An. Şt. Univ. Ovidius Constanţa
Vol. 9(2), 2001, 45-68

SOME EQUATIONS IN ALGEBRAS OBTAINED BY THE CAYLEY-DICKSON PROCESS

Cristina Flaut

Dedicated to Professor Mirela Ştefănescu on the occasion of her 60th birthday

Abstract

In this paper we try to solve three fundamental equations $a x=$ $x b, a x=\bar{x} b$ and $x^{2}=a$, in a division algebra, A over K, obtained with the Cayley-Dickson process (see $[\mathrm{Br} ; 67]$), in the case when K is an arbitrary field of characteristic $\neq 2$.

§1. INTRODUCTION

Unless otherwise indicated, K denotes a commutative field with characteristic $\neq 2$ and A denotes a non-associative algebra over K.

Definition 1.1. The algebra A is called alternative if $x^{2} y=x(x y)$ and $y x^{2}=(y x) x, \forall x, y \in A$.

Let A be an alternative algebra and $x, y, z \in A$. We define the associator of elements x, y, z by the equality: $(x, y, z):=(x y) z-x(y z)$.This is linear in each argument and satisfies the identities:
i) $(x, y, z)=-(y, x, z)=-(x, z, y)=(z, x, y)$;
ii) $(x, x, y)=0$;
ii) $(x, y, a)=0, a \in K$.

Definition 1.2. An algebra A is called power-associative, if each element of A generates an associative subalgebra.

[^0]In a power-associative algebra, the power $a^{n}(n \geq 1)$ of an element a is defined in a unique way and we have: $\left(a^{n}\right)^{m}=a^{n m}, a^{n} a^{m}=a^{n+m}$.

Definition 1.3. An algebra A is called a composition algebra if there exists a quadratic form $n: A \rightarrow K$ such that $n(x y)=n(x) n(y)$, for any $x, y \in A$ and the bilinear associated form $f: A \times A \rightarrow K, f(x, y)=$ $\frac{1}{2}(n(x+y)-n(x)-n(y))$ is non-degenerate. The quadratic form n is also called the norm on A.

A composition algebra with unity is also called a Hurwitz algebra. The non-zero finite-dimensional composition algebras over fields with characteristic different from 2 can have only the dimensions $1,2,4$ or 8 . [El, Pe-I; 99]

Definition 1.4. An algebra A is called flexible if $x(y x)=(x y) x$, for all $x, y \in A$.

Definition 1.5. The vector space morfism $\phi: A \rightarrow A$ is called an involution of the algebra A if $\phi(\phi(x))=x$ and $\phi(x y)=\phi(x) \phi(y)$, for all $x, y \in A$.

Let A be an arbitrary finite-dimensional algebra with unity 1 . We consider the involution of the algebra $A, \phi: A \rightarrow A, \phi(a)=\bar{a}$, where $a+\bar{a}$ and $a \bar{a} \in K \cdot 1$, for all $a \in A$. Let $\alpha \in K$ be a fixed non-zero element. On the vector space $A \oplus A$ we define the following operation of multiplication

$$
\left(a_{1}, a_{2}\right)\left(b_{1}, b_{2}\right)=\left(a_{1} b_{1}-\alpha \overline{b_{2}} a_{2}, a_{2} \overline{b_{1}}+b_{2} a_{1}\right) .
$$

The resulting algebra is denoted by (A, α) and is called the algebra derived from the algebra A by the Cayley-Dickson process. We can easily prove that A is isomorphic with a subalgebra of algebra the (A, α) and $\operatorname{dim}(A, \alpha)=2 \operatorname{dim} A$. We denote $v=(0,1)$ and we get $v^{2}=-\alpha \cdot 1$, where $\mathbf{1}=(0,1)$, therefore $(A, \alpha)=A \oplus A v$.

Let $x=a_{1}+a_{2} v \in(A, \alpha)$, and denote $\bar{x}=\bar{a}_{1}-a_{2} v$. Then $x+\bar{x}=a_{1}+\overline{a_{1}} \in$ $K \cdot 1, x \bar{x}=a_{1} \overline{a_{1}}+\alpha a_{2} \overline{a_{2}} \in K \cdot 1$, therefore the mapping
$\psi:(A, \alpha) \rightarrow(A, \alpha), \psi(x)=\bar{x}$, is an involution of the algebra (A, α) extending the given involution ϕ.

For $x \in A t(x)=x+\bar{x} \in K$ and $n(x)=x \bar{x} \in K$ are called the trace and the norm of the element $x \in A$.

If $z \in(A, \alpha), z=x+y v$, then $z+\bar{z}=t(z) \cdot 1$ and $z \bar{z}=\bar{z} z=n(z)$. 1 , where $t(z)=t(x)$ and $n(z)=n(x)+\alpha n(y)$. Therefore $(z+\bar{z}) z=z^{2}+\bar{z} z=$ $z^{2}+n(z)$ and $z^{2}-t(z) z+n(z)=0, \forall z \in(A, \alpha)$ that is each algebra which is obtained by the Cayley-Dickson process is a quadratic algebra. In [Sc; 54],
it appears that such an algebras is power- associative flexible and satisfies the identities: $t(x y)=t(y x), t((x y) z)=t(x(y z)), \forall x, y, z \in(A, \alpha)$.

The algebra (A, α) is a Hurwitz algebra if and only if it is alternative and (A, α) is alternative if and only if A is an associative algebra.[Ko, Sh; 95].

Proposition 1.6. Let (A, α) be an algebra obtained by the Cayley-Dickson process.
i) If A is an alternative algebra, then $(x y) \bar{x}=x(y \bar{x})=x y \bar{x}$,
$\forall x, y \in(A, \alpha)$.
ii) If $n(x) \neq 0$,then there exists $x^{-1}=\frac{\bar{x}}{n(x)}$, for all $x \in(A, \alpha)$. If (A, α) is an alternative algebra, then $(x y) x^{-1}=x\left(y x^{-1}\right)=x y x^{-1}$, for all $x, y \in(A, \alpha)$.

Proof. The following identities are true : $(x, y, x)=0$ and $(x, y, \pi)=$ $0, \pi \in K$. Then $(x, y, \bar{x})+(x, y, x)=(x, y, t(x))=0$, therefore $(x, y, \bar{x})=0$.

The Cayley-Dickson process can be applied to each Hurwitz algebra. If $A=K$, this process leads to the following Hurwitz algebras over K :

1) The field K of characteristic $\neq 2$.
2) $\mathbb{C}(\alpha)=(K, \alpha), \alpha \neq 0$. If the polynomial $X^{2}+\alpha$ is irreducible over K, then $\mathbb{C}(\alpha)$ is a field. Otherwise $\mathbb{C}(\alpha)=K \oplus K$.
3) $\mathbb{H}(\alpha, \beta)=(\mathbb{C}(\alpha), \beta), \beta \neq 0$, the algebra of the generalized quaternions, which is associative but it is not commutative.
4) $\mathbb{O}(\alpha, \beta, \gamma)=(\mathbb{H}(\alpha, \beta), \gamma), \gamma \neq 0$,the algebra of the generalized octonions (also a Cayley-Dickson algebra).The algebra $\mathbb{O}(\alpha, \beta, \gamma)$ is non-associative, therefore the process of obtaining Hurwitz algebras ends here. [Ko,Sh;95]

Definition 1.7. Let A be an arbitrary algebra over the field K. It is a division algebra if $A \neq 0$ and the equations $a x=b, y a=b$, for every $a, b \in A, a \neq 0$, have unique solutions in A.

Proposition 1.8.[Ko, Sh; 95] Let A be a Hurwitz algebra.The following statements are equivalent:
i) There exists $x \in A, x \neq 0$ such that $n(x)=0$.
ii) There exists $x, y \in A, x \neq 0, y \neq 0$,such that $x y=0$;
iii) A contains a non-trivial idempotent (i.e.an elemente, $e \neq 0,1$ such thate $e^{2}=e$).

Definition 1.9. Any Hurwitz algebra which satisfies one of the above
equivalent conditions is called a split Hurwitz algebra.
Every Hurwitz algebra is either a division algebra or a split algebra.
If K is an algebrically closed field, then we obtain only split algebras.

We have obtained by the Cayley-Dickson process some algebras with dimension bigger than 8 which are non-alternative and non-associative but are quadratic and flexible algebras. Every one of these algebras is central simple (i.e. $A_{F}=F \otimes_{K} A$ is a simple algebra, for every extension F of K and for every dimension).

Remark. 1.10. For every algebra A obtained by the Cayley-Dickson process we has the relation: $2 f(x, 1)=t(x), \forall x \in A$, where f is the bilinear form associated with the norm n.

Proposition 1.11. In each algebra obtained by the Cayley-Dickson process the following relation is satisfied: $x y+\bar{y} \bar{x}=2 f(x, \bar{y}) 1$, where f is the bilinear form associated with the norm n.

Proof . As $\bar{x}=2 f(x, 1)-x$, we have:
$x y+\bar{y} \bar{x}=x y+(2 f(y, 1)-y)(2 f(x, 1)-x)=x y+4 f(y, 1) f(x, 1)-$
$-2 f(y, 1) x-2 f(x, 1) y+y x$.
$2 f(x, \bar{y})=2 f(x, 2 f(y, 1) \cdot 1-y)=2 f(x, 2 f(y, 1) \cdot 1)-2 f(x, y)=$
$=4 f(x, 1) f(y, 1)-2 f(x, y)=4 f(x, 1) f(y, 1)-n(x+y)+n(x)+$
$+n(y)=4 f(x, 1) f(y, 1)-(x+y)(\bar{x}+\bar{y})+x \bar{x}+y \bar{y}=$
$=4 f(x, 1) f(y, 1)-x \bar{x}-x \bar{y}-\bar{x} y-y \bar{y}+x \bar{x}+y \bar{y}=$
$=4 f(x, 1) f(y, 1)-x \bar{y}-\bar{x} y=$
$=4 f(x, 1) f(y, 1)-x(2 f(y, 1)-y)-y(2 f(1, x)-x)=$
$=4 f(x, 1) f(y, 1)-2 f(y, 1) x-2 f(x, 1) y+x y+y x$ and we get the required equality.

Proposition 1.12. Let A be a composition division algebra,
$f: A \times A \rightarrow K, n: A \rightarrow K$ be the bilinear form and respectively the norm of A. Then, for $v, w \in A \backslash\{0\}$, we have $f^{2}(v, w)=f(v, v) f(w, w)$, if and only if $v=r w, r \in K$.

Proof. If $v=r w, r \in K$, then the equality is true.
Conversely, if $f^{2}(v, w)=f(v, v) f(w, w)$, for $v \neq 0, w \neq 0$, we have $f^{2}(v, w) \neq 0$. We suppose that $r \in K$ with $v=r w$ does not exist. Then, for non-zero elements $a, b \in K$, we have $a v+b w \neq 0$. Indeed, if $a v+b w=0$ then $v=-\frac{b}{a} w$, with $-\frac{b}{a} \in K$, which is false. We get that $f(a v+b w, a v+b w) \neq 0$ and we have $a^{2} f(v, v)+b^{2} f(w, w)+2 a b f(v, w) \neq 0$. For $a=f(w, w)$, we obtain $f(w, w) f(v, v)+b^{2}+2 b f(v, w) \neq 0$ and, for $b=-f(v, w)$, we have $f(w, w) f(v, v)+f^{2}(v, w)-2 f^{2}(v, w) \neq 0$, therefore $f(w, w) f(v, v) \neq f^{2}(v, w)$, which is false. Hence $a v+b w=0$ implies $v=r w$

Theorem 1.13.(Artin).[Ko, Sh; 95] In each alternative algebra A, any two elements generate an associative subalgebra.

Corollary 1.14.[Ko, Sh; 95] Each alternative algebra is a power-associative algebra.

Proposition 1.15. Let A be a unitary division power-associative algebra (with finite or infinite dimension). Then every subalgebra of A is a unitary algebra.

Proof. Let B be a subalgebra of the algebra A and $b \in B, b \neq 0$. We denote by $\mathcal{B}(b)$ the subalgebra of B generated by b, which is an associative algebra (A is power-associative). Since A is a division algebra, $\mathcal{B}(b)$ is a unitary algebra, then B is unitary.

Proposition 1.16. Let A be a unitary division power-associative algebra (with finite or infinite dimension). Then $\mathcal{A}(a, b)=\mathcal{A}(a-\pi, b-\theta)$, with $\pi, \theta \in K$, where by $\mathcal{A}(a, b)$ we denote the subalgebra generated by the elements $a, b \in A$.

