An. Şt. Univ. Ovidius Constanţa

SOMETHING ABOUT FRATTINI SUBALGEBRAS OF A CLASS OF SOLVABLE LIE ALGEBRAS

Camelia Ciobanu
Dedicated to Professor Mirela Ştefănescu on the occasion of her 60th birthday

Abstract

In this paper we consider \mathbb{Q} the class of solvable Lie algebras \mathcal{L} with the following property: if \mathcal{A} is a subalgebra of \mathcal{L}, then $\Phi(\mathcal{A}) \subseteq \Phi(\mathcal{L})$ (where $\Phi(\mathcal{L})$ denotes the Frattini subalgebra of \mathcal{L};that is $\Phi(\mathcal{L})$ is the intersection of all maximal subalgebras of \mathcal{L}). The class \mathbb{Q} is shown to contain all solvable Lie algebras whose derived algebra is nilpotent. Necessary conditions are found such that an ideal \mathcal{I} of $\mathcal{L} \in \mathbb{Q}$ be the Frattini subalgebra of \mathcal{L}. We considered here only solvable Lie algebras of finite dimension.

1. Introduction

In this section, we recall some notions and properties necessary in the paper.

We shall define by $\Phi(\mathcal{L})$ the Frattini subalgebra of \mathcal{L}, to be the intersection of all maximal subalgebras of \mathcal{L}.

We let $\mathcal{N}(\mathcal{L})$ be the nilradical of \mathcal{L} and $\mathcal{S}(\mathcal{L})$ be the socle of \mathcal{L}; that is $\mathcal{S}(\mathcal{L})$ is the union of all minimal ideals of \mathcal{L}. If \mathcal{A} and \mathcal{B} are subalgebras of \mathcal{L}, let $Z_{\mathcal{B}}(\mathcal{A})$ be the centralizer of \mathcal{A} in \mathcal{B}.

The center of A will be denoted by $Z(\mathcal{A})$. If $[\mathcal{B}, \mathcal{A}] \subseteq \mathcal{A}$, we let

$$
A d_{\mathcal{A}}(\mathcal{B})=\{a d b \text { restricted to } \mathcal{A} ; \text { for all } b \in \mathcal{B}\} .
$$

\mathcal{L}^{\prime} will be the derived algebra of \mathcal{L} and $\mathcal{L}^{\prime \prime}=\left(\mathcal{L}^{\prime}\right)^{\prime}$.

Key Words: p-Lie algebra, p-ideal, p-subalgebra, Cartan subalgebra

2.Lie algebras \mathcal{L} with \mathcal{L}^{\prime} nilpotent

Proposition 2.1. Let \mathcal{L} be a Lie algebra such that \mathcal{L}^{\prime} is nilpotent. Then the following are equivalent.
(i) $\Phi(\mathcal{L})=0$.
(ii) $\mathcal{N}(\mathcal{L})=\mathcal{S}(\mathcal{L})$ and $\mathcal{N}(\mathcal{L})$ is complemented by a subalgebra.
(iii) \mathcal{L}^{\prime} is abelian, is a semi-simple \mathcal{L}-module and is complemented by a subalgebra.

Under these conditions, Cartan subalgebras of \mathcal{L} are exactly those subalgebras complementary to \mathcal{L}^{\prime}.

