K is an algebraic extension, the valuation v extend uniquely to a valuation
on L, denoted v too. The corresponding invariants are labelled Oy, m;, L
respectively.

Definition 1.1. Let L/K be a finite extension of valued fields.
e:=e(L/K) := (vL : vK) is called the ramification index.
f:=f(L/K) :=[L: K] is called the inertia degree.

Definition 1.2. An extension of valued fields L/K is called immediate
ife(L/K)= f(L/K)=1 (i.e. vK =vL and L = K).
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70 D. IBADULA

Definition 1.3. A finite extension L/K of valued fields is called defect-
lessif [L: K] =e(L/K)- f(L/K). An extension L/K (not necessary finite) of
valued fields is called defectless if each finite subextension of L is defectless.

2. Unramified Extensions

A particularly important role in theory of valued fields is played by the
unramified extensions, which are defined as follows.

Definition 2.1. A finite extension L/K of valued fields is called unram-
ified if the extension L/K of the residue class fields is separable and one
has

[L:K]=[L:K).

An arbitrary algebraic extension L/K is called unramified if any finite
subextension F' of L/K is unramified.

We are presenting now, without proofs, a few results concerning the un-
ramified extension.

Proposition 2.2. Let L/K and K'/K be two algebraic extensions of
the same valued henselian field K and let L' =LK . If L/K is unramified,
then L//K/ 1s unramified too. Fach subextension of an unramified extension is
unramified.0]

Corollary 2.3. The composite of two unramified extensions of K is again
unramified. O

Definition 2.4. Let L/K be an algebraic extension. The composite T'/ K
of all unramified subextensions is called the maximal unramified subex-
tension of L/K .

Proposition 2.5. The residue class field of T, denoted T ,is the separable
closure of K in the residue class field extension L/K of L/K, whereas the
value group of T equals that of K (i.e. vT =vK).O
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3. Tamely Ramified Extensions

If the characteristic p = char(K) of the residue class field is positive,
then one has the following weaker notion accompanying that of an unramified
extension.

Definition 3.1. An algebraic extension L/K is called tamely ramified
if the extension L/K of the residue class field is separable and one has ([L :
T],p) = 1, where p is the characteristic of K and T denotes the maximal

unramified extension of L/K.
In the infinite case this latter condition is taken to mean that the degree
of each finite subextension of L/T is prime to p.

Theorem 3.2. (The structure theorem of the tamely ramified extensions).
Let L/K be an algebraic extension. Then L/K is tamely ramified if and only
if the extension L/ T is generated by radicals:

L=T(a€Ldm>1,a™eT,(m,p) =1},

where p is the characteristic of K and T is the mazimal unramified extension
of L/K.

Moreover, if L/K is tamely ramified,then L/K is defectless.

Proof. Before we start proving the theorem, we must make a few remarks.
We may reduce the problem to a finite extension L/K because, if L/K is an
arbitrary algebraic extension, we may represent L as an filtrated inductive
limit of his finite subextensions. We may also assume that K = T because
L/K is obviously tamely ramified if and only if L/T is tamely ramified.

Let’s prove the necessity: we suppose that L/K is tamely ramified. Let

L' = THL/K)®)), where

t(L/K) :={z € L*|3m > 1 such that z™ €K}

contains the elements of L, which are radicals over K. We consider now a
subgroup of this set:

t(L/K)P) .= {z € L*|3m > 1, (m,p) =1 such that 2™ € K}.

The results obtained may be summarized in the following picture:
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K TCL :=THL/K)*)CL
K = T=L=1L
v vT C oL CwoL.

To justify that L = L’, which proves the first implication, we will use a
few lemmata.

Lemma 3.3. Let L/K be an immediate and tamely ramified extension.
Then one has L = K.

Lemma 3.4. Let L/K be an immediate and tamely ramified extension
and let T be the mazimal unramified extension of L/K. Then the composite

HL/K)®) L el
(L/K)®) = oL = %

T — vz —— vz mod vK

induces a group isomorphism t(L/K)®) /T* SoL/vK = vL/vT.

First of all, let’s see how we apply this two lemmata to prove that L = L.

In accordance with lemma 3.3., we have to show that the extension L/L’ is
tamely ramified and immediate. Because the degree of extension [L : T'(L/L’)]
(where T(L/L') is the maximal unramified extension of L/L’) divides [L : T1,
which is prime with p, we have ([L : T(L/L’)],p) = 1. Since the residue class
field extension is trivial (L = L’), we conclude that L/L’is tamely ramified.