Proof. From Proposition 1.15, we have $1 \in \mathcal{A}(a-\pi, b-\theta)$, so $\pi, \theta \in$ $\mathcal{A}(a-\pi, b-\theta)$. We obtain $a=(a-\pi)+\pi \in \mathcal{A}(a-\pi, b-\theta)$ and $b=(b-\theta)+$ $\theta \in \mathcal{A}(a-\pi, b-\theta)$. Therefore $\mathcal{A}(a, b) \subset \mathcal{A}(a-\pi, b-\theta)$. Since $1 \in \mathcal{A}(a, b)$, we have $a-\pi, b-\theta, \pi, \theta \in \mathcal{A}(a, b)$, so we have the required equality.

§ 2. Equations in the generalized quaternion algebras

Consider the generalized quaternion algebra, $\mathbb{H}(\alpha, \beta)$, with dimension 4 , and the basis $\left\{1, e_{1}, e_{2}, e_{3}\right\}$, its multiplication operation is listed in the following table:

\cdot	1	e_{1}	e_{2}	e_{3}
1	1	e_{1}	e_{2}	e_{3}
e_{1}	e_{1}	$-\alpha$	e_{3}	$-\alpha e_{2}$
e_{2}	e_{2}	$-e_{3}$	$-\beta$	βe_{1}
e_{3}	e_{3}	αe_{2}	$-\beta e_{1}$	$-\alpha \beta$

Remark 2.1 The algebra $\mathbb{H}(\alpha, \beta)$ is either a division algebra or a split algebra, in this case being isomorphic to algebra $\mathcal{M}_{2}(K)$. In the following, we will show how to distinguish these two cases.

Let $x=a+b e_{1}+c e_{2}+d e_{3} \in \mathbb{H}(\alpha, \beta)$. The element $\bar{x}=a-b e_{1}-c e_{2}-d e_{3}$ is called the conjugate of the element x. The norm and the trace of the element x are the elements of $K: n(x)=x \bar{x}=a^{2}+\alpha b^{2}+\beta c^{2}+\alpha \beta d^{2}, t(x)=x+\bar{x}=2 a$.

The algebra $\mathbb{H}(\alpha, \beta)$ is a division algebra if and only if for any $x \in$ $\mathbb{H}(\alpha, \beta), x \neq 0$, implies $n(x) \neq 0$, therefore if and only if the equation $a^{2}+\alpha b^{2}+\beta c^{2}+\alpha \beta d^{2}=0$ has only the trivial solution. We write this equation under some equivalent forms: $\left(a^{2}+\alpha b^{2}\right)=-\beta c^{2}-\alpha \beta d^{2}=-\beta\left(c^{2}+\alpha d^{2}\right)$ or $\beta=-\frac{n\left(a+b e_{1}\right)}{n\left(c+d e_{1}\right)}=-n\left(\frac{a+b e_{1}}{c+d e_{1}}\right)=-n\left(\varepsilon+\delta e_{1}\right)=-\varepsilon^{2}-\alpha \delta^{2}$, where $\varepsilon+\delta e_{1}=$ $\frac{a+b e_{1}}{c+d e_{1}}$ or else $n(z)=-\beta$, where $z=\varepsilon+\delta e_{1} \in \mathbb{C}(\alpha)$.

Therefore $\mathbb{H}(\alpha, \beta)$ is a division algebra if and only if $\mathbb{C}(\alpha)$ is a quadratic separable extension of the field K and the equation $n(z)=-\beta$ does not have non-zero solutions in $\mathbb{C}(\alpha)$. Otherwise $\mathbb{H}(\alpha, \beta)$ is a split algebra. Since, if $\mathbb{C}(\alpha)$ is a quadratic separable extension of the field K,for $x \in \mathbb{H}(\alpha, \beta), x=$ $a_{1}+a_{2} v$, with $a_{1}, a_{2} \in \mathbb{C}(\alpha), v^{2}=-\beta, x \neq 0$ and $n(x)=0$, then $a_{2} \neq 0$. Indeed, if $n(x)=0$ and $a_{2}=0$ we get $n(x)=n\left(a_{1}\right)=a^{2}+\alpha b^{2}, a_{1}=a+b v, v^{2}=$ $-\alpha$, therefore the polynomial $X^{2}+\alpha$ has a solution in K,false. \square

In the following, we consider that $\mathbb{H}(\alpha, \beta)$ is a division generalized quaternion algebra.

Definition 2.2.The linear applications $\bar{\lambda}, \bar{\rho}: \mathbb{H}(\alpha, \beta) \rightarrow \operatorname{End}_{K}(\mathbb{H}(\alpha, \beta))$, given by
$\bar{\lambda}(a): \mathbb{H}(\alpha, \beta) \rightarrow \mathbb{H}(\alpha, \beta), \bar{\lambda}(a)(x)=a x, a \in \mathbb{H}(\alpha, \beta)$ and
$\bar{\rho}(a): \mathbb{H}(\alpha, \beta) \rightarrow \mathbb{H}(\alpha, \beta), \bar{\rho}(a)(x)=x a, a \in \mathbb{H}(\alpha, \beta)$, are called the left representation and the right representation of the algebra $\mathbb{H}(\alpha, \beta)$.

We know that every associative finite-dimensional algebra A over an arbitrary field K is isomorphic with a subalgebra of the algebra $\mathcal{M}_{n}(K)$, with $n=\operatorname{dim}_{K} A$. So we could find a faithful representation for the algebra A in the algebra $\mathcal{M}_{n}(K)$. For the generalized quaternion algebra $\mathbb{H}(\alpha, \beta)$, the mapping:

$$
\lambda: \mathbb{H}(\alpha, \beta) . \rightarrow \mathcal{M}_{4}(K), \lambda(a)=\left(\begin{array}{cccc}
a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} \\
a_{1} & a_{0} & -\beta a_{3} & \beta a_{2} \\
a_{2} & \alpha a_{3} & a_{0} & -\alpha a_{1} \\
a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right)
$$

where $a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \in \mathbb{H}(\alpha, \beta)$ is an isomorphism between $\mathbb{H}(\alpha, \beta)$ and the algebra of the matrices of the above form.

Obviously $\bar{\lambda}(a)(1)=a, \bar{\lambda}(a)\left(e_{1}\right)=a e_{1}, \bar{\lambda}(a)\left(e_{2}\right)=a e_{2}, \bar{\lambda}(a)\left(e_{3}\right)=a e_{3}$, represents the first, the second, the third and the fourth columns of the matrix $\lambda(a)$.

Definition 2.3. $\lambda(a)$ is called the left matriceal representation for
the element $a \in \mathbb{H}(\alpha, \beta)$.
In the same manner, we introduce the right matriceal representation for the element $a \in \mathbb{H}(\alpha, \beta)$:

$$
\rho: \mathbb{H}(\alpha, \beta) \rightarrow \mathcal{M}_{4}(K), \rho(a)=\left(\begin{array}{llll}
a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} \\
a_{1} & a_{0} & \beta a_{3} & -\beta a_{2} \\
a_{2} & -\alpha a_{3} & a_{0} & \alpha a_{1} \\
a_{3} & a_{2} & -a_{1} & a_{0}
\end{array}\right) \text {,where }
$$

$a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \in \mathbb{H}(\alpha, \beta)$ and $\bar{\rho}(1)=a, \bar{\rho}(a)\left(e_{1}\right)=e_{1} a, \bar{\rho}(a)\left(e_{2}\right)=$ $e_{2} a, \bar{\rho}(a)\left(e_{3}\right)=e_{3} a$ represent the first, the second, the third and the fourth columns of the matrix $\rho(a)$.

Proposition 2.4. $([\mathrm{Ti} ; 00]$, Lemma 1.2.) Let $x, y \in \mathbb{H}(\alpha, \beta)$ and $r \in K$.
Then the following statements are true:
i) $x=y \Longleftrightarrow \lambda(x)=\lambda(y)$.
ii) $x=y \Longleftrightarrow \rho(x)=\rho(y)$.
iii) $\lambda(x+y)=\lambda(x)+\lambda(y), \lambda(x y)=\lambda(x) \lambda(y), \lambda(r x)=r \lambda(x)$,
$\lambda(1)=I_{4}, r \in K$.
iv) $\rho(x+y)=\rho(x)+\rho(y), \rho(x y)=\rho(x) \rho(y), \rho(r x)=r \rho(x)$,
$\rho(1)=I_{4}, r \in K$.
v) $\lambda\left(x^{-1}\right)=(\lambda(x))^{-1}, \rho\left(x^{-1}\right)=(\rho(x))^{-1}$, for $x \neq 0$; ㅁ

The following three propositions can be proved by straightforward calculations.

Proposition 2.5. For all $x \in \mathbb{H}(\alpha, \beta) \operatorname{det}(\lambda(x))=\operatorname{det}(\rho(x))=(n(x))^{2}$.
Proposition 2.6. Let $x=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \in \mathbb{H}(\alpha, \beta)$. The following statedments are true:
i) $x=\frac{1}{4} M_{4} \lambda(x) M_{4}^{*}, x=\frac{1}{4} M_{4}^{* t} \rho^{t}(x) M_{4}^{t}$, where $M_{4}=\left(1, e_{1}, e_{2}, e_{3}\right)$, $M_{4}^{*}=\left(1,-\alpha^{-1} e_{1},-\beta^{-1} e_{2},-\alpha^{-1} \beta^{-1} e_{3}\right)^{t}$.
ii) $\lambda(x)=D_{1} \rho^{t}(x) D_{2}, \lambda(\bar{x})=C_{1} \lambda^{t}(x) C_{2}, \rho(x)=D_{1} \lambda^{t}(x) D_{2}$,
$\rho(\bar{x})=C_{1} \rho^{t}(x) C_{2}$, where $C_{1}, C_{2}, D_{1}, D_{2} \in \mathcal{M}_{4}(K)$ and
$C_{1}=\operatorname{diag}\left\{1, \alpha^{-1}, \beta^{-1}, \alpha^{-1} \beta^{-1}\right\}, C_{2}=\operatorname{diag}\{1, \alpha, \beta, \alpha \beta\}$,
$D_{1}=\operatorname{diag}\left\{1,-\alpha^{-1},-\beta^{-1},-\alpha^{-1} \beta^{-1}\right\}, D_{2}=\operatorname{diag}\{1,-\alpha,-\beta,-\alpha \beta\}$.
iii) The matrices $C_{1}, C_{2}, D_{1}, D_{2} \in \mathcal{M}_{4}(K)$ satisfy the relations:
$C_{1} C_{2}=D_{1} D_{2}=I_{4}, D_{1} M_{1}=C_{1}, D_{2} M_{1}=C_{2}, C_{1} M_{1}=D_{1}$,
$C_{2} M_{1}=D_{2}$, where $M_{1} \in \mathcal{M}_{4}(K), M_{1}=\operatorname{diag}\{1,-1,-1,-1\}$.

Proposition 2.7. ([Ti,00]; Lemma 1.3.) Let $x=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3} \in$ $\mathbb{H}(\alpha, \beta)$. Let $\vec{x}=\left(a_{0}, a_{1}, a_{3}, a_{3}\right)^{t} \in \mathcal{M}_{1 \times 4}(K)$, be the vector representation of the element x. Then for every $a, b, x \in \mathbb{H}(\alpha, \beta)$ we have the relations:
i) $\overrightarrow{a x}=\lambda(a) \vec{x}$.
ii) $\overrightarrow{x b}=\rho(b) \vec{x}$.
iii) $\overrightarrow{a x b}=\lambda(a) \rho(b) \vec{x}=\rho(b) \lambda(a) \vec{x}$.
iv) $\rho(b) \lambda(a)=\lambda(a) \rho(b)$

Proposition 2.8. Let $a, b \in \mathbb{H}(\alpha, \beta), a \neq 0, b \neq 0$. Then the linear equation

$$
\begin{equation*}
a x=x b \tag{2.1.}
\end{equation*}
$$

has non-zero solutions $x \in \mathbb{H}(\alpha, \beta)$, if and only if

$$
\begin{equation*}
t(a)=t(b) \text { and } n\left(a-a_{0}\right)=n\left(b-b_{0}\right) \tag{2.2.}
\end{equation*}
$$

where $a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, b=b_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3}$.
Proof. We suppose that the equation (2.1.) has non-zero solutions $x \in$ $\mathbb{H}(\alpha, \beta)$. Then we have $n(a x)=n(x b) \Rightarrow n(a) n(x)=n(x) n(b)$, therefore $n(a)=n(b)$. Since $a=x b x^{-1}, t(a)=t\left(x b x^{-1}\right)=t\left(x^{-1} x b\right)=t(b)$. We obtain that $a_{0}=b_{0}$, and from $n(a)=n(b)$ we have $\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}=$ $\alpha b_{1}^{2}+\beta b_{2}^{2}+\alpha \beta b_{3}^{2}$, so $n\left(a-a_{0}\right)=n\left(b-b_{0}\right)$.

