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SOME EQUATIONS IN ALGEBRAS
OBTAINED BY THE CAYLEY-DICKSON
PROCESS

Cristina Flaut

Dedicated to Professor Mirela Stefanescu on the occasion of her 60th birthday

Abstract

In this paper we try to solve three fundamental equations ax =
zb, ax = b and z? = a, in a division algebra, A over K, obtained with
the Cayley-Dickson process (see [Br; 67] ), in the case when Kis an
arbitrary field of characteristic # 2.

§1. INTRODUCTION

Unless otherwise indicated, K denotes a commutative field with character-
istic # 2 and A denotes a non-associative algebra over K.

Definition 1.1. The algebra A is called alternative if 22y = x (zy) and
yr? = (yx)x, Yo,y € A.

Let A be an alternative algebra and x,y, 2z € A. We define the associator
of elements x,y, z by the equality: (z,y,z) := (xy) z — « (yz) .This is linear in
each argument and satisfies the identities:

1) ('r’yvz) = —(y,a:,z) = - (1‘72’,3/) = (Zaxay);

i) (z,2,y) = 0;

ii) (z,y,a) =0,a € K.

Definition 1.2. An algebra A is called power-associative, if each ele-
ment of A generates an associative subalgebra.
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In a power-associative algebra,the power a™ (n > 1) of an element a is de-
fined in a unique way and we have : (a™)" = a"™,a"a™ = a"*™.

Definition 1.3. An algebra A is called a composition algebra if
there exists a quadratic form n : A — K such that n(zy) = n(x)n(y),for
any z,y € A and the bilinear associated form f : A x A — K, f(x,y) =
L (n(z +y) —n(z) — n(y))is non-degenerate. The quadratic form n is also called
the norm on A.

A composition algebra with unity is also called a Hurwitz algebra. The
non-zero finite-dimensional composition algebras over fields with characteris-

tic different from 2 can have only the dimensions 1,2, 4 or 8.[El, Pe-I; 99]

Definition 1.4. An algebra A is called flexible if z (yx) = (zy) z, for all
x,y € A.

Definition 1.5. The vector space morfism ¢ : A — A is called an in-
volution of the algebra A if ¢ (¢ (z)) = x and ¢ (zy) = ¢ (z) ¢ (y), for all
x,y € A.

Let A be an arbitrary finite-dimensional algebra with unity 1.We consider
the involution of the algebra A, ¢ : A — A, ¢ (a) = a@,where a+a and aa € K-1,
foralla € A. Let a € K be a fixed non-zero element.On the vector space A® A
we define the following operation of multiplication

(a1,az2) (b1, b2) = (a1by — abzaz, azby + baay) .

The resulting algebra is denoted by (A4, «) and is called the algebra de-
rived from the algebra A by the Cayley-Dickson process. We can
easily prove that A is isomorphic with a subalgebra of algebra the (A, a) and
dim (A, o) = 2dim A. We denote v = (0,1) and we get v? = —a - 1,where
1 =(0,1), therefore (A,a) = A® Av.

Let x = a;+agv € (4,a),and denote T = a1 —agv.Then o+ = a;+a7 €
K- 1,2 =aja1 + aasas € K - 1, therefore the mapping

Y (A,a) — (A, ), ¥ (x) = Z,is aninvolution of the algebra (A, a) ex-
tending the given involution ¢.

Forx € A t(r) =247 € K and n(z) = 2T € K are called the trace and
the norm of the element z € A .

If 2€ (Aja), 2z =x+yv, then 2+ 2 =t(2)-land 22 = zz = n(z) -
1,where t (z) =t (r) and n (2) = n (z)+an(y) . Therefore (z + z) z = 2242z =
22 +n(z)and2? —t(2) 2 + n(2) = 0,Vz € (A, a) that is each algebrawhich is
obtained by the Cayley-Dickson process is a quadratic algebra. In [Sc; 54],
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it appears that such an algebras is power- associative flexible and satisfies the
identities: t (zy) =t (yx),t ((zy) 2) =t (x (y2)),Vz,y,z € (4, ).

The algebra (A, «) is a Hurwitz algebra if and only if it is alternative and
(A, @) is alternative if and only if A is an associative algebra.[Ko, Sh; 95].

Proposition 1.6. Let (A, «) be an algebra obtained by the Cayley-Dickson
process.

i) If Ais an alternative algebra, then (vy)T = x (yT) = 2yz,

Ve,y € (A, o).

i) If n(x) # 0,then there emists v~ = %, for all © € (A,a). If
(A, ) is an alternative algebra, then (zy)z~' = x (yo=') = ayz~", for all
z,y € (A ).

Proof. The following identities are true : (z,y,z) = 0 and (x,y,7) =
0,7 € K. Then (z,y,%) + (x,y,2) = (z,y,t (x)) = 0, therefore (x,y,z) = 0.0

The Cayley-Dickson process can be applied to each Hurwitz algebra. If
A = K, this process leads to the following Hurwitz algebras over K :

1) The field K of characteristic # 2.

2) C(a) = (K, a),a # 0. If the polynomial X2 + « is irreducible over K ,
then C(«) is a field. Otherwise C(a) = K @ K.

3) H(a,B) = (C(a),B),8 # 0, the algebra of the generalized quater-
nions,which is associative but it is not commutative.

4) O(a, B,7) = (H(e, 8),7),v # 0,the algebra of the generalized octo-
nions (also a Cayley-Dickson algebra).The algebra O (a, 3, 7) is non-associative,

therefore the process of obtaining Hurwitz algebras ends here. [Ko,Sh;95]

Definition 1.7. Let A be an arbitrary algebra over the field K. It is a divi-
sion algebra if A # 0 and the equations az=b, ya=b, for every a,b € A, a # 0,
have unique solutions in A.

Proposition 1.8.[Ko, Sh; 95] Let A be a Hurwitz algebra.The following
statements are equivalent:

i) There ezists x € A,z # 0 such that n (z) = 0.

ii) There exists x,y € A,x # 0,y # 0,such that zy = 0;

i1i) A contains a non-trivial idempotent (i.e.an elemente, e # 0,1 such
thate? = e).0

Definition 1.9. Any Hurwitz algebra which satisfies one of the above
equivalent conditions is called a split Hurwitz algebra.

Every Hurwitz algebra is either a division algebra or a split algebra.

If K isanalgebrically closed field, then we obtain only split algebras.
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‘We have obtained by the Cayley-Dickson process some algebras with
dimension bigger than 8 which are non-alternative and non-associative but

are quadratic and flexible algebras. Every one of these algebras is central simple
(i.e. Ap=F ® Aisasimple algebra, for every extension F' of K and for every
dimension).

Remark. 1.10. For every algebra A obtained by the Cayley-Dickson pro-
cess we has the relation: 2f (x,1)=t (x) ,Vo € A,where f is the bilinear
form associated with the normn.

Proposition 1.11. In each algebra obtained by the Cayley-Dickson process
the following relation is satisfied: xy + = = 2f (x,y) 1,where f is the bilinear
form associated with the norm n.

