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1. Introduction

In the late 1960’s is was postulated that there exists a class of combinatorial
problems with inherent complexity that any technique of solving such problems
to optimality requires computational effort that increases polynomially with
the size of the problem. These problems are called NP-hard problems.

Most of the real life problems fall into the category of NP-hard or NP-
complete. The exact solution of these problems may be obtained through op-
timization algorithms (c.g., linear programming, dynamic programming etc.).
However, if the problem is not amenable to optimization algorithms due to
large computation time, another option is to go for solutions which can be
obtained quickly at the risk of sub-optimality. These are called approximation
or heuristic algorithms.

Heuristic algorithms are very efficient in handling combinatorial explosion
encourented in situations where choices are sequentially compounded, leading
to a large number of alternatives. The ewapon target allocation problem, dis-
cussed is an example from the area of military OR whereas large number of ex-
amples can be quoted from other areas, e.g., manufacturing operations, finan-
cial investment, capitol budgeting, resource management, scheduling, VLSI
design, etc. Some of the important techniques (see Glover and Greenberg
1989) are Simulated Annealing (based on an analogy to statistical mechan-
ics), Genetic Algorithsm (based on an analogy biological evolution), Neural
Networks (based on an analogy to human nervous system), Tabu Search and
Target Analysis (based on the concept of artificial inteligence). In the follow-
ing sections the problem of weapon target allocation in multiple layer defense
has been considered as an example through which some of these heuristic
techniques are explained.
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2. Weapon Target Allocation Problem in Multiple Layer
Defense

The problem of weapon target allocation has been studied by several re-
searches under different headings, viz., force mix studies, force-on-force
modeling, M -on-N engagement models, weapon target allocation, bat-
tle management/command, control and communication (BM/C3) etc. (see
Bracken et al. 19871, 1987b, Bonachevsky et al. 1988, Beare 1987). This
problem is complex due to a large number of factors, e.g., type and number
of weapons of friendly and enemy forces, their capabilities, strategic values of
the assets and enemy targeting plan. Along with this, limits on availability
of weapons, manpower, operating cost and area for weapon deployment im-
pose constraints adding to the complexity of the problem. In this chapter, we
present a method of determining an optimal defense plan to protect a set of
non-identical assets or sites that may come under attack by multiple types of
weapons (see Jaiswal et al. 1993). The assets are to be defended by multiple
types of weapons deployed in multiple layers, each layer containing identical
weapons, i.e., the dth type of defending weapons provide defense in the dth
(1 ≤ d ≤ D) layer; for example, defense may be provided by air defense guns,
short range missiles, medium range missiles and long range missiles in four
different layers.

The analytical model described here may help military commanders in
providing them with rational attack or defense plans. Apart from obtaining
optimal plans, it can be used to: (a) Predict the capability of existing weapon
system against a perceived threat, and (b) Evaluate the potential improvement
due to technological development in weapon system.

In the case of multiple layer defense, single attacking weapons pass through
different defending weapons deployed in different layers. Attacking weapons
that survive the interception by all layers have a chance to cause damage
to the asset. If the attack is known and is simultaneous (as opposed to the
sequential attack (see Nickel and Mangel 1985) in which attack takes place at
different time points), the problem is to determine an optimal defense plan
that maximizes a given objective function.
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Let

D =Types of defending weapons available

S =Number of assets

A =Types of attacking weapons

kdsa =Probability of successful interception by one defending weapon of
type

d deployed to defend an asset s against an attacking weapon of type
a

xdsa =Number of defending weapons of type d that are develoyed to inter-
cept

attacking weapon of type a to defend asset s (defense plan)

nsa = Number of attacking weaponS of type a aimed at asset s (attack
plan)

gsa = The probability that a single attacking weapon of type a destroys
the asset

s when it is able to penetrate the defending weapons

vs = Value of asset s

cd = Cost of operating one defending weapon of type d

md = Manpower required per defending weapon of type d

Bd = Number of defending weapons of type d

Ra = Number of attacking weapons of type a

Gs = Ground area available at asset s

td = Ground area required by a defending weapon of type d

Cmax = Maximum operating cost of weapons deployed

Mmax d = Maximum available manpower to operate defending weapons of
type d.