Conversely, by considering the vector representation, the equation (2.1.) becomes $\overrightarrow{a x}=\overrightarrow{x b}$, that is

$$
\begin{equation*}
(\lambda(a)-\rho(b)) \vec{x}=\overrightarrow{0} \tag{2.3.}
\end{equation*}
$$

Equation (2.1.) has non-zero solutions if and only if the equation (2.3.) has a non-zero solution, that is, if and only if $\operatorname{det}(\lambda(a)-\rho(b))=0$. We compute this determinant: $\operatorname{det}(\lambda(a)-\rho(b))=$
$=\left[\left(a_{0}-b_{0}\right)^{2}+n\left(a-a_{0}\right)+n\left(b-b_{0}\right)\right]^{2}-4 n\left(a-a_{0}\right) n\left(b-b_{0}\right)$.
If $a_{0}=b_{0}$ and $n\left(a-a_{0}\right)=n\left(b-b_{0}\right)$, then $\operatorname{det}(\lambda(a)-\rho(b))=0$, therefore the equation (2.1.) has a non-zero solution.

Proposition 2.9. With the notations of Proposition 2.8., ift $(a)=t(b)$ and $n\left(a-a_{0}\right)=n\left(b-b_{0}\right)$, then the matrix $\lambda(a)-\rho(b)$ has the rank two.

Proof.

Case $a \neq b$.
We suppose $a_{1} \neq b_{1}$. If $a_{0}-b_{0}=0$, then $d_{1}=\left|\begin{array}{ll}0 & -\alpha a_{1}+\alpha b_{1} \\ a_{1}-b_{1} & 0\end{array}\right|=$ $\alpha\left(a_{1}-b_{1}\right)^{2} \neq 0$, and all the minors of order 3 are zero.

Therefore $\operatorname{rank}(\lambda(a)-\rho(b))=2$ and the subspace of the solutions is of dimension two.

Case $a=b$.
$\lambda(a)-\rho(b)=\left(\begin{array}{llll}0 & 0 & 0 & 0 \\ 0 & 0 & -2 \beta a_{3} & 2 \beta a_{2} \\ 0 & 2 \alpha a_{3} & 0 & -2 \alpha a_{1} \\ 0 & -2 a_{2} & 2 a_{1} & 0\end{array}\right)$, and it results also
$\operatorname{rank}(\lambda(a)-\rho(b))=2 . \square$
Remark 2.10. By Proposition 1.16., if $A=\mathbb{H}(\alpha, \beta)$, we have that
$\mathcal{A}(a, b)=\mathcal{A}\left(a-a_{0}, b-b_{0}\right)=\mathcal{A}(a, \bar{b})=\mathcal{A}(\bar{a}, \bar{b})=\mathcal{A}(\bar{a}, b)$, where
$a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, b=b_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3} \in A$, and $\mathcal{A}(a, b)$ represents the subalgebra generated by a and b.

Remark 2.11. Let $a, b \in \mathbb{H}(\alpha, \beta)$, as above, with $t(a)=t(b)=0$. Then, by Proposition 1.11., it results that $a b+b a=-2 \alpha a_{1} b_{1}-2 \beta a_{2} b_{2}-2 \alpha \beta a_{3} b_{3} \in K$.

Remark 2.12. By Proposition 1.12. if $\mathbb{H}(\alpha, \beta)$ is a division algebra and $a, b \in \mathbb{H}(\alpha, \beta)$ with $t(a)=t(b)=0$, then the equality

$$
\begin{equation*}
n(a) n(b)=\frac{1}{4}(a b+b a)^{2} \tag{2.4.}
\end{equation*}
$$

is true if and only if $a=r b, r \in K$. If $n(a)=n(b)$, then $r=1$ or $r=-1$.
Proof. From Proposition 2.11., $n(a b)=\left(\alpha a_{1} b_{1}+\beta a_{2} b_{2}+\alpha \beta a_{3} b_{3}\right)^{2}$. Because $n(a, b)=\frac{1}{2}(n(a+b)+n(a)+n(b))$, then $n^{2}(a, b)=\frac{1}{4}(a b+b a)$, $n(a, a)=n(a), n(b, b)=n(b)$ and by Proposition 1.12. we obtain
$n(a) n(b)=\frac{1}{4}(a b+b a)^{2}$ is true if and only if $a=r b, r \in K$. If $n(a)=n(b)$, then from the equality (2.4.) it results the equality
$\left(n(a)+\alpha a_{1} b_{1}+\beta a_{2} b_{2}+\alpha \beta a_{3} b_{3}\right)\left(n(a)-\alpha a_{1} b_{1}-\beta a_{2} b_{2}-\alpha \beta a_{3} b_{3}\right)=0$. In the last relation we replace $(n(a)+r n(a))(n(a)-r n(a))=0$, and we get $n(a)^{2}(1+r)(1-r)=0$. Then either $r=-1$ or $r=1$. \square

Proposition 2.13.

i) If $a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, b=b_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3} \in \mathbb{H}(\alpha, \beta)$ with $b \neq \bar{a}, a, b \notin K$ then the solutions of the equation (2.1.), with $t(a)=t(b)$ and $n\left(a-a_{0}\right)=n\left(b-b_{0}\right)$, are found in $\mathcal{A}(a, b)$ and have the form:

$$
\begin{equation*}
x=\lambda_{1}\left(a-a_{0}+b-b_{0}\right)+\lambda_{2}\left(n\left(a-a_{0}\right)-\left(a-a_{0}\right)\left(b-b_{0}\right)\right), \tag{2.5.}
\end{equation*}
$$

where $\lambda_{1}, \lambda_{2} \in K$ are arbitrary.
ii) If $b=\bar{a}$, then the general solution of the equation (2.1.) is $x=$ $x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$, where $x_{1}, x_{2}, x_{3} \in K$ and they satisfy the equality: $\alpha a_{1} x_{1}+$ $\beta a_{2} x_{2}+\alpha \beta a_{3} x_{3} \alpha \beta=0$.

Proof. i) Let $x_{1}=a-a_{0}+b-b_{0}, x_{2}=n\left(a-a_{0}\right)-\left(a-a_{0}\right)\left(b-b_{0}\right)$. If $b \neq \bar{a}$ then $x_{2} \notin K$. We have $a x_{1}-x_{1} b=a\left(a-a_{0}\right)+a\left(b-b_{0}\right)-\left(a-a_{0}\right) b-$
$-\left(b-b_{0}\right) b$, and we write $a=a_{0}+v, b=b_{0}+w$, with $t(v)=t(w)=0$,
$a x_{1}-x_{1} b=\left(a_{0}+v\right) v+\left(a_{0}+v\right) w-v\left(b_{0}+w\right)-w\left(b_{0}+w\right)=$
$=a_{0} v+v^{2}+a_{0} w+v w-v b_{0}-v w-w b_{0}-w^{2}=0$, since by the hypothesis $n(v)=n(w), v^{2}=-n(v)=-n(w)=w^{2}$. Therefore x_{1} is a solution.

Analogously, we have $a x_{2}-x_{2} b=0$, therefore x_{2} is a solution. Obviously, $x_{1}, x_{2} \in \mathcal{A}\left(a-a_{0}, b-b_{0}\right)=\mathcal{A}(a, b)$. We also note that x_{1}, x_{2} are linearly independent.

If $\theta_{1} x_{1}+\theta_{2} x_{2}=0$, with $\theta_{1}, \theta_{2} \in K$, then $\theta_{1} v+\theta_{1} w+\theta_{2} n(v)-\theta_{2} v w=0$, which gives
$\theta_{2}\left(n(v)+\alpha a_{1} b_{1}+\beta a_{2} b_{2}+\alpha \beta a_{3} b_{3}\right)=0, \theta_{1}\left(a_{1}+b_{1}\right)-\theta_{2} \beta\left(a_{2} b_{3}-a_{3} b_{2}\right)=0$
$\theta_{1}\left(a_{2}+b_{2}\right)-\theta_{2} \alpha\left(a_{3} b_{1}-a_{1} b_{3}\right)=0, \theta_{1}\left(a_{3}+b_{3}\right)-\theta_{2}\left(a_{1} b_{2}-a_{2} b_{1}\right)=0$.
Since $b \neq \bar{a}$, from Proposition 2.12., we have $\theta_{2}=0$ and
$\theta_{1}\left(a_{1}+b_{1}\right)=0, \theta_{1}\left(a_{2}+b_{2}\right)=0, \theta_{1}\left(a_{3}+b_{3}\right)=0$,therefore $\theta_{1}=0$.
If the subspace of the solutions of the equation (2.1.) has the dimension two, it results that each solution of this equation is of the form $\lambda_{1} x_{1}+\lambda_{2} x_{2}, \lambda_{1}, \lambda_{2} \in$ K.

We note that $\lambda_{1} x_{1}+\lambda_{2} x_{2} \in \mathcal{A}(v, w)=\mathcal{A}(a, b)$.
ii) Since $b=\bar{a}$, it results $b=a_{0}-a_{1} e_{1}-a_{2} e_{2}-a_{3} e_{3}$, therefore $v=-w$. Then, if x is a solution of the equation, we have $a x=x \bar{a}$, therefore $\left(a_{0}+v\right)\left(x_{0}+y\right)=$ $\left(x_{0}+y\right)\left(a_{0}-v\right)$ from where we get $2 x_{0} v+v y+y v=0$, where $x=x_{0}+y$, with $x_{0} \in K, y=x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}, t(y)=0$.

As $v y+y v \in K$, the last equality is equivalent with $x_{0}=0$ and $v y+y v=0$, that is $x_{0}=0$ and $\alpha a_{1} x_{1}+\beta a_{2} x_{2}+\alpha \beta a_{3} x_{3}=0$.

Remark 2.14. If $a_{0}=b_{0}$ and $n(v)=n(w)$, the equation (2.1.) has the general solution under the form:

$$
\begin{equation*}
x=a q-q \bar{b}, \text { with } q \in \mathcal{A}(a, b), \tag{2.6.}
\end{equation*}
$$

or, equivalently $x=v q+q w$.
Proof. Indeed, suppose that $z \in \mathcal{A}(a, b)$ is an arbitrary solution of the equation (2.1.). It results $a z=z b$, therefore $v z=w z$. Let $q=\frac{-v z}{2 n(v)}=$ $-\frac{z w}{2 n(w)}$. We have $x=v q+q w=-\frac{v^{2} z}{2 n(v)}-\frac{z w^{2}}{2 n(w)}=\frac{z}{2}+\frac{z}{2}=z$, which proves that each solution of the equation (2.1.) can be written in the form (2.6.)

Proposition 2.15. Let $a=a_{0}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}$,
$b=b_{0}+b_{1} e_{1}+b_{2} e_{2}+b_{3} e_{3} \in \mathbb{H}(\alpha, \beta)$.
i) ([Ti; 99], Theorem 2.3.) The equation

$$
\begin{equation*}
a x=\bar{x} b \tag{2.7.}
\end{equation*}
$$

has non-zero solutions if and only if $n(a)=n(b)$. In this case, if $a+\bar{b} \neq 0$, then (2.7.) has a solution of the form $x=\lambda(\bar{a}+b), \lambda \in K$.
ii) If $a+\bar{b}=0$, then the general solution of the equation (2.7.) can be written in the form $x=x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}$, where $a_{0} x_{0}-\alpha a_{1} x_{1}-\beta a_{2} x_{2}-$ $\alpha \beta a_{3} x_{3}=0$.

Proof. We suppose that (2.7.) has a non-zero solution $x \in \mathbb{H}(\alpha, \beta)$. Then we have $a x=\bar{x} b \Rightarrow n(a x)=n(\bar{x} b) \Rightarrow n(a) n(x)=n(x) n(b) \Rightarrow n(a)=$ $n(b)$.

Conversely, suppose that $n(a)=n(b)$. We take $y=\bar{a}+b$ and we obtain $a y-$ $\bar{y} a=a(\bar{a}+b)-(a+\bar{b}) b=a \bar{a}+a b-a b-\bar{b} b=n(a)-n(b)=0$.

If $a+\bar{b}=0$, we have $b=-\bar{a}$ and the equation (2.7.) becomes $a x+\overline{a x}=$ 0 , that is $t(a x)=0$. But $t(a x)=a_{0} x_{0}-\alpha a_{1} x_{1}-\beta a_{2} x_{2}-\alpha \beta a_{3} x_{3} . \square$

Proposition 2.16. Let $a \in \mathbb{H}(\alpha, \beta), a \notin K$. If there exists $r \in K$ such that $n(a)=r^{2}$, then $a=\bar{q} r q^{-1}$, where $q=r+\bar{a}$, and $q^{-1}=\frac{\bar{q}}{n(q)}$

Proof. By hypothesis, we have $a(r+\bar{a})=a r+a \bar{a}=a r+n(a)=a r+r^{2}=$ $(a+r) r$. Since $\bar{q}=r+a$, it results $\bar{q} r=a q$.