We have to show now that L/L’ is immediate, which means L = L’ and
vL = vL'. As L/K is tamely ramified, the extension L/K is separable and,
by proposition 2.5, we have L = T = K, so that L = L’. Let’s prove now that
vL = vL'. Because it is obvious that vL’ C vL, we will show that vL C vL/,
which will result from the surjectivity of the homomorphism from lemma 3.4.

Let v € vL. The surjectivity of the homomorphism from lemma 3.4 im-
plies that there exists a € t(L/K)®) such that v(a) = y(mod vK),ie. v(a) =
v+ v(b), b € K. We have v = v(ab~!),where ab~' € t(L/K)®) so that
v € v(t(L/K)®)), which shows that vL C v(t(L/K)®)). As vL' C vL C
v(t(L/K)®)) C vL/, we may conclude that vL’' = vL, which implies that
L/L’ is an immediate extension, so that L = L’.
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We have now to justify the two lemmata which will prove this first impli-
cation.

Proof (of lemma 3.3). Let’s first remark that L/K is a separable ex-
tension. Let now m := [L : K], with (m,p) = 1, and Homg(L,K) =
{o1,...,0m},where K is an algebraic closure of K. The additive homomor-
phism

Tr : L—K

x — Tr(zx) ::Zai(x)

induces the additive homomorphism

Let us show Tr(z) = mz. Let T = z(modm;) € L,x € O, As K = L,
there exists a € Ok such that * = @, which means x —a € m;,. Let x —a =,
with b € m;. We have Tr(z) = Tr(a) + Tr(() = > o;(a) + Tr(b), so that

i=1
Tr(z) =Tr(z) =m-a=m-7. Since (m,p) = 1, the additive homomorphism
Tr is injective.
We have to show now that L = K. Suppose that there exists an element
a € L\ K. As vL* = vK*, we may choose b € K* such that va = vb and
obtain the unit u := a/b € OF. Because a — =Tr(a) € L\ K has the trace
zero, we may assume that a € L\ K and Tr(a) = 0. The unit u € Of has

the trace Tr(u) = 2 = 0. Hence Tr(w) = Tr(u) = 0, and thus m - @ = 0,
O

0 =
m = 0(mod p), which contradicts (m,p) = 1.

Proof (of lemma 3.4). Let’s show first that the composite homomorphism
has the kernel equal to T*. Assume that z is an element from the kernel,
r = a-u, with a € K* and v € O] such that there exists m > 1 with
™ =b,b € K,(m,p) = 1. Since 2™ = b = a™u™, we may denote u™ = ¢,
for some ¢ in K. We have to prove now u € K* which implies immediately
z € K*. As L = K, we may write u = d-u , where d € O and v/ is a unit in
or, ' =1=1(modm, ). Since um™ = ZTZ = o, with u = 1,we may assume
that v € Of and w = 1. By Hensel’s lemma the equation 2™ — ¢ = 0 has a
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solution o € O such that @ = 1. Moreover, since ua~! is a root of unity of

order m, (m,p) = 1, we have ua~! € T = K, which implies u € K and x € K.
Because the other implication is trivial, we obtain that the homomorphism
has the kernel equal to 1.

We want to check now the surjectivity of the homomorphism

HLJK)P) — oL

r = VT

which will end the proof.
Let o € vL,a = v(a),a € L. Then v(Ny /x(a)) = v(]] 0i(a)) = > v(oi(a))

m - o, where m := [L : T], (m,p) = 1 and Homg (L, K) = {o7....
let b := Np/x(a) € K*; since v(b) = m -v(a) = v(a™), a
u € OF. As L = K we may write u = ¢ -/, with v/ € OF, v = T. So we
have ™ =b-u=b-c-u = d-u/, with d € T*. We want to show now
that v/ = «'™, with v € Oj, which will implies that there exists ; such
that (-%)™ = 5 = d € T*,ie. that an radical over T' of order m, prime
with p, with v(;%) = «. It suffices to show that 1 + mg C O™, where
(m,p) = 1,p = char K > 0. Let u = 1(modmy ). Consider the polynomial
f(X) = X™ —u € Og[X]. Since 1 € K is a simple root of f, by Hensel’s
lemma there exists one and only one w € Ok such that f(w) = 0, and so
W =u,w =10