Proof . As = 2f (x,1) — x, we have:

vy +yz=ay+ (2f(y,1) —y) 2f (z,1) —x) =y +4f (y,1) f (z,1) -
=2f (y,1)x —2f (z,1) y + y=.

2f (z,9) =2f (x,2f (y,1) - 1 —y) =2f (z,2f (y,1) - 1) = 2f (2, y) =

=4f (z,1) f(y,1) = 2f (z,y) =4f (x,1) f (y, 1) —n(z +y) +n(z)+

+n(y) =4f(x,1) f(y,1) = (@ +y) (@ +7) + 2T +yy =

=4f (2, 1) f(y,1) — 2% — 2y — Ty —yy + 27 + yy =

=4f(z,1) f(y,1) —2zy — 7y =

A7 (1) (1) — 2 (27 (1) — ) — 5 (2F (1) — ) =

=4f (z,1) f (y,1) = 2f (y, 1)z — 2f (z,1) y + 2y + yx and we get the re-
quired equality.O

Proposition 1.12. Let A be a composition division algebra,

f:AxA— K, n:A— K be the bilinear form and respectively the norm
of A. Then, for v,w € A\{0},we have f? (v,w) = f (v,v) f (w,w), if and only
ifv=rw,rekK.

Proof. If v =rw,r € K, then the equality is true.

Conversely, if f2?(v,w) = f(v,v) f (w,w), for v # 0,w # 0, we have
f? (v,w) # 0. We suppose that » € K with v = rw does not exist. Then, for
non-zero elements a,b € K, we have av + bw # 0. Indeed, if av + bw = 0 then
v = —gw,with —3 € K, which is false. We get that f (av + bw,av + bw) # 0
and we have a?f (v,v) + b*f (w,w) + 2abf (v,w) # 0. For a = f (w,w),we
obtain f (w,w) f (v,v) + b + 2bf (v,w) # 0 and, for b = —f (v,w) ,wehave
F (1, w) £ (0,0)+ £ (0,0)=2f2 (0, w) # 0, therefore f (w,w) f (v,0) # 12 (v,w),

which is false. Hence av + bw = 0 implies v = rw.O
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Theorem 1.13.(Artin).[Ko, Sh; 95] In each alternative algebra A, any two
elements generate an associative subalgebra.

Corollary 1.14.[Ko, Sh; 95] Each alternative algebra is a power-associative
algebra.

Proposition 1.15. Let A be a unitary division power-associative algebra
(with finite or infinite dimension). Then every subalgebra of A is a unitary
algebra.

Proof. Let B be a subalgebra of the algebra A and b € B,b # 0. We
denote by B (b) the subalgebra of B generated by b, which is an associative
algebra (A is power-associative). Since Ais a division algebra, B (b) is a uni-
tary algebra, then B is unitary. O

Proposition 1.16. Let A be a unitary division power-associative alge-
bra (with finite or infinite dimension). Then A(a,b) = A(a —7m,b—0), with
7,0 € K, where by A(a,b) we denote the subalgebra generated by the elements
a,b € A.

Proof. From Proposition 1.15, we have 1 € A(a—m,b—0), so 7,0 €
A(a—m,b—0). Weobtaina = (a—7m)+7m € A(a—m,b—0)and b= (b—0)+
0 € A(a—m,b—0). Therefore A(a,b) C A(a—m,b—0). Since 1 € A(a,b),
we have a — m,b — 0, 7,0 € A(a,b), so we have the required equality.0

§ 2. Equations in the generalized quaternion algebras
Consider the generalized quaternion algebra, H (a, 3), with dimension 4,

and the basis {1, e1, es, e3}, its multiplication operation is listed in the follow-
ing table:

| 1 e1 e es
1 1 €1 €9 €3
el €1 — €3 —Qe2
€2 | €2 -€3 -p Bex
e3 | e3 aex —fer —af

Remark 2.1 The algebra H («, 3) is either a division algebra or a split
algebra, in this case being isomorphic to algebra My (K) . In the following,
we will show how to distinguish these two cases.
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Let x = a+bey+cea+des € H(w, 3). The element T = a—be; —ces —deg is
called the conjugate of the element x. The norm and the trace of the element x
are the elements of K: n (z) = 27 = a> +ab? + 2 +afBd? t (v) = 2+7 = 2a.

The algebra H («, 3) is a division algebra if and only if for any x €
H(a,5),z # 0, implies n(x) # 0, therefore if and only if the equation
a® 4 ab?®+ Bc? + aBd? = 0 has only the trivial solution. We write this equation

under some equivalent forms: (a2 + abz) = —pc —apd? = —p (02 + adz)or
B = —nletha) = (2 ) = —n(c+de) = —&% — % where ¢ + 0e; =
gisg or else n(z) = —f, where z = ¢ + de; € C(a).

Therefore H («, ) is a division algebra if and only if C(«) is a quadratic
separable extension of the field K and the equation n(z) = —3 does not

have non-zero solutions in C («). Otherwise H («, ) is a split algebra. Since,
if C(«) is a quadratic separable extension of the field K ,for x € H (o, 3) ,2 =
ai + agv, with aj,as € C (o) , v2 = =, # 0 andn (z) = 0, then ay # 0. In-
deed, if n (z) = 0 and as = 0 we get n (z) = n (a1) = a®>+ab?,a; = a+bv,v? =
—a, therefore the polynomial X2 + a has a solution in K, false.O

In the following, we consider that H («, 3) is a division generalized quater-
nion algebra.

Definition 2.2.The linear applications X, : H (o, 3) — Endg (H (a, 3)),
given by

Aa) :H(a,8) — H(e, 8),A(a) (z) = az,a € H (o, §)and

p(a):H(a,B) - H(e,B),p(a)(z) =za,a € H(a, 3) ,are called the left
representation and the right representation of the algebra H (a, 3) .

We know that every associative finite-dimensional algebra A over an ar-
bitrary field K is isomorphic with a subalgebra of the algebra M,, (K), with
n = dimg A. So we could find a faithful representation for the algebra A
in the algebra M,, (K). For the generalized quaternion algebra H («, 3), the
mapping:

agy —aa; —fay —afag
. | @ ag —faz Pay

ArH(a,f). = My (K),\(a) = a  aas o Coay ,

as —as ajq ap

where a = ag + are; + ases + ases € H(a, §)is an isomorphism between
H («, 8) and the algebra of the matrices of the above form.

Obviously A (a) (1) = a, A (a) (e1) = ae, X (a) (e2) = aea, A (a) (e3) = aes,
represents the first, the second, the third and the fourth columns of the matrix
Aa).

Definition 2.3. X (a) is called the left matriceal representation for
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the element a € H (o, §) .
In the same manner, we introduce the right matriceal representation
for the element a € H («, 3):

ap —aa; —faz —afaz

. _ aip Qg Bas —Bas
piH(B) = Mu(K),pla) = | T T | awhere
as az —ay ap

a = ap+ajertasestazes € H(a,B)andp (1) = a,p(a) (e1) = era, p(a) (e3) =
esa, p(a) (e3) = esa represent the first, the second, the third and the fourth
columns of the matrix p (a).