Proposition 2.17. Let $a \in \mathbb{H}(\alpha, \beta)$ with $a \notin K$. If there exists $r, s \in$ K with the properties $n(a)=r^{4}$ and $n\left(r^{2}+\bar{a}\right)=s^{2}$, then the quadratic equation

$$
\begin{equation*}
x^{2}=a \tag{2.8.}
\end{equation*}
$$

has two solutions of the form $x= \pm \frac{r\left(r^{2}+a\right)}{n\left(r^{2}+\bar{a}\right)}$.
Proof. By Proposition 2.16., it results that a is of the form $a=\bar{q} r^{2} q^{-1}$,
where $q=r^{2}+\bar{a}$. Because $q^{-1}=\frac{\bar{q}}{n(q)}$, we obtain $a=r^{2} \bar{q} q^{-1}=r^{2} \bar{q} \frac{\bar{q}}{n(q)}=$ $r^{2} \frac{\bar{q}^{2}}{s^{2}}=\left(\frac{r}{s} \bar{q}\right)^{2}$,therefore $x_{1}=\frac{r}{s} \bar{q}, x_{2}=-\frac{r}{s} \bar{q}$ are solutions.

Corollary 2.18. Let $a, b, c \in \mathbb{H}(\alpha, \beta)$ so that ab and $b^{2}-c \notin K$. If $a b$ and $b^{2}-c$ satisfy the conditions of Proposition 2.17. then the equations $x a x=b$ and
$x^{2}+b x+x b+c=0$ have solutions.

Proof. $x a x=b \Longleftrightarrow(a x)^{2}=a b$ and $x^{2}+b x+x b+c=0 \Longleftrightarrow$

$$
\Leftrightarrow(x+b)^{2}=b^{2}-c .
$$

Corollary 2.19. If $b, c \in \mathbb{H}(\alpha, \beta) \backslash\{K\}$ satisfy the conditions $b c=c b$ and there exists $r \in K, r \neq 0$ so that $n\left(\frac{b^{2}}{4}-c\right)=r^{4}$, and $n\left(r^{2}+\frac{\bar{b}^{2}}{4}-\bar{c}\right)=s^{2}$,
$s \neq 0$ then the equation

$$
\begin{equation*}
x^{2}+b x+c=0 \tag{2.9.}
\end{equation*}
$$

has solutions in $\mathbb{H}(\alpha, \beta)$.

Proof. Let $x_{0} \in \mathbb{H}(\alpha, \beta)$ be a solution of the equation (2.9.). Because $x_{0}^{2}=t\left(x_{0}\right) x_{0}-n\left(x_{0}\right)$ and $x_{0}^{2}+b x_{0}+c=0$, it results that
$t\left(x_{0}\right) x_{0}-n\left(x_{0}\right)+b x_{0}+c=0$ hence $\left(t\left(x_{0}\right)+b\right) x_{0}=c+n\left(x_{0}\right)$.If $t\left(x_{0}\right)+$ $b \neq 0, t\left(x_{0}\right), n\left(x_{0}\right) \in K, 1 \in \mathcal{A}(b, c)$, then $t\left(x_{0}\right)+b$ and $c+n\left(x_{0}\right) \in \mathcal{A}(b, c)$.

Therefore $x_{0} \in \mathcal{A}(b, c)$. Because $b c=c b$, it results that $\mathcal{A}(b, c)$ is commutative, therefore x_{0} commutes with every element of $\mathcal{A}(b, c)$. Then the equation (2.9.) can be written under the form $\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c=0$ and by the Proposition 2.17. such an x_{0} exists
\S 3. Equations in the generalized octonions algebra

Let $\mathbb{O}(\alpha, \beta, \gamma)$ be the generalized octonions algebra, with the basis
$\left\{1, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}\right\}$, where $f_{1}=e_{1}, f_{2}=e_{2}, f_{3}=e_{3}, f_{5}=e_{1} f_{4}, f_{6}=$ $e_{2} f_{4}, f_{7}=e_{3} f_{4}$. Its multiplication table is the following :

\cdot	1	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	1	f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
f_{1}	f_{1}	$-\alpha$	f_{3}	$-\alpha f_{2}$	f_{5}	$-\alpha f_{4}$	$-f_{7}$	αf_{6}
f_{2}	f_{2}	$-f_{3}$	$-\beta$	βf_{1}	f_{6}	f_{7}	$-\beta f_{4}$	$-\beta f_{5}$
f_{3}	f_{3}	αf_{2}	$-\beta f_{1}$	$-\alpha \beta$	f_{7}	$-\alpha f_{6}$	βf_{5}	$-\alpha \beta f_{4}$
f_{4}	f_{4}	$-f_{5}$	$-f_{6}$	$-f_{7}$	$-\gamma$	γf_{1}	γf_{2}	γf_{3}
f_{5}	f_{5}	αf_{4}	$-f_{7}$	αf_{6}	$-\gamma f_{1}$	$-\alpha \gamma$	$-\gamma f_{3}$	$\alpha \gamma f_{2}$
f_{6}	f_{6}	f_{7}	βf_{4}	$-\beta f_{5}$	$-\gamma f_{2}$	γf_{3}	$-\beta \gamma$	$-\beta \gamma f_{1}$
f_{7}	f_{7}	$-\alpha f_{6}$	βf_{5}	$\alpha \beta f_{4}$	$-\gamma f_{3}$	$-\alpha \gamma f_{2}$	$\beta \gamma f_{1}$	$-\alpha \beta \gamma$

Remark 3.1.The algebra $\mathbb{O}(\alpha, \beta, \gamma)$ is a division algebra or a split algebra. As in the quaternion algebra case, we aim to find out conditions for getting a division algebra.

If $x=a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}+a_{5} f_{5}+a_{6} f_{6}+a_{7} f_{7}$, then
$\bar{x}=a_{0}-a_{1} f_{1}-a_{2} f_{2}-a_{3} f_{3}-a_{4} f_{4}-a_{5} f_{5}-a_{6} f_{6}-a_{7} f_{7}$ is the conjugate of x and $n(x)=x \bar{x}=a_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}+\gamma a_{4}^{2}+\alpha \gamma a_{5}^{2}+\beta \gamma a_{6}^{2}+\alpha \beta \gamma a_{7}^{2} \in K$ is the norm of x, while $t(x)=x+\bar{x} \in K$ is the trace of the element x.

If there exists $x \in \mathbb{O}(\alpha, \beta, \gamma), x \neq 0$, such that $n(x)=0$, then $\mathbb{O}(\alpha, \beta, \gamma)$ is not a division algebra, and if $n(x) \neq 0, \forall x \in \mathbb{O}(\alpha, \beta, \gamma), x \neq 0$, then $\mathbb{O}(\alpha, \beta, \gamma)$ is a division algebra . Therefore, $\mathbb{O}(\alpha, \beta, \gamma)$ is a division algebra if and only if the equation $a_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}+\gamma a_{4}^{2}+\alpha \gamma a_{5}^{2}+$ $\beta \gamma a_{6}^{2}+\alpha \beta \gamma a_{7}^{2}=0$ has only the trivial solution. This is equivalent with equation $a_{0}^{2}+\alpha a_{1}^{2}+\beta a_{2}^{2}+\alpha \beta a_{3}^{2}=-\gamma\left(a_{4}^{2}+\alpha a_{5}^{2}+\beta a_{6}^{2}+\alpha \beta \gamma a_{7}^{2}\right)$ or $\gamma=$ $-\frac{n\left(a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}\right)}{n\left(a_{4} f_{4}+a_{5} f_{5}+a_{6} f_{6}+a_{7} f_{7}\right)}=-n\left(b_{0}+b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}\right)=-b_{0}^{2}-\alpha b_{1}^{2}-\beta b_{2}^{2}-$ $\alpha \beta b_{3}^{2}$,where $b_{0}+b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}=\frac{a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}}{a_{4} f_{4}+a_{5} f_{5}+a_{6} f_{6}+a_{7} f_{7}}$.
$\mathbb{O}(\alpha, \beta, \gamma)$ is a division algebra if and only if $\mathbb{H}(\alpha, \beta)$ is a division algebra and the equation $n(x)=-\gamma$ does not have solutions in $\mathbb{H}(\alpha, \beta)$

Based upon the matrix representation of the generalized quaternions, we introduce the matrix representation in the case of generalized octonions.

Let $a^{\prime}=a_{0, \prime \prime}+a_{1} e_{1}+a_{2} e_{2}+a_{3} e_{3}, a^{\prime \prime}=a_{4}+a_{5} e_{1}+a_{6} e_{2}+a_{7} e_{3} \in \mathbb{H}(\alpha, \beta)$ and $a=a^{\prime}+a^{\prime \prime} v \in \mathbb{O}(\alpha, \beta, \gamma)$. Then the matrix :

$$
\Lambda(a)=\left(\begin{array}{cccccccc}
a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} & -\gamma a_{4} & -\alpha \gamma a_{5} & -\beta \gamma a_{6} & -\alpha \beta \gamma a_{7} \\
a_{1} & a_{0} & -\beta a_{3} & \beta a_{2} & -\gamma a_{5} & \gamma a_{4} & \beta \gamma a_{7} & -\beta \gamma a_{6} \\
a_{2} & \alpha a_{3} & a_{0} & -\alpha a_{1} & -\gamma a_{6} & -\alpha \gamma a_{7} & \gamma a_{4} & \alpha \gamma a_{5} \\
a_{3} & -a_{2} & a_{1} & a_{0} & -\gamma a_{7} & \gamma a_{6} & -\gamma a_{5} & \gamma a_{4} \\
a_{4} & \alpha a_{5} & \beta a_{6} & \alpha \beta a_{7} & a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} \\
a_{5} & -a_{4} & \beta a_{7} & -\beta a_{6} & a_{1} & a_{0} & \beta a_{3} & -\beta a_{2} \\
a_{6} & -\alpha a_{7} & -a_{4} & \alpha a_{5} & a_{2} & -\alpha a_{3} & a_{0} & \alpha a_{1} \\
a_{7} & a_{6} & -a_{5} & -a_{4} & a_{3} & a_{2} & -a_{1} & a_{0}
\end{array}\right)
$$

is called the left matriceal representation for the element $a \in$

© (α, β, γ).

Using the matrix representations for quaternions, we can write the left matrix representation:

$$
\Lambda(a)=\left(\begin{array}{lc}
\lambda\left(a^{\prime}\right) & -\gamma \rho\left(a^{\prime \prime}\right) M_{1} \\
\lambda\left(a^{\prime \prime}\right) M_{1} & \rho\left(a^{\prime}\right)
\end{array}\right), \text { where } M_{1}=\operatorname{diag}\{1,-1,-1,-1\} \in \mathcal{M}_{4}(K)
$$

Analogously, we define the right matrix representation:

$$
\Delta(a)=\left(\begin{array}{cccccccc}
a_{0} & -\alpha a_{1} & -\beta a_{2} & -\alpha \beta a_{3} & -\gamma a_{4} & -\alpha \gamma a_{5} & -\beta \gamma a_{6} & -\alpha \beta \gamma a_{7} \\
a_{1} & a_{0} & \beta a_{3} & -\beta a_{2} & \gamma a_{5} & -\gamma a_{4} & -\beta \gamma a_{7} & \beta \gamma a_{6} \\
a_{2} & -\alpha a_{3} & a_{0} & \alpha a_{1} & \gamma a_{6} & \alpha \gamma a_{7} & -\gamma a_{4} & -\alpha \gamma a_{5} \\
a_{3} & a_{2} & -a_{1} & a_{0} & \gamma a_{7} & -\gamma a_{6} & \gamma a_{5} & -\gamma a_{4} \\
a_{4} & -\alpha a_{5} & -\beta a_{6} & -\alpha \beta a_{7} & a_{0} & \alpha a_{1} & \beta a_{2} & \alpha \beta a_{3} \\
a_{5} & a_{4} & -\beta a_{7} & \beta a_{6} & -a_{1} & a_{0} & -\beta a_{3} & \beta a_{2} \\
a_{6} & \alpha a_{7} & a_{4} & -\alpha a_{5} & -a_{2} & \alpha a_{3} & a_{0} & -\alpha a_{1} \\
a_{7} & -a_{6} & a_{5} & a_{4} & -a_{3} & -a_{2} & a_{1} & a_{0}
\end{array}\right) .
$$