The probability that weapons deployed in dth (1 ≤ d ≤ D) layer will not
be able to intercept a single attacking weapon of type a (1 ≤ a ≤ A) on asset
s (1 ≤ s ≤ S) is given by

(1 − kdsa)
xdsa/nsa . (1)

The probability that a single attacking weapon of type a is not intercepted
by any layer on asset s is given by

D
∏

d=1

(1 − kdsa)xdsa/nsa . (2)
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The probability that a single attacking weapon of type a destroys the asset
s is given by

{

D
∏

d=1

(1 − kdsa)xdsa/nsa

}

gsa. (3)

The survival probability of asset s by multiple layer defense when attacked
by all types of attacking weapons is given by

H(s) =

A
∏

a=1

[

1 −

{

D
∏

d=1

(1 − kdsa)xdsa/nsa

}

gsa

]nsa

. (4)

The objective from the defending side is to maximize the total expected
value of the surviving assets which is given by

S
∑

s=1

vsH(s) (5)

subject to the following constraints:
(a) Weapon availability

S
∑

s=1

A
∑

a=1

xdsa ≤ Bd for d = 1, 2, ..., D

(b) Area availability

D
∑

d=1

A
∑

a=1

tdxdsa ≤ Gs for s = 1, 2, ..., S

(c) Cost
D

∑

d=1

S
∑

s=1

A
∑

a=1

cdxdsa ≤ Cmax

(d) Manpower

S
∑

s=1

Λ
∑

a=1

mdxdsa ≤ Mmax d for d = 1, 2, ..., D.

From the attacking side, the problem is to minimize the same objective
function subject to the constraints imposed on the resources of the attacker
against a given defense plan.
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From this problem definition it is clear that the classical methods of deter-
mining the optimal value of a real analytical function of several variables may
not be feasible. Therefore, in the following section we use Simulated Annealing
an heuristic technique for solving the above mentioned problem.

3. Simulated Annealing

Metropolis et al. (1953) introduced a simple Monte Carlo algorithm for
simulating the thermal motion of atoms of solid in contact with a heat bath. At
each iteration, an atom is given a small random displacement and the resulting
change δ in the energy of the solid is calculated. If δ ≤ 0, the change is ac-
cepted, but if δ > 0, the change is accepted with the probability exp(−δ/KBT )
where T is the temperature of the heat bath and KB is a physical constant
called the Boltzmann constant. If large number of iterations are carried out
at each temperature, the solid attains thermal equilibrium.

Annealing is a thermal process for obtaining the low energy state of the
solid by initially melting the solid to a high temperature and then slowly de-
creasing the temperature, spending a long time at temperature close to the
freezing point. There exists an analogy between the combinatorial optimiza-
tion problem and the above defined thermal process in the sense that different
states of the solid correspond to feasible solutions and the energy which is
to be minimized corresponds to the objective function f (x) to be optimized.
Therefore, Metropolis algorithm can be used to generate a population of
configurations of a given optimization problem at some effective temperature
which is called the control parameter. This technique is called simulated
annealing and can be treated an iteration of Metropolis algorithm evaluated
at decreasing values of the control parameter (see Kirkpatrick et al. 1983,
Bohachevsky et al. 1987, 1988).

Simulated annealing can be termed as a biased random walk that sam-
ples the objective function in the space of independent variables. It has the
ability to migrate through a sequence of local extrema in search of a global
solution and to recognize when the global extremum has been reached. Let
XI , XT , X0 and XN belong to the feasible solution space and

f(XI) = Initial value of the objective function
f(XT ) = Assumed or True value of the global extremum
f(X0) = Previously accepted value of the objective function
f(XN ) = Presently derived value of the objective function
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Ck = Control parameter value at kth step

Lk = Number of iterations at control parameter value Ck

∆X = Step size for neighborhood selection

p1 = exp[−{| f(X0) − f(XN ) |}/Ck]

p2 = exp[−{| f(xT ) − f(XN ) |}/Ck]

u = Uniform random number.