An immediate consequence of this lemma is the fact that the tamely ram-
ified extension has no defect. Assume that L/K is tamely ramified and, by
the first proved implication, L = L' := T'(¢(L/K)®)). Let’s prove now that

[L':T) = (vl : vT),

in fact, that [L' : T] < m, where m := (vL’ : vT). Since L/K is a finite
extension, t(L/K)®) /K* and vL/vK are finite too and L’ is obtained from
T by adjoining a finite number of elements. We want to find some generators
t1,...,tm € L’ such that any element from L’ may be written as a combination
of t1,...,t;, with coefficients in 7. This will implies m > [L' : T] which will
prove the fact that a tamely ramified extension is defectless.

Now, let t1,...,t,, € t(L/K)(P/), with v(t;)(mod vT), for i = 1,m, be a
system of representatives for the quotient vL/vT. By the isomorphism from

lemma 3.5, we have ¢(L/K)®) = |J ¢,T which implies L' = T(ty, ..., tm).
i=1
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m
It remains to show that L' = > Tt;. A polynomial from L’ is a sum of
i=1

T4
70

monomials of form ¢- [] ¢
i=1
1 <4, < m can be written as tx - A\, with A € T*, 1 < k < m, it follows that
[L: T) = (vL': vT).
Before we prove the other implication of theorem 3.2, let’s make a few

@)
comments. Since "MK ~ % and the quotient vL/vK may be written as
T

c € T. Since any product of two elements ¢;t;,

T =
a direct sum of cyclical groups ;’—IL( =6 %, we have
i=1
t(L/K)®) = { (H tfi) x| 0< s, <my, € TX} ,
i=1
where ¢; are the generators of cyclical groups Z/m;Z, for ¢ = 1,m. Then

L ="T(ty,...,t,), with t"" = ¢; € T*, m;|[L : T]; therefore (m;,p) = 1.

In order to prove that an extension L = T(t1,...,t,) is tamely ramified,
it suffices to look at the case r = 1, i.e. L = K(t), with t™ = a, a € T,
(m,p) = 1. The general case then follows by induction.

We may assume, without loss of generality, that K is separably closed.
This is seen by passing to the maximal unramified extension T’ := K,,,., which
has the separable closure 77 = K, = K*? as its residue class field. We
obtain the following diagram

Ky =T

where LNT' =T = K and L' := L-T" = T'(t). if now L' /T" is tamely ramified,
then L’/T" is separable; therefor L’ = T". Hence T C L C L’ =T’ and T'/T
is separable, L/T is also separable. Moreover, since p{ [L' : T'] = [L : T} it
follows that L/T is also tamely ramified.

We may assume, without loss of generality, that [L : K] = m, i.e. a can’t
be written as a = a'%, where d is the greatest divisor of m such that o’ € T.

, m o\ d m
Otherwise, since ¢ = (t%)d =a?, and (ff) =1, we have ( := LT a
root of unity of order d, with (d,p) = 1 and therefore ¢ is an element of the
residue class field which is separable closed and contains all roots of unity of
order prime with the characteristic. So, t@ = (-a’ € K and we can make this
assumption.
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Let o :=v(t) € vL and let n := ord (o mod vK). Since m-a =m-v(t) =
v(t™) = v(a) € vK, we have m = d-n. It follows that n-a = v(t") = v(b),b €
K and v(b%) = v(t™) = v(a) and consequently ™ = a = b%u, with u € O. As
(d,p) = 1, the polynomial f(X) = X% —u € K[X] is separable one. Since K
is separable closed, f admits a solution w € K, hence also over K by Hensel’s
lemma. So there exists ¢ € Ok such that ¢ — v = 0 and ¢ = w. Therefore
tm = q = by = bt = (bc)d and, by made assumption, we obtain d = 1, and
hence m = n. Thus

m < (vL:vK)<m:=[L: K],
in other words (vL : vK) = [L: K], and so [L : K| = 1,i.e.L = K. This shows
that L/K is tamely ramified.O

Corollary 3.5. Let L/K and K'/K be two algebraic extensions over K
and L' := L - K'. Then we have

L/ K tamely ramified = L' /K’ tamely ramified.