Proposition 2.4.([Ti; 00], Lemma 1.2.)Let z,y € H(a,3) and r € K.
Then the following statements are true:

yr=y<=Ax)=A(y).

it) =y <= p(x)=p(y).

iii) Mz +y) =A(2) + A(Y), Azy) = A (@) A(y), A (rz) =rA(2),

)\(1) =14, 7€ K.

w) p(x+y)=p@)+pW).play) =p@)py),plrz)=rp(x),

p(l) =14, 7€ K.

WA = @)oo () = (@) for z £ 0;0

The following three propositions can be proved by straightforward calcu-
lations.

Proposition 2.5. For all x € H (a, 3) det (A (z))=det (p (z))=(n (z))*.0

Proposition 2.6. Let x = ag+aje; +asea+aszes € H(w, ). The following
statedments are true:

i)z = iM4)\ (z) M}, x = iprt (x) M}, where My = (1,e1,e2,€3),

My = (1, —a~tey, = te,y, —a‘lﬁfleg)t .

ii) X (x) = Dipt (x) Do, A\ (T) = C1A\" (x) Co, p (1) = DA () Do,
p(T) = C1pt (x) Co, whereCy,Co, Dy, Dy € My (K) and

Cy = diag{l,a 1,57, o= 17}, Cy = diag{1,a, 3,0},

Dy = diag{l,—a~', -7, —a~' 87}, Dy = diag{l, —a, -, —af}.
iti) The matrices C1,C2, D1 Dy € My (K) satisfy the relations:
C1Cy = DDy = Iy, D1 My = Cy, Do My = Cy,Cy My = Dy,

CyM; = Dy,where My € My (K), My = diag{l,—-1,—1,—1}.0
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Proposition 2.7. ([Ti,00]; Lemma 1.3. )Let © = ag+aje; +azes+azes €
H(a,3). Let T = (ao,al,ag,ag)75 € Mix4 (K), be the vector representation
of the element x. Then for every a,b,x € H(«, 3) we have the relations:

Ly —> —

i) at = \(a) @.

.. — —_

ii) zb=p (b) T

“ee — —_—

i) axb=X(a)p(b) @ =p

0)p () A (a) = A (0) p (8) .C

Proposition 2.8. Let a,b € H(«a,5),a # 0,b # 0. Then the linear
equation

) A(a) 7.

ar =xb (2.1,

has non-zero solutions x € H («, 8) , if and only if

t(a)=1t(b) and n(a—ag) =n(b—by), (2.2.)

where a = ag + ai1e; + ases + azez, b = bg + brey + baes + bzes.

Proof. We suppose that the equation (2.1.) has non-zero solutions = €
H (e, 5) . Then we have n (az) = n (xb) = n(a)n (z) = n(x)n (b), therefore
n(a) = n(b). Since a = xbx™!, t(a) = t (zbz™') =t (z'ab) = t(b). We
obtain that ap = bg, and from n (a) = n(b) we have aa? + a3 + afa? =
ab? + b3 + aBb3, so n(a —ag) =n (b — bo).

Conversely, by considering the vector representation, the equation (2.1.)

becomes az = zb, that is
Aa)—p) T = 0. (2.3.)

Equation (2.1.) has non-zero solutions if and only if the equation (2.3.) has
a non-zero solution, that is, if and only if det (A (a) — p (b)) = 0. We compute
this determinant: det (A (a)-p (b)) =
2
= [(ao—bo)2 +n(a-ag) +n (b—bo)} - 4n (a-ag) n (b-by) .
If ap =bp and n(a —ag) = n(b—by), then det (A (a) — p (b)) = 0, there-
fore the equation (2.1.) has a non-zero solution.O

Proposition 2.9. With the notations of Proposition 2.8., ift (a) =t (b)
and n(a — ag) = n(b—by), then the matriz A (a) — p(b) has the rank two.

Proof.
ap —by —aar+aby —fax+ pby  —afaz + afbs
| a1 —=b1 ag—bo —Baz — Bbz  Paz + Bby
A (a) P (b) o as — by was + abs ag — bo —aay — aby

a3 —bs —az — by ai + b ap — bo
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Case a # b.
We suppose a1 # by. If ag —bg =0, thend; = 2 ) 0—04(11 + ab; _
1— b1

a(a; —b1)? # 0, and all the minors of order 3 are zero.

Therefore rank (A (a) — p (b)) = 2 and the subspace of the solutions is of
dimension two.

Case a = b.
0 0 0 0
I ) —2Ba3  2Basy el ala
A(a)—p(b) = 0 2003 0 “9aa, |- and it results also
0 —2(12 2&1 0

rank (A (a) — p (b)) =2.0

Remark 2.10. By Proposition 1.16., if A=H («, 3) , we have that

A(a,b)=A(a — ag,b—by)=A (a,b)=A (a,b)=A(a,b) , where

a = ag + ajer + asea + ases, b = by + biey + baea + bzes € A and A (a,b)
represents the subalgebra generated by a and b.

Remark 2.11. Let a,b € H(«, ) ,as above,with ¢ (a) = ¢ (b) = 0. Then,
by Proposition 1.11., it results that ab+ba=—2aa1b1 —20asbs —2afazbs € K.

Remark 2.12. By Proposition 1.12. if H («, () is a division algebra and
a,b € H(a, 3) with t (a) = ¢ (b) = 0, then the equality

1
n(a)n(b) = § (ab+ ba)? (2.4.)
is true if and only if a = rb,r € K. If n(a) =n (b), then r =1 or r = —1.

Proof. From Proposition 2.11., n (ab):(aa1b1+ﬁa2b2+aﬁa3b3)2 . Because
n(a,b) =% (n(a+b)+n(a)+n(d),then n?(a,b) =7 (ab+ ba),

n (a,a)=n(a),n (b,b)=n (b) and by Proposition 1.12. we obtain

n(a)n(b) =1 (ab+ ba)is true if and only if a = 7b,r € K. If n(a) = n (b),
then from the equality (2.4.) it results the equality

(n(a) + aarby + Bagbs + afasbs) (n (a) — aar1by — Bagbs — afasbs) = 0. In
the last relation we replace (n (a) +rn (a)) (n(a) — rn(a)) =0, and we get
n(a)® (1+7) (1 —r)=0. Then either r = —lor r = 1.0
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Proposition 2.13.

