An. Şt. Univ. Ovidius Constanţa

ABOUT THE H - MEASURE OF A SET. II.

Alina Bărbulescu
Dedicated to Professor Mirela Ştefănescu on the occasion of her 60th birthday

Abstract

In the papers $[B 1]$ and $[B 2]$ we have established some conditions for the finitude of the Hausdorff h-measure of some set. Now, we shall determine a better minorant for this measure.

1 Definitions

We denote by R^{n} the euclidean n - dimensional space and by $d(E)$ - the diameter of a set $E \subset R^{n}$.

Definition 1 If $r_{0}>0$ is a fixed number, a continuous function $h(r)$, defined on $\left[0, r_{0}\right)$, nondecreasing and such that $\lim _{r \rightarrow 0} h(r)=0$ is called a measure function.

If $E \subset R^{n}$ is a bounded set and $\delta \in R_{+}$, the Hausdorff h-measure of E is defined by:

$$
H_{h}(E)=\lim _{\delta \rightarrow 0} \inf \sum_{i} h\left(\rho_{i}\right),
$$

inf being considered over all coverings of E with a countable number of spheres of radius $\rho_{i} \leq \delta$.

Definition $2 f: D\left(\subset R^{n}\right) \rightarrow \bar{R}$ is a δ - class Lipschitz function if

$$
|f(x+\alpha)-f(x)| \leq M|\alpha|^{\delta}, x \in D, \alpha \in R^{n}, x+\alpha \in D, M>0
$$

Received: June, 2001

Definition 3 Let $\varphi_{1}, \varphi_{2}>0$ be functions defined in a neighborhood of $0 \in R^{n}$. We say that φ_{1} and φ_{2} are equivalent and we denote by: $\varphi_{1} \sim \varphi_{2}$, for $x \rightarrow 0$, if there exist $r>0, Q>0$, satisfying:

$$
\frac{1}{Q} \varphi_{1}(x) \leq \varphi_{2}(x) \leq Q \varphi_{1}(x),(\forall) x \in R^{n},|x|<r
$$

An analogous definition can be given for $x \rightarrow \infty$. In this case, $\varphi_{1} \sim \varphi_{2}$ means that the previous inequalities have place in all the space.

If $f:[0,1] \longrightarrow \bar{R}$, the graph of f is the set: $\Gamma=\{(x, f(x)) \mid x \in[0,1]\}$.

2 Results

Theorem 1 If $\delta \in[0,1], h$ is a measure function such that

$$
\begin{equation*}
h(t)^{\sim} t^{2} \tag{1}
\end{equation*}
$$

and $f:[0,1] \rightarrow \bar{R}$ is a δ - class Lipschitz function, then: $H_{h}(\Gamma)<+\infty$.
(see [B1])
Lemma 2 Consider that $E \subset R^{n}$ is a closed and bounded set, which has a finite Hausdorff h - measure. Suppose that there exists an additive function $\varphi(U)$, defined on union, U, of n-dimensional intervals of the type

$$
\begin{equation*}
Q=\left[a_{1}, b_{1}\right) \times \ldots \times\left[a_{n}, b_{n}\right), a_{i}, b_{i} \in R, a_{i}<b_{i}, i=1,2, \ldots, n, \tag{2}
\end{equation*}
$$

and which satisfies the properties:
(1) $\varphi(U) \geq 0$, for every U;
(2) if $U \supseteq E$ then $\varphi(U) \geq \alpha$, where α is a fixed constant;
(3) there exists a constant $k \neq 0$ such that:

$$
\begin{equation*}
\varphi(U) \leq k \cdot h[d(U)] \tag{3}
\end{equation*}
$$

Then:

$$
H_{h}(E) \geq \frac{\alpha}{k}
$$

Proof. We denote by \mathbf{M} the set of all intervals U of the type (2). To determine $H_{h}(E)$, we consider a covering of E with sets that satisfy Definition 1. From the Heine - Borel - Lebesgue theorem, it results that we can choose a finite number of convex sets $\left(E_{i}\right)_{i \in I}\left(I\right.$ is finite) such that: $E \subset \cup_{i \in I} E_{i}$.