Proof. We may assume, without loss of generality, that L/K is finite and
consider the diagram

L
/ N
T L -K' =1
/ N /
K T K'
AN /
KI

The inclusion T C TK’ follows from Proposition 2.2. If L/K is tamely
ramified, then L = T(™/ay,..., "{/ar), (mi,p) = 1; hence L' = LK’ =
TK'(™a1,..., "a,) € T"("ai,..., "Y/ar) € L', where T' is the maxi-
mal unramified extension of L'/K’, we have L' = T'( "{/a, ..., "{/a,), so that
L'/K' is also tamely ramified.O

Definition 3.6. Let L/K be an algebraic extension. then the composite
V/K of all tamely ramified subextensions is called the maximal tamely
ramified subextension of L/K.

Definition 3.7. A finite extension L/K is called totally (or purely)
ramified if K =T.
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Definition 3.8. A finite extension. L/K is called wildly ramified if it
is not tamely ramified, i.e. if L # V.

4.Applications

We will consider now a few important extensions for which we will calculate
the maximal unramified and tamely ramified subextensions.

4.1: Consider the extension L := Q,(¢)/K := Q,, for a primitive n—th.

root of unity ¢. In the two cases (n,p) =1 and n = p*, the extension behaves
completely differently. Let us first look at the case (n,p) = 1.

Proposition 4.1.1 (the case (n,p) =1). Let K := Q,, L := K(¢), and
let Or,/Ok and L/K, be the extension of valuation rings, and respectively
residue class fields, of L/K. Suppose that (n,p) = 1. Then one has:

(i) The extension L/K is unramified of degree f, where f is the smallest
natural number such that ¢ = 1 mod n, i.e. f is of order p mod n in the
multiplicative group (%Z)X.

(ii) The Galois group G(L/K) is canonically isomorphic to G(L/K) and
is generated by the Frobenius automorphism ¢ — (P,

(i11) O, = Ok|[C] , where Ok is the ring Z,, of p-adic integers.

Proof. (i) Let P(X) be the minimal polynomial of ¢ over K and P(X) its
reduction modulo my. Being a divisor of the separable polynomial X" — 1,
P(X) is separable; by henselianity of Q,, the polynomial P(X) is irreductible
(any factorization of P(X) over residue class field "lifts” to a factorization of
P(X) which is irreductible). So, the reduction P(X) is the minimal polynomial
of ¢ = ¢ mod mz. P and P have the same degree, so that [L : K| = [K(¢) :
K] =[L:K|=:f. L/K is therefore unramified.

Because the polynomial X™ —1 splits over Oy, (€ is integral over O, so it’s
in Oy, the integral closure of Ok in L. Therefore all the roots of polynomial
X™—1 are in Oy, since they are powers of the primitive root (), and because
X"™ —1 is separable, X™ — 1 splits over L into distinct linear factors, so that
L = F,s contains the group of roots of unity of orders divisors of n and is
obtained by adjoining them to K = F, (equivalently of n-th. primitive root

¢). Consequently, f is the smallest number such that the group of n-th unity
roots is included in the cyclic group L of order pf —1,1ie n|pf — 1.This
shows (i).

(ii)is immediate from (i).
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(iii) Since L/ K is unramified, we have m-O = m;, and since 1,(, ...,Zf_l
represents a basis of L/ K, we have O, = Og[¢]+mf -Or, and Of, = Og|[(] by
Nakayama’s lemma (if A is local ring with maximal ideal m, N an A-module
finitely generated and M C N a submodule such that N = M + m/N, then
M = N).

Proposition 4.1.2 (the case n = p™) Let ¢ be a primitive p™-th root of
the unity. Then one has:

(i) L/K is purely ramified of degree o(p™) = (p — 1)p™ L.
X
(ii) G(L/K) = ()
(i1i) O, = Ok|[C] , i.e. Z,[C] is the valuation ring of Qp().
(iv) 1 — ¢ is a prime element (a local uniformizer) of O = Z,[(] which
means that generates the mazimal ideal m;, of the discrete valuation ring Orp,,

i.e. is an element of minimal positive valuation) with norm over K equal to
p.
m—1

Proof: u=¢? is a primitive p-th root of the unity, i.e.

pP P72 4+ 4+1 = 0, hence
e )

m—1

C(p—l)p
Therefore, ( — 1 is a root of the polynomial

P(X) = (X + 1)@= 0" (X 4+ 1)

m—1

Since P(0) = p and P(X) = X(®=Dr" ™" P(X) satisfies Eisenstein’s criterion
and is irreducible over K. Therefore [L : K| = [Q,(¢) : Qp] = ©(p™). The
canonical injection