Z) If a =ag+aje;+ases+asgez,b=by+bre; +byes+bses € H(Oz,ﬁ) with
b#a,a,bé¢ K then the solutions of the equation (2.1.) ,with t(a) =t (b) and
n(a—ag) =n(b—by), are found in A(a,b) and have the form :

x=A(a—ag+b—"0y) + A2 (n(a—ag)—(a—ag)(b—"0y)), (2.5.)

where A1, Ao € K are arbitrary.

it) If b = a, then the general solution of the equation (2.1.) is © =
x1€1+Toes+x3e3, where x1,x9,x3 € K and they satisfy the equality : caizi +
Basze + afasxsaf = 0.

o). 1t
b # a then xzo ¢ K. We have ax1 —z1b=a(a —ag) +a(b—bg) — (a —ag) b—
— (b —bp) band we write a = ag + v,b = bg + w, with ¢ (v) = ¢ (w)

ax1 — x1b = (ag +v) v+ (ag + v)w —v (bg + w) — w (bg + w) =

= agv +v? + agw + vw — vby — vw — wby — w? = 0, since by the hypothesis
n () =n(w), v? = —n(v) = —n (w) = w?. Therefore z; is a solution.

Analogously, we have axs — x9b = 0, therefore x5 is a solution. Obviously,
x1,22 € Aa—ag,b—by) = A(a,b). We also note that xq,zo are linearly
independent.

If 0121 4 0222 = O,with 6, 02 € K, then 6;v+01w—+602n (v)-02vw=0,which
gives

92 (n (’U) + aa1b1 + 6@2()2 + a6a3b3):0, 91 (a1 + bl) — egﬁ (a2b3 — a3b2)=0

91 (CLQ + bg) - 920[ (a3b1 - albg):O, 91 (Clg + b3) —92 (a1b2 — agbl):

Since b # a, from Proposition 2.12., we have 65 = 0 and

01 (a1 +b1) =0,07 (ag + b2) = 0,601 (a3 + b3) = 0,therefore 6, = 0.

If the subspace of the solutions of the equation (2.1.) has the dimension two,
it results that each solution of this equation is of the form \1x1 4+ Asxa, A1, Ag €
K.

We note that A\jz1 + Aexe € A(v,w) = A(a,b).

i1) Since b = a, it results b = ag—aje1 —agea—ages, therefore v = —w. Then,
if z is a solution of the equation, we have ax = za, therefore (ag + v) (zg + y) =
(zo + y) (ap — v) from where we get 229v + vy + yv = 0,where © = ¢ + y,with
xo € K,y = x1€1 + 269 + 2363, (y) = 0.

Asvy+yv € K, the last equality is equivalent with 2y = 0 and vy+yv = 0,
that is g = 0 and aaiz1 + Basxs + afazrs = 0.0

Proof. i) Let 1 =a—ag+b—bo,z2 =n(a—ag) — (a—ap)(b—>
a

0
0,

Remark 2.14. If ag = by and n (v) = n(w), the equation (2.1.) has the
general solution under the form:

r = aq — qb, with ¢ € A(a,b), (2.6.)
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or, equivalently z = vq + quw.

Proof. Indeed, suppose that z € A(a,b) is an arbitrary solution of the

equation (2.1.). It results az = 2b, therefore vz = wz. Let ¢ = 505 =
_—2;(“;”) . We havexr = Uq+qw — _%(Zv) — % = % —i—% = z,which proves that

each solution of the equation (2.1.) can be written in the form (2.6.) .0

Proposition 2.15. Let a = ag + a1e1 + ases + azes,
b="by+ biex + baea + bges € H(a,ﬁ) .
i)([Ti; 99] ,Theorem 2.3.) The equation

axr = Tb (2.7.)

has non-zero solutions if and only if n(a) =n (b). In this case, if a+b#0,
then (2.7.) has a solution of the form x = X(a+b),\ € K.

i) If a+b = 0, then the general solution of the equation (2.7.) can be
written in the form x = xog+z1e1 +x2e2+x3€3, wWhere agrg — a1 — Basxs —
afazxs = 0.

Proof. We suppose that (2.7.) has a non-zero solution z € H (o, ) . Then
we have ax = zb = n(az) = n(2b) = n(a)n(r) = n(x)n(b) = n(a) =
n (b).

Conversely, suppose that n (a) = n (b) . We take y = a+b and we obtain ay—
ga=a(@a+b)— (a+0b)b=aa+ab—ab—bb=n(a)—n(b) =0.

If a+b =0, we have b = —a and the equation (2.7.) becomes ax + ax =
0,that is ¢ (ax) = 0. But t (ax) = agxo — @a1z1 — fagzs — afazxs.0

Proposition 2.16. Let a € H(a,3),a ¢ K. If there exists r € K such
that n (a) = r?, then a = grq~',where ¢ =r +a, and q¢~* = %

Proof. By hypothesis, we have a (r + @) = ar+aa = ar+n (a) = ar+r? =
(a+r)r. Since § =r + a, it results gr = aq.0

Proposition 2.17. Let a € H(a,B) with a ¢ K.If there exists r,s €

K with the properties n (a) = r* and n (r2 + Fz) = 52, then the quadratic equa-
tion

22 =q (2.8.)

+ 2
has two solutions of the form x =— %:2—1(;%

Proof. By Proposition 2.16., it results that a is of the form a = gr2¢!,
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2 = -1_ _q 22 1 2~
where ¢ = 7% + a. Because ¢ —ﬁ, we obtain a = r?qgq~t =r q;"a

2 — (f_)2 therefore 1 = £q, 22 = —%q lutions.O
2 = \54q) 1 = $q,w2 = —Lq are solutions.

Corollary 2.18. Let a,b,c € H(a,3) so that ab and bV* —c ¢ K. If
ab and b® — ¢ satisfy the conditions of Proposition 2.17. then the equations
rax = b and

22 + bz + zb + ¢ = 0 have solutions.

Proof. zax = b <= (az)® = aband 22 + bz + zb+ ¢ = 0 <>
& (z+b)? =b2—cO

Corollary 2.19. If b,c € H(a, 8) \{K} satisfy the conditions bc = cb and there
exrists r € K ,r # 0 so that n (be — c) =7t and n (r2+§—5):52,

s # 0 then the equation
22 +br+c=0, (2.9.)
has solutions in H («, ).

Proof. Let 2o € H(a,3) be a solution of the equation (2.9.).Because
23 =t (x0) zo — n (20) and 23 + bxg + ¢ = 0, it results that

t(xo) xo —n (x0) +bxo +c = 0 hence (t (zg) +b) xo = c+n (xo) If ¢ (z0)+
b#0,t(xo),n(x9) € K,1 € A(b,c),then t(xg) +band c+n(xg) € A(b,c).