The decision criterion states that accept XN if either f(XN ) is less than
f(X0) (for minimization problem) or if a random number u is less than p1 and
also p2. Here, the probability p1 helps to migrate through a sequence of local
extrema and the probability p2 helps to recognize when the global extremum
is reached. The combined effect of p1 and p2 decides whether the detrimental
step is to be accepted or not. Therefore, the simulated annealing algorithm,
besides accepting improvement in the value of the objective function, also
accepts deterioration in the value of the objective function which is not so in
local search algorithm. Initially, at large value of Ck, large deterioration will
be accepted; as Ck decreases, only smaller deterioration will be accepted and
finally, as the value of Ck approaches zero, no deterioration will be accepted.
Also, a large step size is taken initially and it is decreased slowly after fixed
number of iterations along with the control parameter values. This procedure
is continued until the control parameter reaches a specified lower limit which
can be used as a stop criterion. The pseudo-code for simulated annealing
algorithm is given in Fig.1.
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Procedure SIMULATED ANNEALING

Begin
Initialize X1, C0,∆X,L0;
k = 0;
X0 = Xl

Repeat
for l = 1 to Lk

begin
GENERATE NEIGHBOR (XN , X0,∆X) ,
if (f(XN ) < f(X0)) then X0 = XN

else begin
p1 = exp[−{|f(X0) − f(XN )|}/Ck];
p2 = exp[−{|f(XT ) − f(XN )|}/Ck];
u = random [0, 1];
if (u < wf(p1) and (u < wf(p2)) then X0 = XN ;

end;
end;
k := k + 1;
CALCULATE LENGTH (Lk);
CALCULATE CONTROL (Ck);
CALCULATE STEP (∆X) :

until stop criterion
end;

Fig.1: Pseudo-code for Simulated Annealing Algorithm (Function Minimization).

In this pseudo-code , the procedure GENERATE NEIGHBOR determines
the next feasible random direction by changing the values of the variables by
∆X. There are many ways of generating the neighborhood (see Aarts and
Korst 1989).

One simple method which we have used here is given by

x′

i = xi +
di∆xi

√

n
∑

j=1

d2
j

for i = 1, 2, ..., n

such that

Xn = (x′

1, x
′

2, ..., x
′

n)

X0 = (x1, x2, ..., xn)

where
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di = Normal random number with mean 0 and standard deviation 1
n = Number of optimizing variables
∆xi = Step size for ith optimizing variable.

Procedure CALCULATE LENGTH (generally increases Lk as k increases)
determines the number of iterations for which the control parameter is Ck,
CALCULATE CONTROL(decreases Ck as k increases) calculates the value
of kth change in the value of the control parameter, and the procedure CAL-
CULATE STEP (decreases ∆X as k increases) determines the value of the
step size for which the control parameter value is Ck.

Simulated annealing is a generalized heuristic algorithm which can handle
large class of problems irrespective of the nature of the objective function as
in the case of classical techniques. Some modifications for the basic simulated
annealing algorithm have been made. Interested reader may refer to Aarts and
Korst (1989) and Eglese (1990). For an extensive discussion and bibliography,
reference may be made to Johnson (1988).

Example 7.1: Consider that two types of weapons are available to defend
three assets against two types of attacking weapons. Let us suppose that the
maximum number of available defending weapons of the first type is 100 and
that of the second type is 50. The number of attacking weapons of the first
and second type are 50 and 29 respectively. The values of the first, second
and third assets are 400, 300 and 200 respectively. Effectiveness of defending
weapons and damage pobabilities of attacking weapons are given in Table
1. Determine an optimal defense plan against the known attack plan using
simulated annealing technique assuming the attack plan to be n11 = 5, n12 =
9, n21 = 25, n22 = 7, n31 = 20 and n32 = 13.
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Table 1: Effectiveness Values of Defending Weapons and Damage Prob-
abilities of Attacking Weapons.

Defending Asset Attacking kdsa gsa

Weapon (s) Weapon

Type (d) Type (a)
1 1 1 0.20 0.015
2 1 1 0.60 0.015
1 1 2 0.35 0.055
2 1 2 0.50 0.055
1 2 1 0.25 0.075
2 2 1 0.50 0.075
1 2 2 0.20 0.040
2 2 2 0.45 0.040
1 3 1 0.35 0.060
2 3 1 0.45 0.060
1 3 2 0.25 0.075
2 3 2 0.65 0.075

This problem is basically an integer programming problem but to solve
it through simulated annealing technique, it is considered as a continuous
variable problem. The value of L0 is assumed to be 200 and it is successively
incremented by 100 for every increment in the value of k. The value of control
parameter C0 is assumed to be 0.5 and it successively decrements by 0.005
with every k until it reaches 0.005. The initial step size ∆X is assumed to be
1.0 and it decrements successively by 0.1 until it reaches the value 0.1.