G(L/K) — (Z )X

i/

o — nlo),

where o(¢) = (™9 is therefore bijective, since both groups have order ¢(p™).
Thus

Ny(l-¢= [ o0-0= J] @-0a¢)=r0)=p

c€G(L/K) o€G(L/K)
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Writing w for the extension of the p-adic valuation v, to L,we find furthermore
that

1 = gy =wp) =wl [[ oc0-)= > wol-0)=

o€G(L/K) oceG(L/K)

> w(C—1)=p@Ew(-1),

c€G(L/K)

i.e. L/K is totally ramified and 1 — ¢ is a prime element (a local uniformizer)
of the (discrete) valued field L. The powers (¢ —1)%, for i = 0,1, ..., o(p™) — 1,
determine a base of L/K. Denoting by M the Ok —module generated by this
base, we obtain easily:

O, =M+ (C - 1)<P(pm)OL =M+ mgOr.

Since L/K is separable, Oy is a finitely generated Ox — module and, by
Nakayama’s Lemma, Oy, = M. This concludes the proof.

Remark 4.1.3. Since L/K is separable, the discriminant of every base of
L/K is a nonzero element of K. In particular, the discriminant of the above

base is a nonzero element of O, dOr, € M and dOOLL finitely generated over
Ok

o and finite too. Consequently, Oy, is a finitely generated Ox-module. We
can avoid Nakayama’s Lemma here (in case 1, iii, too) if we consider the fact
that L is complete and so Oy, is a projective limit of quotient rings pTOOLZ which

determines a cofinal system in the family of quotient rings of Oy, .

Case 3 (n = n/p™,(n’,p) = 1,m € N).The general case of a n-th root of
the unity ¢, with n = n/p™, (n’,p) = 1, m € N) yields from the two extreme
cases, above treated.

We can assume m # 0 (otherwise we obtain the case 1). The maximal
unramified extension of L/K is T = K((,,,) = Q,({,,/), the cyclotomic exten-
sion of K, of order n, and the maximal tamely ramified extension of L/K is

V =T, = K(Cpm_l) = Qp(C”m_l)7 the cyclotomic extension of K, with
degree n'p. We have :

The results obtained may be summarized in the following way:
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L/K unramified
L/K tamely ramified
L/K purely ramified

L/K nontrivial, tamely and purely ramified

m = 0;
m=0orm=1;

n' =1;

1ot

m=1; and n = 1,i.e. n =p.

At limit, if n tends to oo, we have that L is the maximal cyclotomic extension
of K, Qp , the maximal unramified extension is T' = K,, = K((,|(n,p) = 1),
with G(L/K) isomorphic with Z, topologically generated by Frobenius auto-
morphism ¢, — (2, (n,p) = 1, and the maximal tamely ramified extension
V =T(¢,), with Galois group G(V/T') of order p—1 (to remark that for p = 2,
we have V =T).

The infinite galoissian extension L/T is purely ramified, with T=L=K
(where denotes the algebraic closure of prime field K = F),), abelian with
G(L/T), the inertia group of Galois (abelian) extension L/K, canonically iso-

X
morphic with lim (ﬁ) , the inversable elements group of p—adic integers
m>1
ring. This extension has a unique p—Sylow closed subgroup, isomorphic (al-

gebraic and topologic) to (h_r>nl pTZ'Z , the aditive group of p-adic integers.
m

Finally, let us remark that G(L/V) is the kernel of canonical epimorphism

vL -
G(L)T) ~Z,; — Hom(U—K,LX) ~ T,
which leads an invertible element of the ring of p—adic integers to its class
modulo the maximal ideal pZ,. Therefor G(L/V) is identified with the sub-
group 1 + pZ, of Z,’s 1-units (the multiplicative profinite group 1 + pZ, is
canonically isomorphic - algebraically and topologically - with the profinite
aditive group Zy,for p # 2)(cf.[N], chap.II, Prop.5.5).00

4.2 .Let us study now the case of a tamely ramified Galois extension, with
the base field henselian.

Proposition 4.2.1. Let K be a valuated field, L/K a tamely ramified
Galois extension (i.e. L =V), G := G(L/K), G; = G;(L/K) the extension
mertia groups.