Proof. Assume (i) holds. Nilpotency of \mathcal{L}^{\prime} implies $\Phi(\mathcal{L}) \supseteq \mathcal{L}^{\prime \prime}$, so \mathcal{L}^{\prime} is abelian and may be regarded as an $\mathcal{L} / \mathcal{L}^{\prime}$-module. We may assume $\mathcal{L}^{\prime}=$ $\sum \oplus \mathcal{V}_{\rho}, \mathcal{V}_{\rho}$ indecomposable $\mathcal{L} / \mathcal{L}^{\prime}$-submodules. If \mathcal{M} is a maximal subalgebra of \mathcal{L} and if $\mathcal{V}_{\rho} \nsubseteq \mathcal{M}$, then $\mathcal{M} \cap \mathcal{V}_{\rho}$ is an ideal of \mathcal{L}. If \mathcal{J} is an $\mathcal{L} / \mathcal{L}^{\prime}$-submodule of V_{ρ} properly contained between $\mathcal{M} \cap V_{\rho}$ and V_{ρ}, then $\mathcal{M}+\mathcal{J}$ is a subalgebra of \mathcal{L} properly contained between \mathcal{M} and \mathcal{L}, contradicting the maximality of \mathcal{M}. Therefore \mathcal{M} contains all maximal submodules of V_{ρ} for each \mathcal{S}. Then $\Phi(\mathcal{L})=0$ implies the interections of all maximal submodules of V_{ρ} is zero for each ρ. If $V_{1}, V_{2}, \ldots, V_{s}$ are maximal submodul of V_{ρ} with $V_{1} \cap \ldots V_{s}=0$ and are minimal with respect to this property, we have $V=V_{2} \cap \ldots V_{s} \neq 0$ and $V \cap V_{1}=0$ so that $V \oplus V_{1}=V_{\rho}$, contradicting indecomposability. Therefore each V_{ρ} is irreducible and \mathcal{L}^{\prime} is a completely reducible $\mathcal{L} / \mathcal{L}^{\prime}$ - module and is also a completely reducible \mathcal{L} - module. Since \mathcal{L} is solvable it contains Cartan subalgebras by Theorem 3 of [1]. Let \mathcal{C} be a Cartan subalgebra of \mathcal{L} and let \mathcal{L}_{0} and \mathcal{L}_{1}, be the Fitting null and one component of \mathcal{L} with respect to \mathcal{C}. Then $\mathcal{L}=\mathcal{L}_{0}+\mathcal{L}_{1} \equiv \mathcal{C}+\mathcal{L}_{1} \subseteq \mathcal{C}+\mathcal{L}^{\prime}$ shows $\mathcal{L}=\mathcal{C}+\mathcal{L}^{\prime}$. We claim that $\mathcal{C} \cap \mathcal{L}^{\prime}=0$. If $\mathcal{C} \cap \mathcal{L}^{\prime} \neq 0$, then, since \mathcal{L}^{\prime} is abelian, \mathcal{C} is nilpotent and \mathcal{L}^{\prime} is a completely reducible \mathcal{L}-module, \mathcal{L}^{\prime} is a sum of irreducible \mathcal{C}-modules, $\mathcal{U}_{1}, \ldots, \mathcal{U}_{q}$, such that for each $\mathcal{U} \underbrace{\left.{ }_{i}\left[\ldots, \mathcal{U}_{i}, \mathcal{C}\right], \ldots \mathcal{C}\right]}_{k}=0$ for some k, hence $\left[\mathcal{U}_{i}, \mathcal{C}\right]=0$. Thus $[\mathcal{C}$, $\left.\mathcal{L}^{\prime} \cap \mathcal{C}\right]=0$. One sees that each \mathcal{U}_{i} is a central minimal ideal of \mathcal{L}, and since $\Phi(\mathcal{L})=0, U_{i}$ is complemented by a maximal subalgebra \mathcal{M}. Therefore \mathcal{U}_{i} is a one-dimensional direct summand of \mathcal{L}, contradicting $\mathcal{U}_{i} \subseteq \mathcal{L}^{\prime}$. Hence $\mathcal{L}^{\prime} \cap \mathcal{C}=0$ and \mathcal{C} is a complement to \mathcal{L}^{\prime} in \mathcal{L}. Since $[\mathcal{C}, \mathcal{C}] \subseteq \mathcal{C} \cap \mathcal{L}^{\prime}=0, \mathcal{C}$ is abelian. Any minimal ideal not in \mathcal{L}^{\prime} satisfies $[\mathcal{L}, \mathcal{A}] \subseteq \mathcal{A} \cap \mathcal{L}^{\prime}=0$, so is central.

Therefore $\mathcal{S}(\mathcal{L})=\mathcal{L}^{\prime}+Z(\mathcal{L})$ and, since \mathcal{C} is a Cartan subalgebra, $Z(\mathcal{L}) \subseteq \mathcal{C}$. Let \mathcal{C}_{0} be a complementary subspace to $Z(\mathcal{L})$ in \mathcal{C}.

One sees that

$$
\mathcal{N}(\mathcal{L})=\mathcal{L}^{\prime}+Z(\mathcal{L})+\left(\mathcal{N}(\mathcal{L}) \cap \mathcal{C}_{0}\right)=\mathcal{S}(\mathcal{L})+\left(\mathcal{N}(\mathcal{L}) \cap \mathcal{C}_{0}\right) .
$$

If c is a nonzero element in $\mathcal{N}(\mathcal{L}) \cap \mathcal{C}_{0}$, and c is nilpotent but not zero with implies $\left[V_{\rho}, c\right]=V_{\rho}$ for some $V_{\rho} \subseteq \mathcal{L}^{\prime}$ and $[\ldots[V_{\rho}, \underbrace{c] \ldots c]}_{k}=0$ for some k, a contradicting. This $\mathcal{S}(\mathcal{L})=\mathcal{N}(\mathcal{L})$ and \mathcal{C}_{0} is a complement. Consecuently (i) implies (ii).

