A PAIR OF JORDAN TRIPLE SYSTEMS OF JORDAN PAIR TYPE

Eduard Asadurian

Dedicated to Professor Mirela Ştefănescu on the occasion of her 60th birthday

Abstract

A Jordan pair $V=\left(V^{+}, V^{-}\right)$is a pair of modules over a unitary commutative associative ring K, together with a pair (Q_{+}, Q_{-}) of quadratic mappings $Q_{\sigma}: V^{\sigma} \rightarrow \operatorname{Hom}_{K}\left(V^{-\sigma}, V^{\sigma}\right), \sigma= \pm$, so that the following identities and their liniarizations are fulfilled for $\sigma= \pm$:

JP1 $D_{\sigma}(x, y) Q_{\sigma}(x)=Q_{\sigma}(x) D_{-\sigma}(y, x)$, JP2 $D_{\sigma}\left(Q_{\sigma}(x) y, y\right)=D_{\sigma}\left(x, Q_{-\sigma}(y) x\right)$, JP3 $Q_{\sigma}\left(Q_{\sigma}(x) y\right)=Q_{\sigma}(x) Q_{-\sigma}(y) Q_{\sigma}(x)$. Here, $D_{\sigma}(x, y) z=Q_{\sigma}(x, z) y:=Q_{\sigma}(x+z) y-Q_{\sigma}(x) y-Q_{\sigma}(z) y$. According to an example with quadratic mappings $Q_{\sigma}: V^{\sigma} \rightarrow$ End $\left(V^{-\sigma}\right)$, we get a little different approach and we define the concept of a pair of Jordan Triple Systems of Jordan Pair type.

1 Introduction

Let D_{n} be the dihedral group of degree n, more precisely,

$$
D_{n}=<a, b:|a|=n,|b|=2, \quad b a=a^{n-1} b>.
$$

Usually, the elements of D_{n} are written in the form $a^{i} b^{i}, 0 \leq i \leq n-1$, $0 \leq j \leq 1$, so that the underlying set of this group is

$$
D_{n}=<a>\cup<a>b \text {, if } n \text { is an odd number, }
$$

or
$D_{n}=<a^{2}>\cup<a^{2}>a \cup<a^{2}>b \cup<a^{2}>a b$, if n is an even number.
Received: June, 2001

If we use the notation $p \oplus_{m} r$ for the sum modulo m in the abelian group $R_{m}=\{0,1, \ldots, m-1\}$, then the multiplication in D_{n} is given by the rule:

$$
\begin{equation*}
\left(a^{i} b^{j}\right)\left(a^{k} b^{l}\right)=a^{i \oplus_{n}(-1)^{j} k^{l}} b^{l \oplus_{2} j} \tag{1}
\end{equation*}
$$

Indeed, because $b a^{k}=a^{(n-1) k} b=a^{-k} b=a^{n-k} b$, we obtain

$$
\begin{aligned}
\left(a^{i} b^{j}\right)\left(a^{k} b^{l}\right) & = \begin{cases}a^{i+k} b^{l}, & \text { if } j=0, \\
a^{i-k} b^{l+1}, & \text { if } j=1 \text { and } i \geq k, \\
a^{n-k+i} b^{l+1}, & \text { if } j=1 \text { and } i<k,\end{cases} \\
& = \begin{cases}a^{i \oplus_{n} k} b^{l+0}, & \text { if } j=0, \\
a^{i \oplus_{n}(-k)} b^{l+1}, & \text { if } j=1\end{cases} \\
& =a^{i \oplus_{n}(-1)^{j} k b^{l \oplus_{2} j}}
\end{aligned}
$$