Then:
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)

(i) The inertia group G; is abelian and it has a structure of = -module.

| E)

(it) There exists a canonical isomorphism G; ~ Hom(vL/vK,L*) of & -
modules.

(iii) The group G is the semi-direct product of group x (%) with Galois
group G(L/K) :

Gy <;}7L() M G(L/R),

where x (A) denotes the profinite character group of torsion abelian group

A.

Proof. (i) Since K is henselian and the extension L/K is Galois tamely
ramified, we have the following result:

K=ZCTCV=L

The sequence
1— G, — G; — Hom(vL/vK,L*) — 1

is exact and is induced by the surjective homomorphism:

G; — Hom(vL/vK,L*)

o = Xo

where the associate homomorphism y, : L* — L* is given by x,(v) =
7L = 7% (mod)m . More, the group Hom(vL/le, L*) is canonlically isomor-
phic with the character group x (;’—Ifg) = (;’—Ilg) @) (5—{;) @) denotes the
group % from which we eliminate the p—primary component, where p is the
characteristic exponent of K.

The exact sequence leads to the isomorphism G; ~ Hom(vL/vK, L)
(since the extension is tamely ramified); in particular, the group G; is abelian.
Moreover, every finite quotient of GG; has the order prime with p.

The exact sequence is induced by the epimorphism :

, where

G(L/K) — G(L/K)

o +— 0,
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where (Z) = o(x), for every # = z(modm;) € L; we can now identify
G . 5
& = G ~ G(T/K) with G(L/K).

The group G; is abelian and we have natural action

G(T/K)x G(L/T) — G(L/T)
given by

(0,7) — o oro a,_l,

where a// € G := G(L/K) such that ¢'|p = o (since 0 € G(T/K), we can
choose o as any prolongation to L; we can easily show that the definition
do not depends of chosen prolongation). We can immediately show that the
action is continue; it follows G; becomes G%—module.

(ii) Since G; ~ Hom(vL/vK,L*) and G is G%fmodule, it remains to show
that Hom(vL/vK,L*) is G%—module, ie. G(L/K)-module. Let G(L/K)
operate on Hom(vL/vK, L*)

G(L/K) x Hom(vL/vK,L*) Hom(vL/vK,L*)

—
(o,0) = oo,

L _
S
vl
o-pla) : =o(p(a)), for every o € —.

vK

Therefore, the isomorphism G; ~ Hom(vL/vK,L*) is a G%—module iso-
morphism.

(iii) Since G; is(%, i.e. G(T/K)—module, we have an immediate descrip-
tion of G(L/K) as semi-direct product:

G(L/K)~G(L/T)XMG(T/K) ~G; X G(L/K) ~ G; X Gg
Therefore, we have

G(L/K) = x (5 ) M G(E/R),

and the proof is now complete. [

Consequently, given a tamely ramified Galois extension, with a henselian

base field , we can calculate the value groups (so that %) and the residue
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class fields (and we know the normal extension L/K); so we know two impor-
tant groups: x (&) and G(L/K) which can describe the structure of group
G(L/K).

4.3. Let us now consider the power series field K = C((t)) and L = K its

algebraic closure.
o0

On K we have a discrete valuation defined as follows: if f = Y a;t?, with
i>n0

ng € Z, a; € C, then

o(f) :==min{}{i € Z | a; # 0}, if f # 0,00, if f=0.

The value group is vK = Z; let us now calculate the residue class field. The
value ring, respectively the maximal ideal, are:

Ok = {feC(®)]v(f) 20} ={ ait' | a; € C} =C[f]],
i>0
My = {Zaiti | a; € C}.
i>0
The rings homomorphism:
OK — C
Zaiti = ao,

i>0

is injective and has the kernel my; it follows that K = % ~ C. Hence

K = C((t)) is the completion of discrete value field (C(t),_lf{( is henselian,
cf.[N], Chap.II, Lemma 4.6.

Proposition 4.3.1. Let K = d let L = K be the algebraic closure of K.

Then: (i) The extension L/K is purely and tamely ramified;

(ii) The Galois group G(L/K) is isomorphic to Z, the profinite completion
of Z.

Proof. (i) Since K is algebraically closed, we get that L = K = K.
Because G(T'/K) is isomorphic to Galois group of residue class field extension
L/K, which in this case is identity, we have T'= K i.e. the extension is purely
ramified.
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Since the residue class field has the characteristic char K = 0, L = V;
therefore L/K is tamely ramified.