Therefore g € A (b, c). Because be = ¢b, it results that A (b, ¢)is commu-
tative, therefore zyp commutes with every element of A (b, ¢). Then the equa-

tion (2.9.) can be written under the form (z + %)2 - % + ¢ = Oand by the
Proposition 2.17. such an zg exists.O

§ 3. Equations in the generalized octonions algebra

Let O (a, B,7) be the generalized octonions algebra, with the basis
{1, f1, f2, f3, fa, f5, fo, fr}, where f1 = e1, fo = e, f3 =e3, fs = e1f4, fo =

eafa, fr = esfa. Its multiplication table is the following :



SOME EQUATIONS IN ALGEBRAS

o7

: 1 f1 fo /3 Ja f5 fe fr
1 ]1 f1 fa I3 fa Is fe f7
| i —« fs —af s —afs  —fr afs
fal o —fs =P8 Bf1 fe s —Bfs  —Bfs
f3 f3 afo -Bfi —ap fr —afe Bfs —affa
fo | fa —fs  —fo —fr —v vf1 vf2 vf3
f5 | f5 afs —fr afs -vfi —ay —vfz  avfa
fe | fo fr Bfs  =Bfs —vfa /3 =By —=Bvfi
fr| fr —afe Bfs  aBfs  —vfs —avfe Byvfi  —apfy

Remark 3.1.The algebra O («, 3, 7) is a division algebra or a split algebra.
As in the quaternion algebra case, we aim to find out conditions for getting a
division algebra.

If £ = ag + a1 fi + azfo + asfs + asfa + as f5s + as fe + a7 fr, then

T=ag—a1f1 —asfo —asfs —asfs — asfs — agfe — a7 fr is the conjugate
of z and n (z)=rT=a}+aa}+La3+afad+yai+ayai+Byai+afya? € K is the
norm of x,while t (z)=2+z € K is the trace of the element x.

If there exists z € O («, 8,7),z # 0, such that n (z) = 0, then O («, 5,7)
is not a division algebra, and if n(z) # 0,Vz € O(«,B3,7),z # 0,then
O (a, B,7)is a division algebra . Therefore, O («,3,7) is a division alge-
bra if and only if the equation a2 + aa? + Ba3 + afBa3 + va3 + avya? +
Bya? + afya? = 0 has only the trivial solution. This is equivalent with
equation a + aa? + Ba3 + aBa3 = —v(a] + a2 + Ba3 + afBya)or v =

n(aotarfrtasfotasfs) — 2 2 2
_"(a4304+;5}5+25?6+27}7) =-n (bo + blfl ibifi +fbi_f3)f_ _bO - abl - ﬂb2 -
aoraiji1Ta2j2rasjs

aﬁb%’Where bo+bifr+bafz +b3fs = aq fatas fs+ae fe+az fr°

O («, B,7) is a division algebra if and only if H («, 8)is a division algebra

and the equation n (z)

—~ does not have solutions in H (a, 8) .0

Based upon the matrix representation of the generalized quaternions , we
introduce the matrix representation in the case of generalized octonions.

Let @ = ao + aier + ases + ages,a = as + aser + ages + ares € H (o, B)
anda=a +a veO(a,fB,7). Then the matrix :

ap -aay -fay -aBaz -yas -avyas -fyag -afByar
ai  ay -PBaz  Paz  -yas yas  Bryar  -Bryag
az «ag ao -Qay -Yae -ayar  Yaq Qryas

A (a) _ az -ag a ao -ar  7Yae -as a4
ay oas  Pag afar  ag  -aay -Baz  -afag
as -ag  PBar -Pag ay ag Basz  -Baz
ag -Qary -ay4 aas a9 -Qas Qg aaq
ay Qg -as5 -4 as as -1 ap

is called the

left matriceal representation for the

element a €
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O (a,B,7).-

Using the matrix representations for quaternions, we can write the left
matrix representation:

A a,) -Yp (a”> M,y
Ala)= A a//)Ml p(a/)

Analogously, we define the right matrix representation:

;where My=diag{1,-1,-1,-1} € My (K).

ag -aa; -Bay -afaz -yay -ayas -fyas  -afyar

ai  ap Paz -Paz  yas -yas -Pyar  Pryag
az -Qas ao aay Yas @fyar -ya4  -Q7y0a5
A (a) _ asz a2 -4y ao ar  -7Yae as -Yaq
as -aas -Bag -afar  ag aay Bas  afBas
as ay -Payr  Pag  -a; ap  -Bas Baz
ag Qary [e7} -y -ag aas an -aay
ay -G as Qy -as -a9 aq an

This matrix has as its columns, the coefficients in K of the elements
a, fia, faa, fsa, fia, fsa, fesa, fra.Using the matrix representations of

o) (@)
quaternions, we can also write that : A (a) = =

M) ()
= A1 A" (a) Ay,where Ay, Ay € Mg (K) are matrices of the form:

- D O _ 71D O
AIZ(O,—Y 1 Cl>7A2:<07 2 C2>’D1,D2,01’02€M4(K)

being the matrices in Proposition 2.6., and A1 Ay = As Ay = Ig. Indeed, we
have

A\ (a) MEA (a)
At (a) = Ry (a//) pt 1(a/ ,and
X (a) M (a) ( 1D, 0 >
S () 0 (0) o)
Dy (a) —~Dy M (a) ~'Dy 0\
—yC1 Mipt (a”) Cipt (a/> < 0 e )

-~vD; 0
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DAt (a) Dy — Dy MIN (a) Cy
yC1 Mipt (a”) Dyy=t Cipt (a') Co
But, by Proposition 2.6., it results that Dy (a,) Dy=p (al) ,

Cipt (a') Co=p(a);We has -vDy MIX (a” ) Co=

1
ay aas Bag afar
-aas  Qay afa; -afag
-Bag  -afar Pay  aPas
-afar; afas -afas afay
-yas -avas -fyas  -afyar

=rdiag{l,a', 5", o157}

_| vas -vas -Byas  Bryag — YA (&N) and Cy M pt (a”) Dy=
Yag oyary  -yaq -Qryas
yer  Yae a4 704
ay -aas  -fPag -afar

i 1 4l a1y | s -aas aBar -afag |\ (v
_dlag{:l?a 7B , & ﬁ } _5(16 —a,@a7 —ﬂa4 OéﬂCL5 —)\(G )

-afar; afag -afas -afay
Proposition 3.2. ([Ti; 00],Theorem 2.1. and Theorem 2.3.) Let
T =m0+ w1 f1 +22fo + 23f3 + 2afa + 25f5 + 76 f6 + 27 f7 and

a =ag+afi +asfo+asfs +asfs + asfs +acfo +arfr € O(a, 8,7).
Denote & = (Io,$1,$2,$3,$4,$5,I6,$7)t, the vector representation for the
element x. Then az = A (a) ¥ and Td = A (a) 7.

Proof. We take a and z under the form a = a’ + a//v, z=2a +2 v with
a,d' 22 e H (e, 3). Then ax = (a T — 'yac”a”) +

"o

+ (a:”al + a”a’:,> v and we can write az= w =
T a —|—a 5:

. -

a//x/ ,yxl/a/// ( ) ,y <a )x
= - -

2 a +d" 7 ( )f +A (a )E
Given = Mz , it results

!’ J 1" -II> ’ 1"
. A(a)f—’yp(a)Mlm Aa) -vp a)]%1 (f’ )
ar= ’ /1 2 H/ = " ! = =
p(a)f +)\(CL>M1$ A G)Ml p(a T
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Analogously, za=A (a)#.0

Proposition 3.3.([Ti; 00], Theorem 2.6.) Let z,y € O («, 3,7) and m €
K. Then the following relations are true:

Jr=y<=A(z)=Ay).

i) r =y <= A(x) =Ay).

i) Az +y) = A(:E) +A(y).

i) A(mz) =mA (x).

v) Az +y) = ()+A()
vii) A (mz) = mA (x).

viii) A (z71) = A ! (:c)

ir) A (z71) = .0

Since O (a, 3, 'y) is a non-associative algebra, the equalities
Azy) = A(x)A(y), A (zy) = A (z) A (y)do not generally apply.