Assume (ii) holds and proceed by induction on the dimension of \mathcal{L}. Since $\mathcal{L}^{\prime} \subseteq \mathcal{N}(\mathcal{L})=S(L)$ and minimal ideals are abelian, \mathcal{L}^{\prime} is abelian. If every minimal ideal of \mathcal{L} is contained in \mathcal{L}^{\prime}, then $\mathcal{S}(\mathcal{L})=\mathcal{L}^{\prime}$ and (iii) follows. Therefore let \mathcal{J} be the minimal ideal of \mathcal{L} such that $\mathcal{J} \nsubseteq \mathcal{L}^{\prime}$.

Hence $\mathcal{J} \nsubseteq \Phi(\mathcal{L})$ and there exists a maximal subalgebra \mathcal{M} of \mathcal{L} such that $\mathcal{L}=\mathcal{M}+\mathcal{J}$.

Since $[\mathcal{L}, \mathcal{J}] \subseteq \mathcal{J} \cap \mathcal{L}^{\prime}, \mathcal{J}$ is central, hence one-dimensional. It follows that \mathcal{L} is the Lie algebra direct sum of \mathcal{M} and \mathcal{J}. Since \mathcal{M} inherits the condition (ii), \mathcal{M} satisfies (iii) by induction. It now follows that \mathcal{L} also satisfies (iii). Assume (iii) holds. Then \mathcal{L}^{\prime} is a sum of minimal ideals of \mathcal{L}, which we denote by $\mathcal{J}_{1}, \mathcal{J}_{2}, \ldots, \mathcal{J}_{k}$ and $\mathcal{L}=\mathcal{L}^{\prime}+\mathcal{D}, \mathcal{D}$ a subalgebra of \mathcal{L}. Since $\mathcal{D}^{\prime} \subseteq \mathcal{D} \cap \mathcal{L}^{\prime}=0, \mathcal{D}$ is abelian. One sees that $\mathcal{L}^{\prime}=\left[\mathcal{L}^{\prime}, \mathcal{D}\right]$ and, consequently, $\mathcal{J}_{i}=[\mathcal{J}, \mathcal{D}]$ for all i. Since $Z_{\mathcal{J}}(\mathcal{D})$ is central in $\mathcal{L}, Z_{\mathcal{J}_{i}}(\mathcal{D})$ is an ideal in \mathcal{L} contained in \mathcal{J}_{i}. Since $Z_{\mathcal{J}_{i}}(\mathcal{D}) \neq \mathcal{J}_{i}, Z_{\mathcal{J}_{i}}(\mathcal{D})=0$. It follows that \mathcal{D} is its own normalizer, hence is a Cartan subalgebra of \mathcal{L}.

Now $\mathcal{D}+\mathcal{J}_{i}+\ldots+\widehat{\mathcal{J}}_{i}+\ldots+\mathcal{J}_{k}$ is a maximal subalgebra of \mathcal{L} since any containing algebra has a nonzero projection on \mathcal{J}_{i} which is ad \mathcal{D} stable, hence equal to \mathcal{J}_{i}. Therefore $\Phi(\mathcal{L}) \subseteq \mathcal{D}$ and $\Phi(\mathcal{L}) \subseteq \mathcal{D} \cap \mathcal{L}^{\prime}=0$. Hence (i) holds.

The fact that complements to \mathcal{L}^{\prime} are Cartan subalgebras is shown in (iii) implies (i). The fact that Cartan subalgebras are complements to \mathcal{L}^{\prime} is shown in (i) implies $(i i)$. This completes the proof of Proposition 2.1.

Theorem 2.1. Let \mathcal{L} be a Lie algebra such that \mathcal{L}^{\prime} is nilpotent and $\Phi(\mathcal{L})=0$. Then, for any subalgebra \mathcal{D} of $\mathcal{L}, \Phi(\mathcal{D})=0$.