This matrix has as its columns, the coefficients in K of the elements $a, f_{1} a, f_{2} a, f_{3} a, f_{4} a, f_{5} a, f_{6} a, f_{7} a$. Using the matrix representations of quaternions, we can also write that $: \Delta(a)=\left(\begin{array}{ll}\rho\left(a^{\prime}\right) & -\gamma \lambda\left(\bar{a}^{\prime \prime}\right) \\ \lambda\left(a^{\prime \prime}\right) & \rho\left(\bar{a}^{\prime}\right)\end{array}\right)=$
$=A_{1} \Lambda^{t}(a) A_{2}$, where $A_{1}, A_{2} \in \mathcal{M}_{8}(K)$ are matrices of the form:

$$
A_{1}=\left(\begin{array}{ll}
-\gamma D_{1} & 0 \\
0 & C_{1}
\end{array}\right), A_{2}=\left(\begin{array}{ll}
-\gamma^{-1} D_{2} & 0 \\
0 & C_{2}
\end{array}\right), D_{1}, D_{2}, C_{1}, C_{2} \in \mathcal{M}_{4}(K)
$$

being the matrices in Proposition 2.6., and $A_{1} A_{2}=A_{2} A_{1}=I_{8}$. Indeed, we have

$$
\begin{aligned}
& \Lambda^{t}(a)=\left(\begin{array}{ll}
\lambda^{t}\left(a^{\prime}\right) & M_{1}^{t} \lambda^{t}\left(a^{\prime \prime}\right) \\
-\gamma M_{1}^{t} \rho^{t}\left(a^{\prime \prime}\right) & \rho^{t}\left(a^{\prime}\right)
\end{array}\right), \text { and } \\
& A_{1} \Lambda^{t}(a) A_{2}=\left(\begin{array}{ll}
-\gamma D_{1} & 0 \\
0 & C_{1}
\end{array}\right)\left(\begin{array}{ll}
\lambda^{t}\left(a^{\prime}\right) & M_{1}^{t} \lambda^{t}\left(a^{\prime \prime}\right) \\
-\gamma M_{1}^{t} \rho^{t}\left(a^{\prime \prime}\right) & \rho^{t}\left(a^{\prime}\right)
\end{array}\right)\left(\begin{array}{ll}
-\gamma^{-1} D_{2} & 0 \\
0 & C_{2}
\end{array}\right)= \\
& =\left(\begin{array}{ll}
-\gamma D_{1} \lambda^{t}\left(a^{\prime}\right) & -\gamma D_{1} M_{1}^{t} \lambda^{t}\left(a^{\prime \prime}\right) \\
-\gamma C_{1} M_{1}^{t} \rho^{t}\left(a^{\prime \prime}\right) & C_{1} \rho^{t}\left(a^{\prime}\right)
\end{array}\right)\left(\begin{array}{ll}
-\gamma^{-1} D_{2} & 0 \\
0 & C_{2}
\end{array}\right)=
\end{aligned}
$$

$=\left(\begin{array}{ll}D_{1} \lambda^{t}\left(a^{\prime}\right) D_{2} & -\gamma D_{1} M_{1}^{t} \lambda^{t}\left(a^{\prime \prime}\right) C_{2} \\ \gamma C_{1} M_{1}^{t} \rho^{t}\left(a^{\prime \prime}\right) D_{2} \gamma^{-1} & C_{1} \rho^{t}\left(a^{\prime}\right) C_{2}\end{array}\right)$.
But, by Proposition 2.6., it results that $D_{1} \lambda^{t}\left(a^{\prime}\right) D_{2}=\rho\left(a^{\prime}\right)$,
$C_{1} \rho^{t}\left(a^{\prime}\right) C_{2}=\rho\left(\bar{a}^{\prime}\right) ;$ We has $-\gamma D_{1} M_{1}^{t} \lambda^{t}\left(a^{\prime \prime}\right) C_{2}=$
$=-\gamma \operatorname{diag}\left\{1, \alpha^{-1}, \beta^{-1}, \alpha^{-1} \beta^{-1}\right\}\left(\begin{array}{llll}a_{4} & \alpha a_{5} & \beta a_{6} & \alpha \beta a_{7} \\ -\alpha a_{5} & \alpha a_{4} & \alpha \beta a_{7} & -\alpha \beta a_{6} \\ -\beta a_{6} & -\alpha \beta a_{7} & \beta a_{4} & \alpha \beta a_{5} \\ -\alpha \beta a_{7} & \alpha \beta a_{6} & -\alpha \beta a_{5} & \alpha \beta a_{4}\end{array}\right)=$
$=\left(\begin{array}{llll}-\gamma a_{4} & -\alpha \gamma a_{5} & -\beta \gamma a_{6} & -\alpha \beta \gamma a_{7} \\ \gamma a_{5} & -\gamma a_{4} & -\beta \gamma a_{4} & \beta \gamma a_{6} \\ \gamma a_{6} & \alpha \gamma a_{7} & -\gamma a_{4} & -\alpha \gamma a_{5} \\ \gamma a_{7} & \gamma a_{6} & \gamma a_{5} & -\gamma a_{4}\end{array}\right)=-\gamma \lambda\left(\bar{a}^{\prime \prime}\right)$ and $C_{1} M_{1}^{t} \rho^{t}\left(a^{\prime \prime}\right) D_{2}=$
$=\operatorname{diag}\left\{1, \alpha^{-1}, \beta^{-1}, \alpha^{-1} \beta^{-1}\right\}\left(\begin{array}{llll}a_{4} & -\alpha a_{5} & -\beta a_{6} & -\alpha \beta a_{7} \\ -\alpha a_{5} & -\alpha a_{4} & \alpha \beta a_{7} & -\alpha \beta a_{6} \\ -\beta a_{6} & -\alpha \beta a_{7} & -\beta a_{4} & \alpha \beta a_{5} \\ -\alpha \beta a_{7} & \alpha \beta a_{6} & -\alpha \beta a_{5} & -\alpha \beta a_{4}\end{array}\right)=\lambda\left(a^{\prime \prime}\right)$.
Proposition 3.2. ([Ti; 00],Theorem 2.1. and Theorem 2.3.) Let

$$
x=x_{0}+x_{1} f_{1}+x_{2} f_{2}+x_{3} f_{3}+x_{4} f_{4}+x_{5} f_{5}+x_{6} f_{6}+x_{7} f_{7} \text { and }
$$

$a=a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}+a_{5} f_{5}+a_{6} f_{6}+a_{7} f_{7} \in \mathbb{O}(\alpha, \beta, \gamma)$.
Denote $\vec{x}=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}\right)^{t}$, the vector representation for the element x. Then $\overrightarrow{a x}=\Lambda(a) \vec{x}$ and $\overrightarrow{x a}=\Delta(a) \vec{x}$.

Proof. We take a and x under the form $a=a^{\prime}+a^{\prime \prime} v, x=x^{\prime}+x^{\prime \prime} v$ with $a^{\prime}, a^{\prime \prime}, x^{\prime}, x^{\prime \prime} \in \mathbb{H}(\alpha, \beta)$. Then $a x=\left(a^{\prime} x^{\prime}-\gamma \bar{x}^{\prime \prime} a^{\prime \prime}\right)+$
$+\left(x^{\prime \prime} a^{\prime}+a^{\prime \prime} \bar{x}^{\prime}\right) v$ and we can write $\overrightarrow{a x}=\left(\frac{\overline{a^{\prime} x^{\prime}-\gamma \bar{x}^{\prime \prime} a^{\prime \prime}}}{x^{\prime \prime} a^{\prime}+a^{\prime \prime} \vec{x}}\right)=$

$$
=\binom{\overrightarrow{a^{\prime} x^{\prime}}-\gamma \overrightarrow{\bar{x}^{\prime \prime} a^{\prime \prime}}}{\overrightarrow{x^{\prime \prime} a}+\overrightarrow{a^{\prime \prime} \vec{x}}}=\binom{\lambda\left(a^{\prime}\right) \vec{x}-\gamma \rho\left(a^{\prime \prime}\right) \overrightarrow{\bar{x}^{\prime \prime}}}{\rho\left(a^{\prime}\right) \overrightarrow{x^{\prime \prime}}+\lambda\left(a^{\prime \prime}\right) \overrightarrow{\vec{x}^{\prime}}} .
$$

Given $\bar{x}^{\prime \prime}=M_{1} x^{\prime \prime}$, it results

$$
\overrightarrow{a x}=\binom{\lambda\left(a^{\prime}\right) \vec{x}-\gamma \rho\left(a^{\prime \prime}\right) M_{1} \overrightarrow{x^{\prime \prime}}}{\rho\left(a^{\prime}\right) \vec{x}^{\prime \prime}+\lambda\left(a^{\prime \prime}\right) M_{1} \overrightarrow{x^{\prime}}}=\left(\begin{array}{ll}
\lambda\left(a^{\prime}\right) & -\gamma \rho\left(a^{\prime \prime}\right) M_{1} \\
\lambda\left(a^{\prime \prime}\right) M_{1} & \rho\left(a^{\prime}\right)
\end{array}\right)\binom{\vec{x}^{\prime}}{\vec{x}^{\prime \prime}}=
$$

$\Lambda(a) \vec{x}$.

Analogously, $\overrightarrow{x a}=\Delta(a) \vec{x}$.
Proposition 3.3.([Ti; 00], Theorem 2.6.) Let $x, y \in \mathbb{O}(\alpha, \beta, \gamma)$ and $m \in$ K. Then the following relations are true:
i) $x=y \Longleftrightarrow \Lambda(x)=\Lambda(y)$.
ii) $x=y \Longleftrightarrow \Delta(x)=\Delta(y)$.
iii) $\Lambda(x+y)=\Lambda(x)+\Lambda(y)$.
iv) $\Lambda(m x)=m \Lambda(x)$.
v) $\Delta(x+y)=\Delta(x)+\Delta(y)$.
vii) $\Delta(m x)=m \Delta(x)$.
viii) $\Lambda\left(x^{-1}\right)=\Lambda^{-1}(x)$.
ix) $\Delta\left(x^{-1}\right)=\Delta^{-1}(x)$.

Since $\mathbb{O}(\alpha, \beta, \gamma)$ is a non-associative algebra, the equalities $\Lambda(x y)=\Lambda(x) \Lambda(y), \Delta(x y)=\Delta(x) \Delta(y)$ do not generally apply.

Proposition 3.4. Let $x, y \in \mathbb{O}(\alpha, \beta, \gamma)$. Then, by using the notations in Proposition 2.6., we have:
i) $\Lambda(\bar{x})=E_{1} \Lambda^{t}(x) E_{2}$, where $E_{1}=\left(\begin{array}{ll}\gamma C_{1} & 0 \\ 0 & C_{1}\end{array}\right), E_{2}=\left(\begin{array}{ll}\gamma^{-1} C_{2} & 0 \\ 0 & C_{2}\end{array}\right)$.
ii) $\Delta(\bar{x})=F_{1} \Delta^{t}(x) F_{2}$, where $F_{1}=\left(\begin{array}{ll}-\gamma C_{1} & 0 \\ 0 & C_{1}\end{array}\right), F_{2}=\left(\begin{array}{ll}-\gamma^{-1} C_{2} & 0 \\ 0 & C_{2}\end{array}\right)$.
iii) $E_{1} E_{2}=F_{1} F_{2}=A_{1} A_{2}=I_{8}, E_{1}^{t}=E_{1}, E_{2}^{t}=E_{2}, F_{1}^{t}=F_{1}$, $F_{2}^{t}=F_{2}, A_{1}^{t}=A_{1}, A_{2}^{t}=A_{2}$.
iv) $\Lambda(x)=A_{1} \Delta^{t}(x) A_{2}$, where $A_{1}=\left(\begin{array}{ll}-\gamma D_{1} & 0 \\ 0 & C_{1}\end{array}\right), A_{2}=\left(\begin{array}{ll}-\gamma^{-1} D_{2} & 0 \\ 0 & C_{2}\end{array}\right)$.

Proof. iv) As $\Delta(x)=A_{1} \Lambda^{t}(x) A_{2}$, we multiplicate this last relation to the left and to the right with A_{2} and with A_{1},obtaining $A_{2} \Delta(x) A_{1}=$ $\Lambda^{t}(x)$, therefore $\Lambda(x)=A_{1} \Delta^{t}(x) A_{2}$. The other relations can be proved by calculations.

Proposition 3.5. Let $x \in \mathbb{O}(\alpha, \beta, \gamma)$. Then:
i) $x=\frac{1}{8} H_{1} \Lambda(x) H_{2}$,where $H_{1}=\left(1, f_{1}, f_{2}, f_{3}, f_{4}, f_{5}, f_{6}, f_{7}\right)$ and
$H_{2}=\left(1,-\alpha^{-1} f_{1},-\beta^{-1} f_{2},-\alpha^{-1} \beta^{-1} f_{3},-\gamma^{-1} f_{4},-\alpha^{-1} \gamma^{-1} f_{5},-\beta^{-1} \gamma^{-1} f_{6},-\alpha^{-1} \beta^{-1} \gamma^{-1} f_{7}\right)^{t}$;
ii) $x=\frac{1}{8} H_{2}^{t} \Delta^{t}(x) H_{1}^{t}$.

Proof. i) By calculation.
ii) $\Delta^{t}(x)=A_{2} \Lambda(x) A_{1}$ and the rest is proved by calculations.