Consider $E_{i} \subset U_{i} \in \mathbf{M}$, with:

$$
h\left[d\left(U_{i}\right)\right]<(1+\varepsilon) h\left[d\left(E_{i}\right)\right], \varepsilon>0 .
$$

From (3), we have:

$$
h\left[d\left(U_{i}\right)\right] \geq \frac{1}{k} \varphi\left(U_{i}\right) .
$$

Thus:

$$
\sum_{i \in I} h\left[d\left(E_{i}\right)\right]>\frac{1}{1+\varepsilon} \sum_{i \in I} h\left[d\left(U_{i}\right)\right] \geq \frac{1}{k(1+\varepsilon)} \sum_{i \in I} \varphi\left(U_{i}\right) \geq \frac{1}{k(1+\varepsilon)} \varphi\left(\cup_{i \in I} U_{i}\right)
$$

because

$$
\varphi\left(\cup_{i \in I} U_{i}\right) \leq \sum_{i \in I} \varphi\left(U_{i}\right)
$$

But $\cup_{i \in I} U_{i} \supset E$ and we can apply (3): there exists a constant $\alpha>0$ such that:

$$
\varphi\left(\cup_{i \in I} U_{i}\right) \geq \alpha
$$

Thus

$$
\sum_{i \in I} h\left[d\left(E_{i}\right)\right] \geq \frac{1}{k(1+\varepsilon)} \varphi\left(\cup_{i \in I} U_{i}\right) \geq \frac{\alpha}{k(1+\varepsilon)}
$$

and $H_{h}(E) \geq \frac{\alpha}{k}$.
Theorem 3 In the hypothesis of the previous theorem there exist $\alpha, k>0$ such that: $H_{h}(\Gamma) \geq \frac{\alpha}{k}$.

Proof. We prove that the conditions of the Lemma 5 are satisfied. $H_{h}(\Gamma)>$ 0 , from the Theorem 4. We consider $U=\bigcup_{i=1}^{m} Q_{i}$, where

$$
\begin{equation*}
Q_{i}=\left[a_{i}, b_{i}\right) \times\left[c_{i}, d_{i}\right), a_{i}, b_{i} \in R, a_{i}<b_{i}, c_{i}<d_{i}, i=1,2, \ldots, m \tag{4}
\end{equation*}
$$

and we define

$$
\begin{equation*}
\varphi(U)=\sum_{i=1 ; c_{i} d_{i}>0}^{m}\left(b_{i}-a_{i}\right) \times \max \left\{\left|c_{i}\right|,\left|d_{i}\right|\right\}+\sum_{i=1 ; c_{i} d_{i}>0}^{m}\left(b_{i}-a_{i}\right) \times\left|d_{i}-c_{i}\right| \tag{5}
\end{equation*}
$$

(i) $\varphi(U) \geq 0$, for every U .
(ii) We denote:

$$
\begin{aligned}
& G_{1}=\left\{(x, y) \in R^{2}: 0 \leq x \leq 1,0 \leq y \leq f(x)\right\} \\
& G_{2}=\left\{(x, y) \in R^{2}: 0 \leq x \leq 1, f(x) \leq y \leq 0\right\}
\end{aligned}
$$

and $\alpha-$ the sum of the areas of G_{1} and G_{2} :

$$
\alpha=\sigma\left(G_{1}\right)+\sigma\left(G_{2}\right) .
$$

If $U \supseteq \Gamma$, then $\varphi(U) \geq \alpha$.
(iii) From (1), we deduce that there exists a constant $Q>0$ such that:

$$
\frac{1}{Q} d^{2}(U) \leq h[d(U)] \leq Q d^{2}(U)
$$

Then

$$
\varphi(U) \leq \sum_{i=1}^{m} d(U)^{2}=m \cdot d(U)^{2} \leq m Q h[d(U)] .
$$

Using theorem 4, it results:

$$
H_{h}(\Gamma) \geq \frac{1}{m Q}\left[\sigma\left(G_{1}\right)+\sigma\left(G_{2}\right)\right]
$$

The proof is complete.

References

[B1] A. Barbulescu, La finitude d'une h-mesure Hausdorff d' une ensemble des points dans le plan, Analele Univ. "Valahia", Târgoviste, 1995/1996, fasc. II, p.93-99
[B2] A. Barbulescu, About the h - measure of a set, Proceedings of "International Conference on Complex Analysis and Related Topics", Brasov, 2001 (to appear)
[B3] A. Barbulescu, P-modulus and p - capacity (PhD. Thesis), Iassy, 1997
"Ovidius" University of Constanta,
Department of Mathematics,
8700 Constanta,
Romania
e-mail: abarbulescu@univ-ovidius.ro