Proof. Suppose $\mathcal{L}^{\prime} \subseteq \mathcal{D}$. Let ξ be a complement to \mathcal{L}^{\prime} in \mathcal{L}, so $\xi \cap \mathcal{D}$ is a complement to \mathcal{L}^{\prime} in \mathcal{D}. Since \mathcal{L} acts completely reducibly on \mathcal{L}^{\prime} and \mathcal{L}^{\prime} is abelian, ξ acts completely reducible on \mathcal{L}^{\prime}. Then, since ξ is abelian, $\mathcal{D} \cap \xi$ acts completely reducibly on \mathcal{L}^{\prime}, hence so does \mathcal{D}.

Therefore $\mathcal{L}^{\prime}=\mathcal{D}^{\prime} \oplus \mathcal{J}$ for some ideal \mathcal{J} in \mathcal{D} when \mathcal{D} acts completely reducibly on \mathcal{D}^{\prime} and $\mathcal{J}+(\xi \cap \mathcal{D})$ is a complementary subalgebra of \mathcal{D}^{\prime} in \mathcal{D}. Thus, by Proposition 2.1, $\Phi(\mathcal{D})=0$.

Suppose $\mathcal{L}^{\prime} \nsubseteq \mathcal{D}$. Since $\mathcal{D}+\mathcal{L}^{\prime}$ falls in the preceding case, we may assume $\mathcal{D}+\mathcal{L}^{\prime}=\mathcal{L}$. Since \mathcal{L}^{\prime} is abelian, $\mathcal{L}^{\prime} \cap \mathcal{D}$ is an ideal in $\mathcal{L}, \mathcal{D} /\left(\mathcal{L}^{\prime} \cap \mathcal{D}\right)$ complements $\mathcal{L}^{\prime} /\left(\mathcal{L}^{\prime} \cap \mathcal{D}\right)=\left(\mathcal{L} / \mathcal{L}^{\prime} \cap \mathcal{D}\right)^{\prime}$ in $\mathcal{L} /\left(\mathcal{L}^{\prime} \cap \mathcal{D}\right)$ and $\mathcal{D} /\left(\mathcal{L}^{\prime} \cap \mathcal{D}\right)$ acts completely reducibly in $\mathcal{L}^{\prime} /\left(\mathcal{L}^{\prime} \cap \mathcal{D}\right), \mathcal{D} /\left(\mathcal{L}^{\prime} \cap \mathcal{D}\right)$ is a Cartan subalgebra of $\mathcal{L} /\left(\mathcal{L}^{\prime} \cap \mathcal{D}\right)$.

Let ζ be a Cartan subalgebra of \mathcal{D}, so it is a Cartan subalgebra of \mathcal{L}. This ζ is a complement to \mathcal{L}^{\prime} and $\zeta+(\mathcal{L} \cap \mathcal{D})=\mathcal{D}$ since $\subseteq \mathcal{D}$. Hence ζ is a complement to $\mathcal{L}^{\prime} \cap \mathcal{D}$ in \mathcal{D}. Since \mathcal{D} acts completely reducibly on $\mathcal{L}^{\prime} \cap \mathcal{D}$ and $\mathcal{D}^{\prime} \subseteq \mathcal{L}^{\prime} \cap \mathcal{D}, \mathcal{D}$ acts completely reducibly on \mathcal{D}^{\prime},

$$
\mathcal{L}^{\prime} \cap \mathcal{D}=\mathcal{D}^{\prime} \oplus\left(\mathcal{L}^{\prime} \cap Z(\mathcal{D})\right)
$$

and, since $Z(\mathcal{D}) \subseteq \zeta$,

$$
Z(\mathcal{D}) \cap \mathcal{L}^{\prime} \subseteq \zeta \cap \mathcal{L}=0
$$

Therefore $\zeta=\mathcal{D}^{\prime}=\mathcal{D}$ and $\zeta \cap \mathcal{D}^{\prime}=0$. Now \mathcal{D} satisfies part (iii) of Proposition 2.1 hence, $\Phi(\mathcal{D})=0$.

If \mathcal{L} is a solvable Lie algebra it has been shown that $\Phi(\mathcal{L})$ is an ideal of \mathcal{L}. We look for a condition on the subalgebras of $\mathcal{L} / \Phi(\mathcal{L})$ with are necessary and sufficient that $\mathcal{L} \in \mathbb{Q}$. In order to do this, the following concept is introduced.