Propozition 3.6. Let $x \in \mathbb{O}(\alpha, \beta, \gamma)$ with $x=x^{\prime}+x^{\prime \prime} v$, where $x^{\prime}, x^{\prime \prime} \in$ $\mathbb{H}(\alpha, \beta)$. Then $\operatorname{det}(\Lambda(x))=\operatorname{det}(\Delta(x))=(n(x))^{4}$.

Proof. We know that $\Delta(x)=A_{1} \Lambda^{t}(x) A_{2}$. Then $\operatorname{det}(\Delta(x))=$
$=\operatorname{det}\left(A_{1} \Lambda^{t}(x) A_{2}\right)=\operatorname{det} A_{1} \operatorname{det} \Lambda^{t}(x) \operatorname{det} A_{2}=\operatorname{det} \Lambda^{t}(x)=\operatorname{det} \Lambda(x)$. But
$\operatorname{det} \Delta(x)=\left|\begin{array}{ll}\rho\left(x^{\prime}\right) & -\gamma \lambda\left(\bar{x}^{\prime \prime}\right) \\ \lambda\left(x^{\prime \prime}\right) & \rho\left(\bar{x}^{\prime}\right)\end{array}\right|=\operatorname{det}\left(\rho\left(x^{\prime}\right) \rho\left(\bar{x}^{\prime}\right)+\gamma \lambda\left(\bar{x}^{\prime \prime}\right) \lambda\left(x^{\prime \prime}\right)\right)=$
$=\operatorname{det}\left(\rho\left(x^{\prime} \bar{x}^{\prime}\right)+\gamma \lambda\left(x^{\prime \prime} \bar{x}^{\prime \prime}\right)\right)=\operatorname{det}\left(n\left(x^{\prime}\right) I_{4}+\gamma n\left(x^{\prime \prime}\right) I_{4}\right)=$
$=\left(n\left(x^{\prime}\right) I_{4}+\gamma n\left(x^{\prime \prime}\right) I_{4}\right)^{4}=(n(x))^{4}$
Let $a, b, \in \mathbb{O}(\alpha, \beta, \gamma)$. In the next, we consider the equation

$$
\begin{equation*}
a x=x b \tag{3.1.}
\end{equation*}
$$

in $\mathbb{O}(\alpha, \beta, \gamma)$. By using the vector representation, the equation is equivalent to:

$$
\begin{equation*}
[\Lambda(a)-\Delta(b)] \vec{x}=\overrightarrow{0} . \tag{3.2.}
\end{equation*}
$$

Proposition 3.7. Let $a, b \in \mathbb{O}(\alpha, \beta, \gamma)$ with
$a=a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}+a_{5} f_{5}+a_{6} f_{6}+a_{7} f_{7}$
$b=b_{0}+b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}+b_{4} f_{4}+b_{5} f_{5}+b_{6} f_{6}+b_{7} f_{7}$. Then, the linear equation $a x=x b$ has non-zero solutions if and only if :

$$
\begin{equation*}
a_{0}=b_{0} \text { and } n\left(a-a_{0}\right)=n\left(b-b_{0}\right) . \tag{3.3.}
\end{equation*}
$$

Proof. We suppose that the equation $a x=x b$ has non-zero solutions, $x \in \mathbb{O}(\alpha, \beta, \gamma)$. It results that $n(a x)=n(x b)$, hence $n(a) n(x)=$
$=n(x) n(b)$, therefore $n(a)=n(b)$. As $a=x b x^{-1}$, it results
$t(a)=t\left(x b x^{-1}\right)=t\left(x^{-1} x b\right)=t(b)$, therefore $a_{0}=b_{0}$ and from $n(a)=$ $n(b)$, we obtain $n\left(a-a_{0}\right)=n\left(b-b_{0}\right)$.

Conversely, considering the vector representation, the equation (3.1.) has non-zero solutions if and only if the equation (3.2) has non-zero solutions, therefore if and only if $\operatorname{det}(\Lambda(a)-\Delta(b))=0$.We calculate this determinant. If $a_{0}=b_{0}$, then the matrix $\Lambda(a)-\Delta(b)$ is of the form $(M N)$, where the bloks M and N are the following matrices of type 8×4 :

$$
M=\left(\begin{array}{cccc}
0 & -\alpha\left(\mathrm{a}_{1}-\mathrm{b}_{1}\right) & -\beta\left(\mathrm{a}_{2}-\mathrm{b}_{2}\right) & -\alpha \beta\left(\mathrm{a}_{3}-\mathrm{b}_{3}\right) \\
\mathrm{a}_{1}-\mathrm{b}_{1} & 0 & -\beta\left(\mathrm{a}_{3}+\mathrm{b}_{3}\right) & \beta\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right) \\
\mathrm{a}_{2}-\mathrm{b}_{2} & \alpha\left(\mathrm{a}_{3}+\mathrm{b}_{3}\right) & 0 & -\alpha\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right) \\
\mathrm{a}_{3}-\mathrm{b}_{3} & -\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right) & \mathrm{a}_{1}+\mathrm{b}_{1} & 0 \\
\mathrm{a}_{4}-\mathrm{b}_{4} & \alpha\left(\mathrm{a}_{5}+\mathrm{b}_{5}\right) & \beta\left(\mathrm{a}_{6}+\mathrm{b}_{6}\right) & \alpha \beta\left(\mathrm{a}_{7}+\mathrm{b}_{7}\right) \\
\mathrm{a}_{5}-\mathrm{b}_{5} & -\left(\mathrm{a}_{4}+\mathrm{b}_{4}\right) & \beta\left(\mathrm{a}_{7}+\mathrm{b}_{7}\right) & -\beta\left(\mathrm{a}_{6}+\mathrm{b}_{6}\right) \\
\mathrm{a}_{6}-\mathrm{b}_{6} & -\alpha\left(\mathrm{a}_{7}+\mathrm{b}_{7}\right) & -\left(\mathrm{a}_{4}+\mathrm{b}_{4}\right) & \alpha\left(\mathrm{a}_{5}+\mathrm{b}_{5}\right) \\
\mathrm{a}_{7}-\mathrm{b}_{7} & \mathrm{a}_{6}+\mathrm{b}_{6} & -\left(\mathrm{a}_{5}+\mathrm{b}_{5}\right) & -\left(\mathrm{a}_{4}+\mathrm{b}_{4}\right)
\end{array}\right),
$$

$$
N=\left(\begin{array}{llll}
-\gamma\left(\mathrm{a}_{4}-\mathrm{b}_{4}\right) & -\alpha \gamma\left(\mathrm{a}_{5}-\mathrm{b}_{5}\right) & -\beta \gamma\left(\mathrm{a}_{6}-\mathrm{b}_{6}\right) & -\alpha \beta \gamma\left(\mathrm{a}_{7}-\mathrm{b}_{7}\right) \\
-\gamma\left(\mathrm{a}_{5}+\mathrm{b}_{5}\right) & \gamma\left(\mathrm{a}_{4}+\mathrm{b}_{4}\right) & \beta \gamma\left(\mathrm{a}_{7}+\mathrm{b}_{7}\right) & -\beta \gamma\left(\mathrm{a}_{6}+\mathrm{b}_{6}\right) \\
-\gamma\left(\mathrm{a}_{6}+\mathrm{b}_{6}\right) & -\alpha \gamma\left(\mathrm{a}_{7}+\mathrm{b}_{7}\right) & \gamma\left(\mathrm{a}_{4}+\mathrm{b}_{4}\right) & \alpha \gamma\left(\mathrm{a}_{5}+\mathrm{b}_{5}\right) \\
-\gamma\left(\mathrm{a}_{7}+\mathrm{b}_{7}\right) & \gamma\left(\mathrm{a}_{6}+\mathrm{b}_{6}\right) & -\gamma\left(\mathrm{a}_{5}+\mathrm{b}_{5}\right) & \gamma\left(\mathrm{a}_{4}+\mathrm{b}_{4}\right) \\
0 & -\alpha\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right) & -\beta\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right) & -\alpha \beta\left(\mathrm{a}_{3}+\mathrm{b}_{3}\right) \\
\mathrm{a}_{1}+\mathrm{b}_{1} & 0 & \beta\left(\mathrm{a}_{3}+\mathrm{b}_{3}\right) & -\beta\left(\mathrm{a}_{2}+\mathrm{b}_{2}\right) \\
\mathrm{a}_{2}+\mathrm{b}_{2} & -\alpha\left(\mathrm{a}_{3}+\mathrm{b}_{3}\right) & 0 & \alpha\left(\mathrm{a}_{1} \mathrm{~b}_{1}\right) \\
\mathrm{a}_{3}+\mathrm{b}_{3} & \mathrm{a}_{2}+\mathrm{b}_{2} & -\left(\mathrm{a}_{1}+\mathrm{b}_{1}\right) \\
\end{array}\right) .
$$

Multiplying first the rows $2,3,5,6,7,8$ of the matrix $\Lambda(a)-\Delta(b)$ with α, β, $\gamma, \alpha \gamma, \beta \gamma, \alpha \beta \gamma$, and then the rowes $2,3,4,5,6,7,8$ with $a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+$ $b_{3}, a_{4}+b_{4}, a_{5}+b_{5}, a_{6}+b_{6}, a_{7}+b_{7}$ and adding them to the first row and then, multiplying the columns $2,3,4,5,6,7,8$ with $a_{1}+b_{1}, a_{2}+b_{2}, a_{3}+b_{3}, a_{4}+$ $b_{4}, a_{5}+b_{5}, a_{6}+b_{6}, a_{7}+b_{7}$ and adding them to the column 7 , we get a matrix B_{1} with det $B_{1}=\alpha^{-3} \beta^{-3} \gamma^{-3}\left(n\left(a-a_{0}\right)-n\left(b-b_{0}\right)\right)\left(a_{7}+b_{7}\right)^{-1} \operatorname{det} B_{2}$,
where $B_{2} \in \mathcal{M}_{7}(K)$.
Using the same tricks for B_{2}, we get, in the end, $\operatorname{det}(\Lambda(a)-\Delta(b))=$ $\alpha \beta \gamma\left(n\left(a-a_{0}\right)-n\left(b-b_{0}\right)\right)^{2} n^{2}\left(a-a_{0}+b-b_{0}\right)$ and then $\operatorname{det}(\Lambda(a)-\Delta(b))=0$,
if $n\left(a-a_{0}\right)-n\left(b-b_{0}\right)=0$. If $a_{1}+b_{1}=0$, then we multiplicate with a_{1} instead of $a_{1}+b_{1}$. Analogously, for $a_{7}+b_{7}=0$ and we obtain the same result. \square

Corollary 3.8. In the same hypothesis as in the Proposition 3.7., the matrix $\Lambda(a)-\Delta(b)$ has the rank 6 .

Proof. From the proof of the last proposition, it results that the matrix $\Lambda(a)-\Delta(b)$ is similar to the matrix

$$
B_{4}=\left(\begin{array}{ccc}
\frac{-n\left(a-a_{0}\right)+n\left(b-b_{0}\right)}{a_{1}+b_{1}} & E_{2} & \frac{-n\left(a-a_{0}\right)+n\left(b-b_{0}\right)}{\alpha \beta \gamma\left(a_{1}+b_{1}\right)} \\
\frac{n\left(a-a_{0}\right)-n\left(b-b_{0}\right)}{a_{7}+b_{7}} & 0 & 0 \\
E_{1} & B_{3} & 0
\end{array}\right)
$$

where $E_{1} \in \mathcal{M}_{6 \times 1}(K), E_{2} \in \mathcal{M}_{1 \times 6}(K), B_{3} \in \mathcal{M}_{6}(K)$, and if $n\left(a-a_{0}\right)=$ $=n\left(b-b_{0}\right)$, then $\operatorname{rank}(\Lambda(a)-\Delta(b))=\operatorname{rank} B_{3}=6$.