The illustrate the procedure, let the initial feasible solution be generated by
using uniform random numbers. The initial solution consisting of the number
of weapons of dth type to be deployed on asset s against attacking weapon of
type a (xdsa) is calculated by using the relation

xdsa = udsa × (Bd/2.0) (6)

where udsa is a uniform random number between 0 and 1 and Bd is the number
of dth type of defending weapons available. On generating the values of xdsa,
it is checked for weapon availability constraint. If the constraint is satisfied,
the solution is accepted as initial feasible solution for simulated annealing
algorithm. Otherwise, another set of values for xdsa is generated using the
above equation and this procedure is continued until feasible initial solution is
obtained. For example, let us suppose that the set of twelve random numbers
generated are:
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u111 = 0.5139,
u131 = 0.9476,
u221 = 0.4948,

u112 = 0.1757,
u132 = 0.1717,
u222 = 0.1247,

u121 = 0.3086,
u211 = 0.7022,
u231 = 0.0839,

u122 = 0.5345
u212 = 0.2264
u232 = 0.3896

then the value of xdsa obtained from the equation 6 are

x111 = 25.69, x112 = 8.79, x121 = 15.43, x122 = 26.73
x131 = 47.38, x132 = 8.59, x211 = 17.56, x212 = 5.66
x221 = 12.37, x222 = 3.12, x231 = 2.10, x232 = 9.74

Therefore the number of weapons of first type is equal to 132.61 and second
type is equal to 50.55. These many number of weapons are not available and
hence the weapon availability constraint is not satisfied. Another set of random
numbers is then generated and the weapon availability constraint is checked.
After few trials, the following set of random numbers is generated:

u111 = 0.0136, u112 = 0.7396, u121 = 0.4183, u122 = 0.3620
u131 = 0.2039, u132 = 0.1831, u211 = 0.0763, u212 = 0.1155
u221 = 0.1591, u222 = 0.7883, u231 = 0.0403, u232 = 0.7906.

The values of xdsa can be read from the first row of Table 2. The value of
the objective function f(X0) where X0 = (x1, x2, ..., xn) is 61.44 per cent.

The next step is to generate the neighborhood solution from the initial
solution. There are many ways of generating the neighborhood. One simple
method used here is given by

x′

dsa = xdsa + (∆X × ddsa)/
√

Σd2
dsa (7)

where ddsa is a normal random number with mean equal to 0 and standard
deviation equal to 1. The x′

dsa values are checked for constraint satisfaction
and if it not satisfied, a new set of values are generated. This procedure
is continued until we get feasible neighborhood. For example, let the set of
standard random normal deviates be

d111 = −1.15, d112 = −0.95, d121 = −0.37, d122 = −2.34
d131 = 0.96, d132 = 1.19, d211 = 0.27, d212 = −1.58
d221 = 0.78, d222 = −1.18, d231 = 1.67, d232 = −1.56

and by substituting them in the equation 7, we get the x′

dsa values which
are feasible (see second row of Table 2). The objective function value f(XN )
where XN = (x′

1, x
′

2, ..., x
′

n) is evaluated for the feasible neighborhood and is
compared with f(X0). If f(XN ) is greater than f(X0), the solution stored
in XN is copied on to X0. Otherwise, p1 and p2 are evaluated as explained
above. Uniform random number u[0, 1] is generated and is compared with
p1 and p2. If u < p1 and u < p2 then solution XN is copied on to solution
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X0(i.e., detrimental step is accepted); otherwise, solution XN is rejected, and
the procedure is continued with another feasible neighborhood solution. This
procedure is continued for Lk number of iterations and then the value of k is
incremented. The number of iterations Lk, the control parameter Ck and the
step size ∆X are calculated as explained above and the procedure is repeated
till the stop criterion (when there is no further improvement) is satisfied.

Table 2. Results for Twenty Iterations of Simulated Annealing

Itn Defense Plan (xdsa) Obj Func. Status

No 111 112 121 122 131 132 211 212 221 222 231 232 Value

0 0.68 1.91 36.98 2.89 20.92 3.98 18.10 19.71 10.19 1.01 9.16 19.77 0.61440

1 0.42 36.77 20.83 17.58 10.41 9.42 1.97 2.54 4.15 19.44 1.38 19.42 0.61353 Accepted(d)

2 0.35 37.14 20.71 18.18 10.35 9.24 2.12 2.79 3.85 19.74 1.08 19.69 0.61420 Accepted

3 0.55 36.69 20.89 18.68 10.78 9.12 2.48 3.02 3.80 19.75 1.27 19.46 0.61609 Accepted