Definition 2.1. We shall say that a Lie algebra \mathcal{L} is the reduced partial sum of an ideal \mathcal{J} and a subalgebra \mathcal{A} if $\mathcal{L}=\mathcal{A}+\mathcal{J}$ and for any subalgebra \mathcal{D} of \mathcal{L} such that $\mathcal{L}=\mathcal{J}+\mathcal{D}$ and $\mathcal{D} \subseteq \mathcal{A}$ then $\mathcal{D}=\mathcal{A}$.

It is noted that if $\mathcal{J} \nsubseteq \Phi(\mathcal{L})$, then there exists a subalgebra $\mathcal{A} \neq \mathcal{L}$ such that \mathcal{L} is the reduced partial sum of \mathcal{J} and \mathcal{A}. On the other hand, if $\mathcal{J} \subseteq \Phi(\mathcal{L})$ and \mathcal{L} is the reduced partial sum of \mathcal{J} and \mathcal{A}, then $\mathcal{A}=\mathcal{L}$.

Lemma 2.1. Let \mathcal{L} be the reduced partial sum of \mathcal{J} and \mathcal{A}.
Then $\mathcal{J} \cap \mathcal{A} \subseteq \Phi(\mathcal{A})$.
Proof. Suppose $\mathcal{B}=\mathcal{J} \cap \mathcal{A} \nsubseteq \Phi(\mathcal{A})$. Then \mathcal{A} contains a subalgebra \mathcal{D} such that $\mathcal{B}+\mathcal{D}=\mathcal{A}$.Then $\mathcal{L}=\mathcal{J}+\mathcal{A}=\mathcal{J}+\mathcal{B}+\mathcal{D}=\mathcal{J}+\mathcal{D}$.This contradicts the minimality of \mathcal{A}, then $\mathcal{J} \cap \mathcal{A} \subseteq \Phi(\mathcal{A})$.

Lemma 2.2. Let \mathcal{L} be the reduced partial sum of \mathcal{J} and \mathcal{A}.
Then $\Phi(\mathcal{L} / \mathcal{J}) \cong \mathcal{J}+\Phi(\mathcal{A}) / \mathcal{J}$.
Proof. Since $\mathcal{J} \cap \mathcal{A} \subseteq \Phi(\mathcal{A}), \mathcal{J} \cap \Phi(\mathcal{A})=\mathcal{J} \cap \mathcal{A}$. Since

$$
\mathcal{L} / \mathcal{J} \cong \mathcal{A}+\mathcal{A} / \mathcal{J} \cong \mathcal{A} / \mathcal{J} \cap \mathcal{A},
$$

$\Phi(\mathcal{L} / \mathcal{J}) \cong \Phi(\mathcal{A} / \mathcal{J} \cap \mathcal{A}) \cong \Phi(\mathcal{A}) / \mathcal{J} \cap \mathcal{A}=\Phi(\mathcal{A}) / \mathcal{J} \cap \Phi(\mathcal{A}) \cong \mathcal{J}+\Phi(\mathcal{A}) / \mathcal{J}$.
Proposition 2.2. For a Lie algebra \mathcal{L}, the following statements are equivalent:
(ii) $\mathcal{L} \in \mathbb{Q}$.
(ii) For any subalgebra \mathcal{A} of $\mathcal{L} / \Phi(\mathcal{L}), \Phi(\mathcal{A})=0$.

Proof. Let \mathcal{L} satisfy (i) and let $\pi: 1 \rightarrow \mathcal{L} / \Phi(\mathcal{L})$ be the natural homomorphism. Then $\Phi(\pi(\mathcal{L}))=\pi(\Phi(\mathcal{L}))=0$.

Let $\overline{\mathcal{B}}$ be a subalgebra of $\mathcal{L} / \Phi(\mathcal{L})$ and let \mathcal{B} be the subalgebra of \mathcal{L} which contains $\Phi(\mathcal{L})$ and corresponds to $\overline{\mathcal{B}}$. Since \mathcal{L} satisfies $(i), \Phi(\mathcal{B}) \subseteq \Phi(\mathcal{L})$. If $\Phi(\mathcal{B})=\Phi(\mathcal{L})$, then