Proposition 3.4. Let x,y € O(«,3,7). Then, by using the notations in
Proposition 2.6., we have:

1
i) A(z) = E1A" (z) B2, where E1:< 801 %1 >,E2:( 3’ Co %2 )

.. N t N -~vC1 0 . -’7_102 0

i) A(z) = F1 A" (x) Fy, where Fl—( 0 o, ) ,FQ—( 0 o, )

ZZZ) FE1Ey = F1Fy = A1 Ay = IB7E{ = E1>E§ = E2’F1t = I,

Fi= Foy, Al= Ay, AL= A,.

. - t _ -~vD1 O - —’Y_lDQ 0

i) A(x) = A1 A" (x) Ag, where Al—( 0 o, ),Ag—( 0 c, )

Proof. i) As A(z) = A;A'(z) A2, we multiplicate this last relation
to the left and to the right with Asand with A;,obtaining AsA (z) A; =
A" (z) therefore A(z) = A; A (z) As. The other relations can be proved by
calculations.O)

Proposition 3.5. Let x € O (o, 8,7). Then :
i) x = §H1A (z) Hy,where Hy = (1, f1, f2, f3, f1, [5. [, f7) and

: : : : t
ng(l,-a_lfl,-ﬂ 1f2a'a_1ﬁ 1f3a'fy_1f47'a_1’y_1f57'ﬁ 17_1f67'a_16 1’7_1f7> 5
i) x = fHIA! (z) HY

Proof. i) By calculation.
ii) At () = AzA (x) Ay and the rest is proved by calculations.0

Propozition 3.6. Let x € O (a, 5, vy)with x = 2+ 2"v, where z' 2" €
H (o, 8) . Then det (A (z)) =det (A (z)) = (n (z))*.
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Proof. We know that A (x) = A;A? () Ay. Thendet (A (z))=
=det (A1A? (z) Ag)=det Ay det A* (z) det Ay = det A* (z) = det A (z). But

sen - | FN TN e (o () () £ ()2 ()

M) ()
=det (p :va?) +9A (x:‘c)) = det (n (m) I +n (x) ]4) =

= (n (a:l> Iy +n (a:”) 14)4 =(n (J;))4 .a

Let a,b,€ O (c, 8,7). In the next, we consider the equation
ar = xb (3.1.)

in O («, 8,7) . By using the vector representation, the equation is equivalent
to:

[A(a) — A(b)]Z = 0. (3.2.)

Proposition 3.7. Let a,b € O (o, 3,7) with

a=ao+afi +asfo+aszfs+asfs+asfs +asfe +arfr

b= b+ bifi +bafa+ bsfs + bafa + bsfs + bsfe + brfr. Then, the linear
equation ax = xb has non-zero solutions if and only if :

ap = bp and n (a —ag) =n (b —bg) . (3.3.)

Proof. We suppose that the equation ax = zb has non-zero solutions,
x € O(a, B,7) . It results that n (ax) = n (zb), hence n (a)n (z) =

=n (z)n (b) therefore n (a) = n (b). As a = zbx~1, it results

t(a) =t (zba') =t (z7tab) = t(b), therefore ag = bpand from n(a) =
n (b), we obtain n (a —ag) = n (b —bg) .

Conversely, considering the vector representation, the equation (3.1.) has
non-zero solutions if and only if the equation (3.2) has non-zero solutions,
therefore if and only if det (A (a) — A (b)) = 0.We calculate this determinant.
If ap = bo, then the matrix A (a) — A (b) is of the form (M N), where the bloks
M and N are the following matrices of type 8 x 4 :

0 —a(al—bl) -ﬂ(ag—bQ) —Oéﬂ(a:j—bg)

a1-by 0 —ﬁ(a3—|—b3) ﬁ(ag-‘rbg)
as-bo a(a3+b3) 0 —a(al +b1)
ag-bg —(a2—|—b2) a;+b; 0

a4—b4 a(a5+b5) ﬁ(aﬁer@) a,@’(a7+b7) ’
as-bs  -(as+bs)  Blar+br) -Blag+bs)
ag-bg —a(a7+b7) —(a4+b4) a(a5+b5)
az-b7  ag+bg -(as+bs)  -(as+ba)
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-Y(as-bs)  -ay(as-bs) -By(ag-bs) -afy(ar-br)
~¥(as+bs)  v(as+bs) Py(ar+br)  -By(as+bs)
-v(ag+bs) -ay(az+br) 7(a4+b4) cw(ag)—i—bs)
N — -y(art+br) y(agt+bs)  -v(as+bs) y(aatba)
0 —a(a1—|—b1) —ﬂ(a2+b2) —Ozﬂ(a3+b3)
a1+b1 O ﬂ(a3+b3) —ﬂ(a2+b2)
ag+bo —Oé(&g"‘bg) 0 a(a1+b1)
az+bs ag+bo —(a1+b1) 0

Multiplying first the rows 2, 3,5, 6, 7, 8 of the matrix A (a)— A (b) witha, 3,

v, o, By, afvy,and then the rowes 2,3,4,5,6,7,8 with a; +b1, az+bs, az+
b3, aq + by, as + bs, ag + bg, a7 + b7 and adding them to the first row and then,
multiplying the columns 2,3,4,5,6,7,8 with a1 4+ b1,as + ba, ag + b3, a4 +
b4, as + bs, ag + bg, a7 + by and adding them to the column 7,we get a matrix
By with det Bi=a3873y73 (n (a-ag) -n (b-by)) (az+by) " det By,

where By € M7 (K).

Using the same tricks for Bo,we get, in the end, det (A (a) — A (D)) =
afy (n(a—ag) —n(b—by))>n2 (a—ag + b — by) and then det (A (a)-A (b))=0

if n(a~ap)-n (b-bp)=0 .If a3 + by = 0, then we multiplicate with a; instead
of a; + by. Analogously, for a7 + b7 = 0 and we obtain the same result.0

Corollary 3.8. In the same hypothesis as in the Proposition 3.7., the
matriz A (a) — A (b) has the rank 6.