4 0.39 36.65 21.34 18.28 10.36 8.57 2.57 3.02 3.95 19.45 1.27 19.40 0.61645 Accepted

5 0.91 36.58 21.67 18.38 10.41 8.46 3.05 2.48 3.78 19.64 1.22 19.35 0.61826 Accepted

6 0.69 36.32 21.26 18.05 10.95 8.24 2.81 2.30 3.79 19.30 0.99 19.46 0.61534 Accepted(d)

7 0.46 36.76 21.18 17.91 10.84 8.08 2.40 2.75 3.69 19.28 1.40 19.84 0.61482 Accepted(d)

8 0.28 36.42 21.15 18.08 10.73 7.54 2.57 3.16 3.67 19.52 1.00 19.52 0.61589 Accepted

9 0.62 35.97 21.16 18.26 11.24 7.76 2.82 3.16 3.36 19.81 0.70 19.66 0.61533 Accepted(d)

10 0.43 36.33 20.62 18.07 11.34 7.99 3.02 3.01 3.34 20.02 0.30 20.08 0.61515 Accepted(d)

11 0.72 35.97 20.39 18.40 11.42 7.61 2.84 2.58 3.57 20.23 0.02 19.79 0.61357 Accepted(d)

12 0.22 35.86 19.77 1834 11.68 7.65 2.90 2.72 3.76 20.42 0.29 19.46 0.61328 Accepted(d)

13 0.02 35.57 19.52 18.50 11.78 7.81 2.35 2.58 4.04 20.43 0.80 19.74 0.61050 Accepted(d)

14 0.17 35.79 19.21 19.01 11.36 7.77 2.25 2.44 4.09 20.97 0.56 19.63 0.61008 Accepted(d)

15 0.13 35.72 18.95 19.33 11.73 8.10 2.25 2.39 3.41 20.78 0.35 19.44 0.60649 Rejected

16 0.33 36.00 19.67 18.42 11.18 7.32 2.16 2.52 3.89 20.79 0.78 19.57 0.61026 Accepted

17 0.35 36.46 19.10 18.66 10.99 7.11 1.86 2.57 3.49 20.99 0.98 19.52 0.60726 Accepted(d)

18 0.48 36.49 18.50 19.06 11.04 6.97 1.92 2.43 3.49 21.54 0.93 19.20 0.60651 Rejected

19 0.57 36.12 18.88 18.92 11.33 6.82 2.46 2.80 3.55 20.92 0.73 19.34 0.61028 Accepted

20 0.75 36.20 18.66 18.73 11.77 6.30 2.16 2.78 3.58 20.97 0.69 18.78 0.60890 Rejected

Table 2 list results of the first 20 iterations. The initial value of the objec-
tive function is 61.44. In the first iteration, feasible neighborhood of the initial
solution is obtained and the objective function is evaluated as 61.35 which is
less than the initial value. These values are substituted in decision criterion
and a uniform random number is generated which decides to accept this detri-
mental step (denoted by Accepted (d)). Therefore, in the second iteration
feasible neighborhood of solution obtained from first iteration is generated
and the procedure is continued. After 20 iterations, the current objective
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function value is equal to 61.02 (solution generated at 19th iteration) because
of the fact that the solution generated at 20th iteration is rejected. The best
solution obtained so far is equal to 61.83 which is obtained at the 5th iteration.

By continuiting this procedure the optimal defense plan obtained is given
in Table 3 which indicates that against the known attack plan, the maximum
expected surviving value of the asset is 60.54% of the total asset value. Thus,
the optimal defense plan is to deploy 47 weapons of type 1 on asset 1,39 and
19 weapons of types 1 and 2 on asset 2, and 14 and 31 weapons of type 1 and 2
on asset 3, respectively. In these calculations we have considered only weapon
availability constraint but constraints on cost, manpower and available area
can also be considered. If the attacker is interested in minimizing the value of
the surviving assets the same objective function can be minimized to obtain
the optimal attack plan (nsa) against a known defense plan.

Table 3. Optimal Defense Plan Obtained through Simulated Annealing
Defending Asset (s) Attacking Optimal Defense Plan

Weapon Weapon

Type (d) Type (a)

1 1 1 0

2 1 1 0

1 1 2 47

2 1 2 0

1 2 1 39

2 2 1 14

1 2 2 0

2 2 2 5

1 3 1 11

2 3 1 16

1 3 2 3

2 3 2 15
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