$$
\Phi(\pi(\mathcal{B}))=\pi(\Phi(\mathcal{B}))=\pi(\Phi(\mathcal{L}))=0 .
$$

Suppose then that $\Phi(\mathcal{B}) \subset \Phi(\mathcal{L})$.Then \mathcal{B} can be represented as a reduced partial sum $\mathcal{B}=\Phi(\mathcal{L})+\mathcal{P}$. Let \mathcal{R} be a subalgebra of \mathcal{B} such that $\mathcal{R} / \Phi(\mathcal{L}) \cong \Phi(\mathcal{B} / \Phi(\mathcal{L}))$.If $\mathcal{R} / \Phi(L) \neq 0$, then

$$
\mathcal{R}=\mathcal{R} \cap(\Phi(\mathcal{L})+\mathcal{P})==(\mathcal{R} \cap \Phi(\mathcal{L}))+(\mathcal{R} \cap \mathcal{P})=\Phi(\mathcal{L})+(\mathcal{R} \cap \mathcal{P}) .
$$

Consequently there exists an $x \in \mathcal{R} \cap \mathcal{P}, x \notin \Phi(\mathcal{L})$. Since $\Phi(\mathcal{P}) \subseteq \Phi(\mathcal{L})$, $x \notin \Phi(\mathcal{P})$ and there exists a maximum subalgebra \mathcal{M} of \mathcal{P} such that $x \notin M$. We claim that either $\Phi(\mathcal{L})+\mathcal{M}=\mathcal{B}$ or $\Phi(\mathcal{L})+\mathcal{M}$ is maximal in \mathcal{B}.

Suppose $\Phi(\mathcal{L})+\mathcal{M} \neq \mathcal{B}$ and let J be a subalgebra of \mathcal{B} which contains $\Phi(\mathcal{L})+\mathcal{M}$. Then $\mathcal{M} \subseteq J \cap \mathcal{P}$, so, by the maximality of \mathcal{M}, either $J \cap \mathcal{P}=\mathcal{M}$ or $J \cap \mathcal{P}=\mathcal{P}$. If $J \cap \mathcal{P}=\mathcal{M}$ then

$$
\Phi(\mathcal{L})+\mathcal{M}=\Phi(\mathcal{L})+(J \cap \mathcal{P})=J \cap(\Phi(\mathcal{L})+\mathcal{P})=J \cap \mathcal{B}=J
$$

If $J \cap \mathcal{P}=\mathcal{P}$, then $J \supseteqq \mathcal{P}$ and, since $J \supseteqq \Phi(\mathcal{L}), J \supseteqq \Phi(\mathcal{L})+\mathcal{P}=\mathcal{B}$, hence $J=\mathcal{B}$. Consequently, there exists no subalgebras of \mathcal{B} properly contained between $\Phi(\mathcal{L})+\mathcal{M}$ and \mathcal{B}, hence either $\Phi(\mathcal{L})+\mathcal{M}=\mathcal{B}$ or $\Phi(\mathcal{L})+\mathcal{M}$ is maximal in \mathcal{B}. If $\Phi(\mathcal{L})+\mathcal{M}=\mathcal{B}$, then $\Phi(\mathcal{L})+\mathcal{P}$ is not a reduced partial sum which is a contradiction. If $\Phi(\mathcal{L})+\mathcal{M}$ is maximal in \mathcal{B}, then

$$
\Phi(\mathcal{L})+\mathcal{M} / \Phi(\mathcal{L}) \supseteqq \Phi(\mathcal{B} / \Phi(\mathcal{L})) \cong(\mathcal{R} \cap \Phi(\mathcal{L}))
$$

Hence $R \subseteq \Phi(\mathcal{L})+\mathcal{M}$. Since $\mathcal{M} \subseteq \Phi(\mathcal{L})+\mathcal{M}$ and

$$
\begin{gathered}
x \in \mathcal{R} \cap \mathcal{P} \subset \mathcal{R} \subseteq \Phi(\mathcal{L})+\mathcal{M} \\
\mathcal{P}=\{\mathcal{M}, x\} \subseteq \Phi(\mathcal{L})+\mathcal{M}
\end{gathered}
$$

Then $\mathcal{B}=\Phi(\mathcal{L})+\mathcal{P} \subseteq \Phi(L)+\mathcal{M} \subseteq \mathcal{B}$ implies $\Phi(\mathcal{L})+\mathcal{P}$ is not a reduced partial sum, a contradiction.