(ii) The Galois group G(L/K), which identifies itself with G(V/T), is iso-
morphic to abelian characters group x (;’—Iﬁ) This implies that the extension
L/K is abelian. Also, since the value group vK of K is Z, vL is it’s divisible
closure, i.e.Q. Hence the character group x (%) is equal to x (%), ie. Z. It

follows that G(L/K) ~ 7.0

Remark 4.3.2. By Galois theory point of view, C((¢)) behaves like a finite
group, since its Galois group is isomorphic to a finite Galois group. Therefore,
for any n > 1, there exists a unique extension of K, of degree n; by tamely
ramified extension structure’s theorem, we have:

1 1
K =C((t) —Kn,=C((t)[t"] = K(t).

To describe the Galois group G(K,/K) it suffices to show the action on the

primitive element tw

Z X
(n—Z,+) ~ O = G(Ko/K)
¢

— O—C’

1 1
where o |x = 1x and o (tn) :=(-t».0

4.4.Let us now analyze the case of extension L/K, where K is the power
series field in one undetermined ¢ with coeflicients in a field k£ of characteristic

zero and L = K is the algebraic closure of K.

Proposition 4.4.1. Let L/K be an extension given by K = k((t)), where
k is a field of characteristic zero, and by L = K,where K s the algebraic
closure of K. ~ ~

Then: (i) The mazimal unramified extension is T = k((t)), where k is the
algebraic closure of k.

(ii) The mazimal tamely ramified extension is V = k((t))(t= | n > 1).

(ii) The extension’s Galois group is the semi-direct product of 7 with

absolute Galois group G(k/k).

Proof. As in case 4.3., we get K = k, L = I~c, vK =T = Z,vL =
Q; since char K = char k = 0, the extension is tamely ramified; therefor

V=L As %(%/&T{)Z ~ G(L/K), we certainly have G(T/K) ~ G(k/k); then
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the maximal unramified extension is T' = k((t)). Thus, since the extension is
tamely ramified, by structure theorem 3.3, we have V = T(t% | n > 1) =
E((t))(t7 | n > 1). The results obtained above may be summarized as follows:

K = k((t) —T=k(t) —V=k®)tr|n>1)=L
K = k—T=k=V=L
vK = Z=vT—vW=vL=Q

Since G(T'/K) is isomorphic to absolute Galois group of coefficients field
and G(L/T) is isomorphic to Z, we get the following description of given
extension Galois group:

G(L/K) ~ 7 X G(k/k)

O

4.5. In the previous case, if we consider the base field equal to power series
field with real coefficients, we get:

K = R(t) —T=C((t) — V=C(#)(t|ln>1)=L
K = R T=C=V=L
vK = Z=uvT—vV =vL=Q

In this particular case, the Galois group of extension L/K is

A 7 .
G(L/K) ~7Z X — ~lim D, = Dq,
27 1

where Do denotes the profinite completion of the infinite dihedral group.O

4.6. Finally, let us consider the power series field of a finite field K =
F,((t)), where ¢ = p°,s > 1, p is a prime number and L = K¢ where q = p*,
s> 1, pis a prime number and L = K%, where K*¢ denotes the algebraic-
separable closure of K.

Proposition 4.6.1. Let L/K be an extension with K = F,((¢)), ¢ = p®,
s> 1, p a prime number and L = K¢ Then:

(i) The maximal unramified extension is given by T = ]ﬁ;((t)), where E is
the algebraic closure of IF),.

(ii) The maximal tamely ramified extension is V = T(t= | (n,p) = 1).
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Proof. Since F, is a finite field (and so perfect), the residue class field

is L = IF = Fp, therefor the Galois group of residue class field extension is
G(L/K) = G(F q/Fq) = 7. Let us remark that K is not a perfect field; the
perfect closure is K., = K(t# | n > 1). As before, we get T = F,((¢)) =
fF;((t)) In this case, the extension is not tamely ramified; the ramification
group is G, # (0). Let us determine now the Galois group of extension V/T :

Q. _ Q =
GV/T) = Hom(3, L =F,") = Hom( 2, u(Fy)) = x((2)") ~ [] Z
p#p’
It follows that the maximal tamely ramified extension is V = T(t% |
(n,p) =1).0
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