Proof. From the proof of the last proposition, it results that the matrix
A (a) — A (b) is similar to the matrix

—n(a—ag) +n(b—by) —n(a—ag) +n(b—by)

ay + by Ez afy (a’l + bl)
B, = n(a—ag) —n(b—by) 0 0 ,
a7 + by
2 Bs 0

where F; € Mgy (K) ,Fo € M1 (K) ,Bs € Mg (K) , and if n(a— ao):
=n(b—bo), then rank (A (a) — A (b)) = rankBs = 6.0

Remark 3.9. Let a,b € O(a, §,v) with

a=ap+aifi+azfo+azfs+asfs+asfs + aesfo + arfr

b= b+ bif1 +bafa + bsfs + bafa+ bsfs + be fe + b7 fr, with t (a) =t (b),
then, from Propositions 1.11. and 1.12., it results that the relation

n(a)n (b) = }1 (ab+ ba)? (3.4.)

is true if and only if a = rb, r € K. If n(a) = n(b)then we have r = 1 or
r = —1. Indeed, the relation (3.4.) is equivalent to
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(n (a))*=(0a1by+Bazby+aBazbs+yasbs+ayasbs+Byaghs+abyazby)”
and, if @ = rb, we obtain (n (a) —rn(a)) (n(a) + rn(a)) = 0, therefore either
r=1orr=-10

Proposition 3.10. Let a,b € O(a,8,7),a,b ¢ K with a # b,t(a) =
t(b),

n(a—ag) =n(b—"by). Then the solutions of the equation ax = xb can be
found in A(a,b) and are:

i)x=MX(a—ap+b—"0by)+ A2[n(a—ag)— (a—ag)(b—0by)|, where

A1, A9 € K| Zf a;«é b;

ii) The general solution of the equation ax = xb can be expressed and by
the form: © = (a —ag)q+ q (b —by) , where q € A(a,b) is arbitrary;

itt) If a = b, then the general solution for the equation (3.1.)is : x =
r1f1+x2fo +x3f3 +wafs+ 255 + 26 f6 + 27 f7, Where w1, wa, 13,14, 75, 76, T7
satisfy the equality

aa1xy +Basxs +afazrs +yasry +ayasxs +6Byagxre +aByarry = 0.

Proof. i) Let us given 1= a — ag + b — by, xa=n (a-ap)-(a-ag) (b-bo) . If
b # @ it results 1 # 0 and z9 ¢ K. Then

ary —xib=a(a—ag) +b(b—0by) — (a—ag)b— (b—bg)b. We write

a=ag+v,b=by+w with ¢t (v) =t (w) = 0. Then azr; — x1b =

= (ap +v) v+ (ap +v)w — v (bg + w) — w (bg + w) = 0, since

n) = n(w),v?> = —n(v),w? = —n(w). Therefore z; is a solution.
Analougosly axe — x2b = 0 and x5 is a solution. It is obvious that x1,zo €
A(a—ag,b—by) = A(a,b). We observe that 1,25 are linear independent.
Indeed, if 6121 + 0229 = 0,041,045 € K, it results that 61v + 61w + Oan (v) —
f2vw = 0. We have in turn:

02 (n (v) +aa1by+Pasbe+aBasbs+yasby+ayasbs+Byasbs+aByarbr)=0,

01 (a1 + b1)-02 [B (a2bs — azbs) + v (aabs — asbs) + B (a7bs — agbr)]=0,
01 (ag + ba)-02 [ (asby — a1bs) + v (asbs — asbs) + oy (asby — azbs)]=0,
61 (az + b3)-02 [(a1ba — a2b1) + v (asbr — azbs) + v (agbs — asbs)]=0,

01 (as + ba)-02 [ (asby — a1bs) + B (agba — asbs) + a3 (arbs — asbr)]=0,
01 (as + bs)-02 [(a1bs — asby) + B (azba — azbr) + 3 (azbs — agbz)]=0,

01 (ag + bg)-02 [ (a1b7 — a7by) + (a2bs — asbs) + a (asbs — asbs)]=0,

01 ((17 + b7)—92 [(agbg, — a5b2) + (CLGbl - ale) + (a3b4 - a4b3)]:O. Since

a # b, from Remark 3.9. it results that 6 = 0,therefore 6; (a;+b1)=0, ...,

01 (a7+b7) =0, and from the fact that b # a, it results #; = 0. As the
solution subspace of the equation (3.1.) is of dimension two, it results that
every solution of this equation has the form Ajx1 + Aoz, with Ay, Ay € K, and
Ax1 + Aaxo € A(a—ao,b—bo) = A(a,b)

0
0
0
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ii) We prove that every element of the form (a — ag) g+¢ (b — bg) is a solu-
tion for the equation (3.1.) : az—xb = (ag + v) (vq + qw)—(vg + qw) (bg + w) =
= agvq + apqw + v2q + vqw — vgby — vqw — quby — quw? = 0. We suppose
that z is a solution for the equation (3.1.) . It results that az = zb, therefore

vz = zw . Take ¢ = —#(Zv) = —%,q € A(a,b). We have = vg + qw =

’ = 3 + 5 = z, which gives that every solution can be written

VT2 Z'UJ2
T 2n(w) ~ 2n(v)
in the given form. Obviously, z € A(a,b) for a # b. If a = b, let z be a
solution for the equation az = xza. Obviously z € A(a) and for ¢ = 55,

we obtain that every other solution, z, of the equation is of the form z =
2 2

~3n(s) ~ an(e) = 2 €A(a).
it1) If b = a, it results v = —w. Then, if x is a solution for the equation

(3.1.), we obtain that (ag + v) (zo + y) = (xo + y) (ap — v), hence agzo+aoy+
vxy + VY = xpa — Tov + yag — yv, therefore 2xqv + vy + yv = 0,where = =
ro+y,with xo € K,y = 21 fi+x2fotwsfa+rafatasfs+xefo+arfr,t(y) = 0.

As vy+yv € K the previous equality is equivalent to zg = 0 and vy +yv =
0, that is zg = 0 and a1x1 + asx2 + azx3 + a4x4 + asxs + agre + ayry = 0.0

Proposition 3.11. Let a,b € O («, 8,7) with
a=ag+a1fi +asfo+asfs+asfs +asfs + asfe + ar fr,
b=bg + by f1 + bafo + b3 f3 + byfs+ bsf5 + befe + b7 fr.
i)([T1; 99], Theorem 3.3.) The equation

ax = Tb (3.5.)

has non-zero solutions if and only if n(a) = n (b). In this case, if a+b#0,
then (3.5.) has a solution of the form v =X(a+b),\ € K.

ii) If a+b =0, then the general solution of the equation (3.5.) can be writ-
ten in the form x = xg+ x1€1 + Toeo + x3€3 + T4€4 + T5€5 + Tees + Tre7, where
apxo — aa1xy — Pagre — afazry — yasry — ayasrs — fyaste — afyarrr=0.

Proof. We suppose that (3.5.) has a non-zero solution, x € O (a, 8,7) .
Then we have ax = Zb and n (ax) = n (zb), n(a)n(x) = n(x)n(b), therefore
n(a) =n(b).

Conversely, we suppose that n(a) = n(b). Let use takey = a + b; we
obtain ay — ya =a(a+b) — (a+b)b=aa+ab—ab—bb=n(a) —n(b) = 0.