Remark 3.9. Let $a, b \in \mathbb{O}(\alpha, \beta, \gamma)$ with
$a=a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}+a_{5} f_{5}+a_{6} f_{6}+a_{7} f_{7}$
$b=b_{0}+b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}+b_{4} f_{4}+b_{5} f_{5}+b_{6} f_{6}+b_{7} f_{7}$, with $t(a)=t(b)$,
then, from Propositions 1.11. and 1.12., it results that the relation

$$
\begin{equation*}
n(a) n(b)=\frac{1}{4}(a b+b a)^{2} \tag{3.4.}
\end{equation*}
$$

is true if and only if $a=r b, r \in K$. If $n(a)=n(b)$ then we have $r=1$ or $r=-1$. Indeed, the relation (3.4.) is equivalent to
$(n(a))^{2}=\left(\alpha a_{1} b_{1}+\beta a_{2} b_{2}+\alpha \beta a_{3} b_{3}+\gamma a_{4} b_{4}+\alpha \gamma a_{5} b_{5}+\beta \gamma a_{6} b_{6}+\alpha \beta \gamma a_{7} b_{7}\right)^{2}$
and, if $a=r b$, we obtain $(n(a)-r n(a))(n(a)+r n(a))=0$, therefore either $r=1$ or $r=-1$

Proposition 3.10. Let $a, b \in \mathbb{O}(\alpha, \beta, \gamma), a, b \notin K$ with $\bar{a} \neq b, t(a)=$ $t(b)$,
$n\left(a-a_{0}\right)=n\left(b-b_{0}\right)$. Then the solutions of the equation $a x=x b$ can be found in $\mathcal{A}(a, b)$ and are:
i) $x=\lambda_{1}\left(a-a_{0}+b-b_{0}\right)+\lambda_{2}\left[n\left(a-a_{0}\right)-\left(a-a_{0}\right)\left(b-b_{0}\right)\right]$, where
$\lambda_{1}, \lambda_{2} \in K$, if $a \neq b$;
ii) The general solution of the equation $a x=x b$ can be expressed and by the form: $x=\left(a-a_{0}\right) q+q\left(b-b_{0}\right)$, where $q \in \mathcal{A}(a, b)$ is arbitrary;
iii) If $\bar{a}=b$, then the general solution for the equation (3.1.) is : $x=$ $x_{1} f_{1}+x_{2} f_{2}+x_{3} f_{3}+x_{4} f_{4}+x_{5} f_{5}+x_{6} f_{6}+x_{7} f_{7}$, where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}$ satisfy the equality
$\alpha a_{1} x_{1}+\beta a_{2} x_{2}+\alpha \beta a_{3} x_{3}+\gamma a_{4} x_{4}+\alpha \gamma a_{5} x_{5}+\beta \gamma a_{6} x_{6}+\alpha \beta \gamma a_{7} x_{7}=0$.
Proof. i) Let us given $x_{1}=a-a_{0}+b-b_{0}, x_{2}=n\left(a-a_{0}\right)-\left(a-a_{0}\right)\left(b-b_{0}\right)$. If $b \neq \bar{a}$ it results $x_{1} \neq 0$ and $x_{2} \notin K$. Then
$a x_{1}-x_{1} b=a\left(a-a_{0}\right)+b\left(b-b_{0}\right)-\left(a-a_{0}\right) b-\left(b-b_{0}\right) b$. We write
$a=a_{0}+v, b=b_{0}+w$ with $t(v)=t(w)=0$. Then $a x_{1}-x_{1} b=$
$=\left(a_{0}+v\right) v+\left(a_{0}+v\right) w-v\left(b_{0}+w\right)-w\left(b_{0}+w\right)=0$, since
$n(v)=n(w), v^{2}=-n(v), w^{2}=-n(w)$. Therefore x_{1} is a solution. Analougosly $a x_{2}-x_{2} b=0$ and x_{2} is a solution. It is obvious that $x_{1}, x_{2} \in$ $\mathcal{A}\left(a-a_{0}, b-b_{0}\right)=\mathcal{A}(a, b)$. We observe that x_{1}, x_{2} are linear independent. Indeed, if $\theta_{1} x_{1}+\theta_{2} x_{2}=0, \theta_{1}, \theta_{2} \in K$, it results that $\theta_{1} v+\theta_{1} w+\theta_{2} n(v)-$ $\theta_{2} v w=0$. We have in turn:

$$
\begin{aligned}
& \theta_{2}\left(n(v)+\alpha a_{1} b_{1}+\beta a_{2} b_{2}+\alpha \beta a_{3} b_{3}+\gamma a_{4} b_{4}+\alpha \gamma a_{5} b_{5}+\beta \gamma a_{6} b_{6}+\alpha \beta \gamma a_{7} b_{7}\right)=0, \\
& \theta_{1}\left(a_{1}+b_{1}\right)-\theta_{2}\left[\beta\left(a_{2} b_{3}-a_{3} b_{2}\right)+\gamma\left(a_{4} b_{5}-a_{5} b_{4}\right)+\beta \gamma\left(a_{7} b_{6}-a_{6} b_{7}\right)\right]=0, \\
& \theta_{1}\left(a_{2}+b_{2}\right)-\theta_{2}\left[\alpha\left(a_{3} b_{1}-a_{1} b_{3}\right)+\gamma\left(a_{4} b_{6}-a_{6} b_{4}\right)+\alpha \gamma\left(a_{5} b_{7}-a_{7} b_{5}\right)\right]=0, \\
& \theta_{1}\left(a_{3}+b_{3}\right)-\theta_{2}\left[\left(a_{1} b_{2}-a_{2} b_{1}\right)+\gamma\left(a_{4} b_{7}-a_{7} b_{4}\right)+\gamma\left(a_{6} b_{5}-a_{5} b_{6}\right)\right]=0, \\
& \theta_{1}\left(a_{4}+b_{4}\right)-\theta_{2}\left[\alpha\left(a_{5} b_{1}-a_{1} b_{5}\right)+\beta\left(a_{6} b_{2}-a_{2} b_{6}\right)+\alpha \beta\left(a_{7} b_{3}-a_{3} b_{7}\right)\right]=0, \\
& \theta_{1}\left(a_{5}\right)-\theta_{2}\left[\left(a_{1} b_{4}-a_{4} b_{1}\right)+\beta\left(a_{7} b_{2}-a_{2} b_{7}\right)+\beta\left(a_{3} b_{6}-a_{6} b_{3}\right)\right]=0, \\
& \theta_{1}\left(a_{6}+b_{6}\right)-\theta_{2}\left[\alpha\left(a_{1} b_{7}-a_{7} b_{1}\right)+\left(a_{2} b_{4}-a_{4} b_{2}\right)+\alpha\left(a_{5} b_{3}-a_{3} b_{5}\right)\right]=0, \\
& \theta_{1}\left(a_{7}+b_{7}\right)-\theta_{2}\left[\left(a_{2} b_{5}-a_{5} b_{2}\right)+\left(a_{6} b_{1}-a_{1} b_{6}\right)+\left(a_{3} b_{4}-a_{4} b_{3}\right)\right]=0 . \text { Since }
\end{aligned}
$$

$a \neq b$, from Remark 3.9. it results that $\theta_{2}=0$,therefore $\theta_{1}\left(a_{1}+b_{1}\right)=0, \ldots$,
$\theta_{1}\left(a_{7}+b_{7}\right)=0$, and from the fact that $b \neq \bar{a}$, it results $\theta_{1}=0$. As the solution subspace of the equation (3.1.) is of dimension two, it results that every solution of this equation has the form $\lambda_{1} x_{1}+\lambda_{2} x_{2}$, with $\lambda_{1}, \lambda_{2} \in K$, and $\lambda_{1} x_{1}+\lambda_{2} x_{2} \in \mathcal{A}\left(a-a_{0}, b-b_{0}\right)=\mathcal{A}(a, b)$.
ii) We prove that every element of the form $\left(a-a_{0}\right) q+q\left(b-b_{0}\right)$ is a solution for the equation (3.1.) : $a x-x b=\left(a_{0}+v\right)(v q+q w)-(v q+q w)\left(b_{0}+w\right)=$
$=a_{0} v q+a_{0} q w+v^{2} q+v q w-v q b_{0}-v q w-q w b_{0}-q w^{2}=0$. We suppose that z is a solution for the equation (3.1.). It results that $a z=z b$, therefore $v z=z w$. Take $q=-\frac{v z}{2 n(v)}=-\frac{z w}{2 n(v)}, q \in \mathcal{A}(a, b)$. We have $x=v q+q w=$ $-\frac{v^{2} z}{2 n(v)}-\frac{z w^{2}}{2 n(v)}=\frac{z}{2}+\frac{z}{2}=z$, which gives that every solution can be written in the given form. Obviously, $z \in \mathcal{A}(a, b)$ for $a \neq b$. If $a=b$, let z be a solution for the equation $a x=x a$. Obviously $z \in \mathcal{A}(a)$ and for $q=\frac{-v z}{2 n(v)}$, we obtain that every other solution, x, of the equation is of the form $x=$ $-\frac{v^{2} z}{2 n(v)}-\frac{v^{2} z}{2 n(v)}=z \in \mathcal{A}(a)$.
iii) If $b=\bar{a}$, it results $v=-w$. Then, if x is a solution for the equation (3.1.), we obtain that $\left(a_{0}+v\right)\left(x_{0}+y\right)=\left(x_{0}+y\right)\left(a_{0}-v\right)$, hence $a_{0} x_{0}+a_{0} y+$ $v x_{0}+v y=x_{0} a-x_{0} v+y a_{0}-y v$, therefore $2 x_{0} v+v y+y v=0$, where $x=$ $x_{0}+y$,with $x_{0} \in K, y=x_{1} f_{1}+x_{2} f_{2}+x_{3} f_{3}+x_{4} f_{4}+x_{5} f_{5}+x_{6} f_{6}+x_{7} f_{7}, t(y)=0$.

As $v y+y v \in K$, the previous equality is equivalent to $x_{0}=0$ and $v y+y v=$ 0 , that is $x_{0}=0$ and $a_{1} x_{1}+a_{2} x_{2}+a_{3} x_{3}+a_{4} x_{4}+a_{5} x_{5}+a_{6} x_{6}+a_{7} x_{7}=0 . \square$

Proposition 3.11. Let $a, b \in \mathbb{O}(\alpha, \beta, \gamma)$ with
$a=a_{0}+a_{1} f_{1}+a_{2} f_{2}+a_{3} f_{3}+a_{4} f_{4}+a_{5} f_{5}+a_{6} f_{6}+a_{7} f_{7}$,
$b=b_{0}+b_{1} f_{1}+b_{2} f_{2}+b_{3} f_{3}+b_{4} f_{4}+b_{5} f_{5}+b_{6} f_{6}+b_{7} f_{7}$.
$i)([\mathrm{Ti} ; 99]$, Theorem 3.3.) The equation

$$
\begin{equation*}
a x=\bar{x} b \tag{3.5.}
\end{equation*}
$$

has non-zero solutions if and only if $n(a)=n(b)$. In this case, if $a+\bar{b} \neq 0$, then (3.5.) has a solution of the form $x=\lambda(\bar{a}+b), \lambda \in K$.
ii) If $a+\bar{b}=0$, then the general solution of the equation (3.5.) can be written in the form $x=x_{0}+x_{1} e_{1}+x_{2} e_{2}+x_{3} e_{3}+x_{4} e_{4}+x_{5} e_{5}+x_{6} e_{6}+x_{7} e_{7}$, where $a_{0} x_{0}-\alpha a_{1} x_{1}-\beta a_{2} x_{2}-\alpha \beta a_{3} x_{3}-\gamma a_{4} x_{4}-\alpha \gamma a_{5} x_{5}-\beta \gamma a_{6} x_{6}-\alpha \beta \gamma a_{7} x_{7}=0$.

Proof. We suppose that (3.5.) has a non-zero solution, $x \in \mathbb{O}(\alpha, \beta, \gamma)$. Then we have $a x=\bar{x} b$ and $n(a x)=n(\bar{x} b), n(a) n(x)=n(x) n(b)$, therefore $n(a)=n(b)$.

Conversely, we suppose that $n(a)=n(b)$. Let use take $y=\bar{a}+b$; we obtain $a y-\bar{y} a=a(\bar{a}+b)-(a+\bar{b}) b=a \bar{a}+a b-a b-\bar{b} b=n(a)-n(b)=0$.

If $a+\bar{b}=0$,then $b=-\bar{a}$ and the equation (3.5.) becomes $a x+\overline{a x}=0$, that is $t(a x)=0$. But $t(a x)=a_{0} x_{0}-\alpha a_{1} x_{1}-\beta a_{2} x_{2}-\alpha \beta a_{3} x_{3}-\gamma a_{4} x_{4}-\alpha \gamma a_{5} x_{5}-$ $\beta \gamma a_{6} x_{6}-\alpha \beta \gamma a_{7} x_{7}$.

Proposition 3.12. Let $a \in \mathbb{O}(\alpha, \beta, \gamma), a \notin K$. If there exists $r \in K$ such thatn $(a)=r^{2}$,then $a=\bar{q} r q^{-1}$, where $q=r+\bar{a}$.