Hence $\Phi(\overline{\mathcal{B}})=\mathcal{R} / \Phi(\mathcal{L})=0$ and $(i i)$ is satisfied.
If $\mathcal{L} / \Phi(\mathcal{L})$ satisfies $(i i)$, then $\pi(\Phi(\mathcal{A})) \subseteq \Phi(\pi(\mathcal{A}))=0$ for every subalgebra \mathcal{A} of \mathcal{L}. Then $\Phi(\mathcal{A}) \subseteq \Phi(\mathcal{L})$ for every subalgebra \mathcal{A} of \mathcal{L}.
(Combining Proposition 2.2 and Theorem 2.1 we have:

Theorem 2.2. Let \mathcal{L} be a Lie algebra such that \mathcal{L}^{\prime} is nilpotent. Then $\mathcal{L} \in \mathbb{Q}$.

Theorem 2.3. Let $\mathcal{L} \in \mathbb{Q}$ and let φ be a Lie homomorphism of \mathcal{L}.
Then $\varphi(\Phi(\mathcal{L}))=\Phi(\varphi(\mathcal{L}))$.
Proof. $\varphi(\Phi(\mathcal{L}))$ is always contained in $\Phi(\varphi(\mathcal{L}))$. If $k=$ Kernel $\varphi \subseteq \Phi(\mathcal{L})$, then equality holds. Suppose $\mathcal{P} \nsubseteq \Phi(\mathcal{L})$.

Let $\mathcal{L}=\mathcal{P}+k$ be a reduced partial sum. Using Lemma 2.2,

$$
\Phi(\varphi(\mathcal{L}))=\Phi(\mathcal{L} / \mathcal{P}) \cong \mathcal{P}+\Phi(k) / \mathcal{P}=\varphi(\Phi(k)) .
$$

Since $\varphi(\mathcal{P}+\Phi(\mathcal{L}))=\varphi(\Phi(\mathcal{L})) \subseteq \Phi(\varphi(\mathcal{L}))=\Phi(\mathcal{L} / \mathcal{P})=\varphi(\mathcal{P}+\Phi(k))$,

$$
\mathcal{P}+\Phi(\mathcal{L}) \subseteq \mathcal{P}+\Phi(k) \subseteq \mathcal{P}+\Phi(\mathcal{L})
$$

Hence $\mathcal{P}+\Phi(\mathcal{L})=\mathcal{P}+\Phi(k)$ and $\Phi(\varphi(\mathcal{L}))=\varphi(\Phi(k))=\varphi(\Phi(\mathcal{L}))$.
Theorem 2.4. Let $\mathcal{L} \in \mathbb{Q}$. Necessary conditions that an ideal \mathcal{J} of \mathcal{L} be the Frattini subalgebra of \mathcal{L} are the following:
(i) $\Phi\left(A d_{\mathcal{J}}(\mathcal{L})=A d_{\mathcal{J}}(\Phi(\mathcal{L}))\right.$.
(ii) There exists a subalgebra \mathcal{A} of \mathcal{L} such that $\mathcal{A} / \mathcal{J} \cong A d_{\mathcal{J}}(\mathcal{L}) / A d_{\mathcal{J}}(\Phi(\mathcal{L}))$.

Proof. (i) Let φ be the mapping from \mathcal{L} into the derivation algebra of \mathcal{J} defined by $\varphi(x)=a d x$ restricted to \mathcal{J} for all $x \in \mathcal{L}$. Then

$$
\varphi(\Phi(\mathcal{L}))=A d_{\mathcal{J}}(\Phi(\mathcal{L}))=\Phi(\varphi(\mathcal{L}))=\Phi\left(A d_{\mathcal{J}}(\mathcal{L})\right)
$$

(ii) Let $\mathcal{B}=Z_{\mathcal{L}}(\Phi(\mathcal{L}))$. Suppose that $\mathcal{B} \nsubseteq \Phi(\mathcal{L})$ and let $\xi=\mathcal{L} / \Phi(\mathcal{L})$ and $\mathcal{R}=(\mathcal{B}+\Phi(\mathcal{L})) / \Phi(\mathcal{L})$. Since $A d_{\Phi(\mathcal{L})}(\mathcal{L}) \cong \mathcal{L} / \mathcal{B}$ and