If a+b = 0,then b = —a and the equation (3.5.) becomes az +az = 0, that
is t (az) = 0. But t (ax) = apxo — aa1x1 — fasxs — afasrs — yYasTs — yasTs —
Byasre — afByarx7.0

Proposition 3.12. Let a € O(a, 5,7),a ¢ K. If there exists r € K such
thatn (a) = r*,then a = grq~", where ¢ =r +a.
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Proof. By hypothesis, we have a (r + @) = ar+aa = ar+n (a) = ar+r? =
(a+7)r. As §=r+ a it results that gr = aq.O

Proposition 3.13. Let a € O («, 5,7) with a ¢ K, such that there exist
r,s € K with properties n(a) = r* and n (r2 + c‘z) = s2. Then the quadratic
equation

?=a (3.6.)

+ 2
has two solutions of the form x =— %;2%)7

Proof. From Proposition 3.12., it results that a has the form a = (j?“?q_

.=

where ¢ = r?2 + a. As q—l — ;‘Jq_)7 we obtain a = 7‘2(jq_1 — T2q;(qa
=2
7“2%:(261)27 therefore x1 = £q, 72 = —1q are the solutions.O

Corollary 3.14. Let a,b,c be in O («,3,7) such that ab and b*— c ¢ K.
If ab and b>— c satisfy the conditions in Proposition 38.13., then the equations
rax = band 2% + bx + xb+ ¢ = 0 have solutions.

Proof. zaz = b < (azx)’ = aband 22 + bz +xb+c = 0 < (a+b)>=b>—
c.O0

. 2

Corollary 3.15. If b,c € O(«,3,7),b,c ¢ K,c € A(b) wzthibz —c#

0 and there exists r € K such that n (% — c) =72 and n (7’2 + % — E) =
52,5 # 0 then the equation

2 +brt+c=0 (3.7.)

has a solution in O (a, B,7) .

Proof. Let 79 € O («,3,7) be a solution of the equation (3.7.).As 22 =
t (z0) zo—n (x0) and 22 +bxg+c = 0,it results that ¢ (zo) zo—n (o) +bzo+c =
0, therefore (¢ (xo) +b) xo = c+n(zg).Ast(xo)+b #0,t(x0),n(x0) € K,1 €
A(b,c), it results that ¢ (xg) + band ¢ + n(z¢) € A(b,c).Therefore zo €
A (b, c). Since ¢ € A(b) , it results that A (b, ¢) = A (b) is commutative, there-
fore zp commutes with every element of A (b, ¢) . Then the equation (3.7.) can

also be written under the form: (m + g)Q — % +c=0.0

§ 4. EQUATIONS IN ALGEBRAS OBTAINED BY THE CAYLEY-
DICKSON PROCESS OF DIMENSION > 8
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In this section, A denotes an algebra obtained by the Cayley-Dickson pro-
cess and having dim A =n,n 2 8 . Let {e1, eq,...,e,} be a basis of A.

Proposition 4.1. Let a,b € A with t (a) =t (b) and n (a — ag) =n (b —by) .
i) If b +# a, then the equation

ar = xb (4.1.)

has a solution of the form = = 0 (n(a—ag) +n(b—1by)), where § € K s
arbitrary.

it) If b = a, then the equation (4.1.) has the general solution of the form
x = x1e1 + x2e3 + ... + xpen,with f(a,x) = 0 where f: Ax A — K is the
associated bilinear form.

Proof. i) Let z1 = a — ag + b — by. We denote a — ag = v,b — by =
w, with ¢t (v) = t(w) = 0 and n(v) = n(w); then we have ax; — 10 =
(ag+v)(@a—ag+b—1bg) — (a—ag+b—1bp) (bo +w) =ap(a—ap)+

+ag (b —bo)+v (a—ag)+v (b —bo)—(a — ag) bo— (b —bo) bo— (a — ap) w—

—(b—=bp)w =02+ vw — vw — w? = 0.

i1) If b = a, then the equation (4.1.) becomes ax = xa ,therefore

(ao +v) (o +y)— (xo +y) (ap — v) = 0, vzg+vy+xov+yv = 0 and 2vzy+
vy +yv = 0. As vy + yv € K (in Proposition 1.11.), it results that zo =
0,therefore vy + yv = 0, where x = xg + y, with ¢ (y) = 0 and we obtain (by
Proposition 1.11.) f(a,z) = 0.0

Remark 4.2. Since A is not an alternative algebra, we obtain that the ele-
ment x5 =n (a — ag)— (@ — ag) (b — bp) is not a solution for the equation (4.1.)

Proposition 4.3. Let a,b € A.
i) (|Ti; 99] Theorem 4.3.) The equation

ar =Tb (4.2.)

has non-zero solutions if n (a) = n (b). In this case, if a+b# 0, then (4.2.)
has a solution of the form © =X (@a+0b),\ € K.

i) If a+b =0, then the general solution for the equation (4.2.) can be writ-
ten under the form x = xo+z1e1+...+xney, where t (ax) = 0 and t is the trace

Proof. i)We suppose that n (a) =n (b). Let y = a+b and we obtain ay —
ya=a(a+b)— (a+b)b=aa+ab—ab—bb=n(a)—n(b)=0.

ii) If a + b = 0,then b = —a and the equation (4.2.) becomes az + ax =
0, that is ¢ (ax) = 0.0
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Proposition 4.4 Let a € A,a ¢ K. If there exists r € K such that
n(a) =72, then a = qrq~!, where ¢ = r + a.

Proof. By hypothesis, we have a (r + @) = ar+aa = ar+n (a) = ar+r? =
(a+7)r. As §=r + a, it results gr = aq.O

Proposition 4.5. Let a € A with a ¢ K,such that there exist r,s €

K with the property n (a) = r* and n (r2 + d) = s2. Then the quadratic equa-
tion

?=a (4.3.)

+ 2
has two solutions of the form x =— %

Proof. From Proposition 4.4., it results that a has the form a=gr2q~!,

where ¢g=r2+a. As q’lzﬁ;),we obtain that a:rzq‘q*1:r2q%:r2z—2
r =

:(;q)z ,therefore x1==1q¢ andzp=—%¢ are solutions.O

Corollary 4.6. Let a,b,c € A such that ab and b*— ¢ ¢ K. If ab and b*—
c satisfy the hypothesis of Proposition 4.5., then the equation x?+bx+xb+c =
0 has solutions.

Proof. 22 + bz +azb+c=0< (z+b)> =b2 — c.O0

Remark 4.7. Since, generally, the equation zax = b cannot be written in
the form (az) (ax) = ab in A, we cannot solve this equation by using Proposi-
tion 4.5.

Corollary 4.8. If b,c € A,b,c ¢ K, by = yb,Vy € A with %—c # 0 and
there exists r € K such that n (%—c) =rt n (r2+ %—6) =s%,5 # 0, then the
equation

22 +br+c=0, (4.4.)

has solutions in A .
Proof. Let zy € A be a solution of the equation (4.4.) . Since by=yb,Vy €

A, then the equation (4.4.) can be also written as (erg)z—%Jrc:O and then
we get the result from Proposition 4.5.0
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