Proof. By hypothesis, we have $a(r+\bar{a})=a r+a \bar{a}=a r+n(a)=a r+r^{2}=$ $(a+r) r$. As $\bar{q}=r+a$ it results that $\bar{q} r=a q$. \square

Proposition 3.13. Let $a \in \mathbb{O}(\alpha, \beta, \gamma)$ with $a \notin K$, such that there exist $r, s \in K$ with properties $n(a)=r^{4}$ and $n\left(r^{2}+\bar{a}\right)=s^{2}$. Then the quadratic equation

$$
\begin{equation*}
x^{2}=a \tag{3.6.}
\end{equation*}
$$

has two solutions of the form $x=-\frac{r\left(r^{2}+a\right)}{n\left(r^{2}+\bar{a}\right)}$.
Proof. From Proposition 3.12., it results that a has the form $a=\bar{q} r^{2} q^{-1}$, where $q=r^{2}+\bar{a}$. As $q^{-1}=\frac{\bar{q}}{n(q)}$, we obtain $a=r^{2} \bar{q} q^{-1}=r^{2} \bar{q} \frac{\bar{q}}{n(q)}=$ $r^{2} \frac{\bar{q}^{2}}{s^{2}}=\left(\frac{r}{s} \bar{q}\right)^{2}$, therefore $x_{1}=\frac{r}{s} \bar{q}, x_{2}=-\frac{r}{s} \bar{q}$ are the solutions.

Corollary 3.14. Let a, b, c be in $\mathbb{O}(\alpha, \beta, \gamma)$ such that $a b$ and $b^{2}-c \notin K$. If $a b$ and $b^{2}-c$ satisfy the conditions in Proposition 3.13., then the equations $x a x=b$ and $x^{2}+b x+x b+c=0$ have solutions.

Proof. $x a x=b \Longleftrightarrow(a x)^{2}=a b$ and $x^{2}+b x+x b+c=0 \Longleftrightarrow(x+b)^{2}=b^{2}-$ c. \square

Corollary 3.15. If $b, c \in \mathbb{O}(\alpha, \beta, \gamma), b, c \notin K, c \in \mathcal{A}(b)$ with $\frac{b^{2}}{4}-c \neq$ 0 and there exists $r \in K$ such that $n\left(\frac{b^{2}}{4}-c\right)=r^{2}$, and $n\left(r^{2}+\frac{\bar{b}^{2}}{4}-\bar{c}\right)=$ $s^{2}, s \neq 0$ then the equation

$$
\begin{equation*}
x^{2}+b x+c=0 \tag{3.7.}
\end{equation*}
$$

has a solution in $\mathbb{O}(\alpha, \beta, \gamma)$.
Proof. Let $x_{0} \in \mathbb{O}(\alpha, \beta, \gamma)$ be a solution of the equation (3.7.). As $x_{0}^{2}=$ $t\left(x_{0}\right) x_{0}-n\left(x_{0}\right)$ and $x_{0}^{2}+b x_{0}+c=0$, it results that $t\left(x_{0}\right) x_{0}-n\left(x_{0}\right)+b x_{0}+c=$ 0 , therefore $\left(t\left(x_{0}\right)+b\right) x_{0}=c+n\left(x_{0}\right)$. As $t\left(x_{0}\right)+b \neq 0, t\left(x_{0}\right), n\left(x_{0}\right) \in K, 1 \in$ $\mathcal{A}(b, c)$, it results that $t\left(x_{0}\right)+b$ and $c+n\left(x_{0}\right) \in \mathcal{A}(b, c)$.Therefore $x_{0} \in$ $\mathcal{A}(b, c)$. Since $c \in \mathcal{A}(b)$, it results that $\mathcal{A}(b, c)=\mathcal{A}(b)$ is commutative, therefore x_{0} commutes with every element of $\mathcal{A}(b, c)$. Then the equation (3.7.) can also be written under the form: $\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c=0 . \square$
§ 4. EQUATIONS IN ALGEBRAS OBTAINED BY THE CAYLEYDICKSON PROCESS OF DIMENSION ≥ 8

In this section, A denotes an algebra obtained by the Cayley-Dickson process and having $\operatorname{dim} A=n, n \nsupseteq 8$. Let $\left\{e_{1}, e_{2}, \ldots, e_{n}\right\}$ be a basis of A.

Proposition 4.1. Let $a, b \in A$ with $t(a)=t(b)$ and $n\left(a-a_{0}\right)=n\left(b-b_{0}\right)$. i) If $b \neq \bar{a}$, then the equation

$$
\begin{equation*}
a x=x b \tag{4.1.}
\end{equation*}
$$

has a solution of the form $x=\theta\left(n\left(a-a_{0}\right)+n\left(b-b_{0}\right)\right)$, where $\theta \in K$ is arbitrary.
ii) If $b=\bar{a}$, then the equation (4.1.) has the general solution of the form $x=x_{1} e_{1}+x_{2} e_{2}+\ldots+x_{n} e_{n}$, with $f(a, x)=0$ where $f: A \times A \rightarrow K$ is the associated bilinear form.

Proof. i) Let $x_{1}=a-a_{0}+b-b_{0}$. We denote $a-a_{0}=v, b-b_{0}=$ w, with $t(v)=t(w)=0$ and $n(v)=n(w)$; then we have $a x_{1}-x_{1} b=$ $\left(a_{0}+v\right)\left(a-a_{0}+b-b_{0}\right)-\left(a-a_{0}+b-b_{0}\right)\left(b_{0}+w\right)=a_{0}\left(a-a_{0}\right)+$
$+a_{0}\left(b-b_{0}\right)+v\left(a-a_{0}\right)+v\left(b-b_{0}\right)-\left(a-a_{0}\right) b_{0}-\left(b-b_{0}\right) b_{0}-\left(a-a_{0}\right) w-$
$-\left(b-b_{0}\right) w=v^{2}+v w-v w-w^{2}=0$.
ii) If $b=\bar{a}$, then the equation (4.1.) becomes $a x=x \bar{a}$, therefore
$\left(a_{0}+v\right)\left(x_{0}+y\right)-\left(x_{0}+y\right)\left(a_{0}-v\right)=0, v x_{0}+v y+x_{0} v+y v=0$ and $2 v x_{0}+$ $v y+y v=0$. As $v y+y v \in K$ (in Proposition 1.11.), it results that $x_{0}=$ 0 , therefore $v y+y v=0$, where $x=x_{0}+y$, with $t(y)=0$ and we obtain (by Proposition 1.11.) $f(a, x)=0$.

Remark 4.2. Since A is not an alternative algebra, we obtain that the element $x_{2}=n\left(a-a_{0}\right)-\left(a-a_{0}\right)\left(b-b_{0}\right)$ is not a solution for the equation (4.1.)

Proposition 4.3. Let $a, b \in A$.
i) ($[\mathrm{Ti} ; 99]$ Theorem 4.3.) The equation

$$
\begin{equation*}
a x=\bar{x} b \tag{4.2.}
\end{equation*}
$$

has non-zero solutions if $n(a)=n(b)$. In this case, if $a+\bar{b} \neq 0$, then (4.2.) has a solution of the form $x=\lambda(\bar{a}+b), \lambda \in K$.
ii) If $a+\bar{b}=0$, then the general solution for the equation (4.2.) can be written under the form $x=x_{0}+x_{1} e_{1}+\ldots+x_{n} e_{n}$, where $t(a x)=0$ and t is the trace

Proof. i)We suppose that $n(a)=n(b)$. Let $y=\bar{a}+b$ and we obtain $a y-$ $\bar{y} a=a(\bar{a}+b)-(a+\bar{b}) b=a \bar{a}+a b-a b-\bar{b} b=n(a)-n(b)=0$.
ii) If $a+\bar{b}=0$,then $b=-\bar{a}$ and the equation (4.2.) becomes $a x+\bar{a} x=$ 0 , that is $t(a x)=0$.

Proposition 4.4 Let $a \in A, a \notin K$. If there exists $r \in K$ such that $n(a)=r^{2}$, then $a=\bar{q} r q^{-1}$, where $q=r+\bar{a}$.

Proof. By hypothesis, we have $a(r+\bar{a})=a r+a \bar{a}=a r+n(a)=a r+r^{2}=$ $(a+r) r$. As $\bar{q}=r+a$, it results $\bar{q} r=a q$.

Proposition 4.5. Let $a \in A$ with $a \notin K$,such that there exist $r, s \in$ K with the property $n(a)=r^{4}$ and $n\left(r^{2}+\bar{a}\right)=s^{2}$. Then the quadratic equation

$$
\begin{equation*}
x^{2}=a \tag{4.3.}
\end{equation*}
$$

has two solutions of the form $x=-\frac{r\left(r^{2}+a\right)}{n\left(r^{2}+\bar{a}\right)}$.
Proof. From Proposition 4.4., it results that a has the form $a=\bar{q} r^{2} q^{-1}$, where $q=r^{2}+\bar{a}$. As $q^{-1}=\frac{\bar{q}}{n(q)}$, we obtain that $a=r^{2} \bar{q} q^{-1}=r^{2} \bar{q} \frac{\bar{q}}{n(q)}=r^{2} \frac{\bar{q}^{2}}{s^{2}}=$ $=\left(\frac{r}{s} \bar{q}\right)^{2}$, therefore $x_{1}=\frac{r}{s} \bar{q}$ and $x_{2}=-\frac{r}{s} \bar{q}$ are solutions.

Corollary 4.6. Let $a, b, c \in A$ such that $a b$ and $b^{2}-c \notin K$. If ab and $b^{2}-$ c satisfy the hypothesis of Proposition 4.5., then the equation $x^{2}+b x+x b+c=$ 0 has solutions.

Proof. $x^{2}+b x+x b+c=0 \Longleftrightarrow(x+b)^{2}=b^{2}-c$
Remark 4.7. Since, generally, the equation $x a x=b$ cannot be written in the form $(a x)(a x)=a b$ in A, we cannot solve this equation by using Proposition 4.5.

Corollary 4.8. If $b, c \in A, b, c \notin K, b y=y b, \forall y \in A$ with $\frac{b^{2}}{4}-c \neq 0$ and there exists $r \in K$ such that $n\left(\frac{b^{2}}{4}-c\right)=r^{4}, n\left(r^{2}+\frac{\bar{b}^{2}}{4}-\bar{c}\right)=s^{2}, s \neq 0$, then the equation

$$
\begin{equation*}
x^{2}+b x+c=0, \tag{4.4.}
\end{equation*}
$$

has solutions in A.
Proof. Let $x_{0} \in A$ be a solution of the equation (4.4.). Since $b y=y b, \forall y \in$ A, then the equation (4.4.) can be also written as $\left(x+\frac{b}{2}\right)^{2}-\frac{b^{2}}{4}+c=0$ and then we get the result from Proposition 4.5.

References

[Br; 67] Brown, R. B., On generalized Cayley-Dickson algebras, Pacific J.of Math.,Vol.20, No.3, 415-422,1967.
[Dr, Ki; 94] Drozd, Yu. A., Kirichenko, V.V., Finite Dimensional Algebras, Springer-Verlag, 1994.
[El, My; 94] Elduque, A., Myung, H.C., Mutations of Alternative Algebras, Kluwer Academic Publishers,1994.
[El, Pe-I; 99] Elduque, A., Pérez-Izquierdo, J. M. ,Composition algebras of degree two, Proc. Edinburgh Math. Soc. 42, 641-653, 1999.
[Jh; 80] Jhonson, R. E., On the equation $\chi \alpha=\gamma \chi+\beta$ over algebraic division ring, J. of Algebra 67, 479-490, 1980.
[Ko, Sh; 90] Kostrikin, A. I., Shafarevich, I.R. (Eds), Algebra I, Springer-Verlag,1990.
[Ko, Sh; 95] Kostrikin, A. I., Shafarevich, I.R. (Eds), Algebra VI, Springer-Verlag, 1995.
[Ok; 99] Okubo, S., Eigenvalues problem for symmetric 3×3 Octonionic Matrix, Advances in App. Clifford Algebras 9, No.1, 131-176, 1999.
[Ok, My; 80] Okubo, S., Myung, H. C., Some new classes of Division Algebras, J. of Algebra 67, 479-490, 1980.
[Os; 62] Osborn, J. M., Quadratic Division Algebras, Trans. Amer. Math. Soc. 115, 202221, 1962.
[Ra; 88] Racine, M. L., Minimal identities of Octonion Algebras, J. of Algebra 115, 251260, 1988.
[Sc; 66] Schafer, R. D., An Introduction to Nonassociative Algebras, Academic Press, NewYork, 1966.
[Sc; 54] Schafer, R. D., On the algebras formed by the Cayley-Dickson process, Amer. J. Math. 76, 435-446, 1954.
[Sc; 55] Schafer, R. D., Structure and representation of nonassociative algebras, Bull. Amer. Math. Soc. 61, 469-484, 1955.
[Ti; 00] Tian, Y., Matrix representations of octonions and their applications, Advances in App. Clifford Algebras 10, No.1, 61-90, 2000.
[Ti; 99] Tian, Y., Similarity and consimilarity of elements in the real Cayley-Dickson algebras, Advances in App.Clifford Algebras 9, No.1, 61-76,1999.
"Ovidius" University of Constanta,
Department of Mathematics,
8700 Constanta,
Romania
e-mail: cflaut@univ-ovidius.ro

[^0]: Received: June, 2001