$$
\begin{aligned}
& A d_{\Phi(\mathcal{L})}(\Phi(\mathcal{L})) \cong \Phi(\mathcal{L}) / Z(\Phi(\mathcal{L}))=\Phi(\mathcal{L}) / \mathcal{B} \cap \Phi(\mathcal{L})=(\mathcal{B}+\Phi(\mathcal{L})) / \mathcal{B} \\
& \quad \xi / \mathcal{R} \cong(\mathcal{L} / \Phi(\mathcal{L})) /(\mathcal{B}+\Phi(\mathcal{L}) / \Phi(\mathcal{L})) \cong \mathcal{L} /(\mathcal{B}+\Phi(\mathcal{L})) \cong \\
& \cong(\mathcal{L} / \mathcal{B}) /((\mathcal{B}+\Phi(\mathcal{L})) / \mathcal{B}) \cong A d_{\Phi(\mathcal{L})}(\mathcal{L}) / A d_{\Phi(\mathcal{L})}(\Phi(\mathcal{L}))
\end{aligned}
$$

Since $\Phi(\xi)=0$, there exists a subalgebra \mathcal{D} in ξ such that ξ is the reduced partial sum of \mathcal{R} and \mathcal{D}.

Using Proposition 2.2 and Lemma 2.1, $\mathcal{R} \cap \mathcal{D} \subseteq \Phi(\mathcal{D})=0$, hence $\mathcal{R} \cap \mathcal{D}=0$.

Let \mathcal{H} be the subalgebra of \mathcal{L} which contains $\Phi(\mathcal{L})$ and corresponds to \mathcal{D}.
Then

$$
\mathcal{H} / \Phi(\mathcal{L}) \cong \mathcal{D} \cong \xi / \mathcal{R} \cong A d_{\Phi(\mathcal{L})}(\mathcal{L}) / A d_{\Phi(\mathcal{L})}(\Phi(\mathcal{L}))
$$

If $\mathcal{B} \subseteq \Phi(\mathcal{L})$,then

$$
\begin{aligned}
& A d_{\Phi(\mathcal{L})}(\mathcal{L}) / A d_{\Phi(\mathcal{L})}(\Phi(\mathcal{L})) \cong(\mathcal{L} / \mathcal{B}) /(\Phi(\mathcal{L}) / Z(\Phi(\mathcal{L})))= \\
&=(\mathcal{L} / \mathcal{B}) /(\Phi(\mathcal{L}) / \mathcal{B} \cap \Phi(\mathcal{L}))=(\mathcal{L} / \mathcal{B}) /(\Phi(L) / B) \cong \mathcal{L} / \Phi(\mathcal{L}) .
\end{aligned}
$$

Related to part (i) of Theorem 2.4, there are the following results.
Theorem 2.5. Let $\mathcal{L} \in \mathbb{Q}$ and let \mathcal{J} be an ideal of \mathcal{L} containing $\Phi(\mathcal{L})$.
Then, $\Phi\left(A d_{\mathcal{J}}(\mathcal{L})\right) \cong A d_{\mathcal{J}}(\mathcal{J})$ if and only if $\mathcal{J}=\Phi(\mathcal{L})+Z(\mathcal{J})$.
Theorem 2.6. Let $\mathcal{L} \in \mathbb{Q}$ and let \mathcal{J} be an ideal of \mathcal{L} contained in $\Phi(\mathcal{L})$. Then, $\Phi\left(A d_{\mathcal{J}}(\mathcal{L})\right) \cong A d_{\mathcal{J}}(\mathcal{J})$ if and only if $\Phi(\mathcal{L})=\mathcal{J}+Z_{\Phi(\mathcal{L})}(\mathcal{J})$.

References

[1] Barnes, D.W., On Cartan subalgebras of Lie algebras, Math. Z. 101 (1967), 350-355.
[2] Ciobanu, C., On a class of Lie p-algebras, Analele Universităţii „Ovidius" Constanţa, Seria Matematica, VII(1999), fasc.2, 9-16.
[3] Ciobanu, C.: Coomological study of Lie p-algebras, Ph. D. Thesis, Ovidius University, Constanta, 2001.
[4] N. Jacobson, Lie algebras, New York, 1962.
[5] D.A.Towers, A Frattini theory for algebras, Proc. London Math. Soc. (3), 27 (1968), 440-462.
[6] D.A.Towers, Two ideals of an algebra closely related to its Frattini ideal, Arch. Math. 35 (1980), 112-120.
[7] M. Lincoln\&D.Towers, Frattini theory for restricted Lie algebras, Arch. Math. 45 (1985), 451-457.

Department of Mathematics and Informatics,
"Mircea cel Bătrân" Naval Academy,
Fulgerului 1
8700 - Constantza
Romania