Therefore, $D_{n} \cong R_{n} \oplus R_{2}$, where the group structure on $R_{n} \oplus R_{2}$ is defined via the composition

$$
(i, j)(k, l)=\left(i \oplus_{n}(-1)^{j} k, l \oplus_{2} j\right) .
$$

2 Some properties of the
 group algebra of D_{n}

Let K be a field and let $K\left[D_{n}\right]$ be the group algebra of D_{n} over K. Then $K\left[D_{n}\right]$ is a unitary associative algebra of dimension $2 n$ over K, noncommutative if $n>2$. A basis of $K\left[D_{n}\right]$ over K is the set of vectors

$$
\left\{a^{i} b^{j} \mid 0 \leq i \leq n-1,0 \leq j \leq 1\right\}
$$

with the multiplication (1).
If we look carefully at the multiplication table of $K\left[D_{n}\right]$, we distinguish two cases, depending on n being either an odd or an even number.

When n is an odd number, let T^{+}be the K-vector subspace of $K\left[D_{n}\right]$ with the basis $\langle a\rangle$, and let T^{-}be the K-vector subspace of $K\left[D_{n}\right]$ with the basis $<a\rangle b$. Then the multiplication table in $K\left[D_{n}\right]=T^{+} \oplus T^{-}$is

$$
\begin{array}{c|c|c}
\cdot & T^{+} & T^{-} \tag{2}\\
\hline T^{+} & T^{+} & T^{-} \\
\hline T^{-} & T^{-} & T^{+}
\end{array}
$$

When n is an even number, let $\mathcal{A}_{1}, \mathcal{A}_{2}, \mathcal{A}_{3}$ and \mathcal{A}_{4} the K-vector spaces of $K\left[D_{n}\right]$ with the bases $<a^{2}>,<a^{2}>a,<a^{2}>b$ and $<a^{2}>a b$, respectively.

Then the multiplication table of the algebra $K\left[D_{n}\right]=\mathcal{A}_{1} \oplus \mathcal{A}_{2} \oplus \mathcal{A}_{3} \oplus \mathcal{A}_{4}$ is

\cdot	\mathcal{A}_{1}	\mathcal{A}_{2}	\mathcal{A}_{3}	\mathcal{A}_{4}
\mathcal{A}_{1}	\mathcal{A}_{1}	\mathcal{A}_{2}	\mathcal{A}_{3}	\mathcal{A}_{4}
\mathcal{A}_{2}	\mathcal{A}_{2}	\mathcal{A}_{1}	\mathcal{A}_{4}	\mathcal{A}_{3}
\mathcal{A}_{3}	\mathcal{A}_{3}	\mathcal{A}_{4}	\mathcal{A}_{1}	\mathcal{A}_{2}
\mathcal{A}_{4}	\mathcal{A}_{4}	\mathcal{A}_{3}	\mathcal{A}_{2}	\mathcal{A}_{1}

Denote $\{i, j, k\}=\{i, j, k\}$. Then the table (3) shows that $\mathcal{A}_{i} \mathcal{A}_{j}=\mathcal{A}_{k}=$ $\mathcal{A}_{j} \mathcal{A}_{i}$, so that the multiplication table can be arranged in the following form:

\cdot	\mathcal{A}_{1}	\mathcal{A}_{i}	\mathcal{A}_{j}	\mathcal{A}_{k}
\mathcal{A}_{1}	\mathcal{A}_{1}	\mathcal{A}_{i}	\mathcal{A}_{j}	\mathcal{A}_{k}
\mathcal{A}_{i}	\mathcal{A}_{i}	\mathcal{A}_{1}	\mathcal{A}_{k}	\mathcal{A}_{j}
\mathcal{A}_{j}	\mathcal{A}_{j}	\mathcal{A}_{k}	\mathcal{A}_{1}	\mathcal{A}_{i}
\mathcal{A}_{k}	\mathcal{A}_{k}	\mathcal{A}_{j}	\mathcal{A}_{i}	\mathcal{A}_{1}

Finally, if $T^{+}=\mathcal{A}_{1} \oplus \mathcal{A}_{i}$ and $T^{-}=\mathcal{A}_{j} \oplus \mathcal{A}_{k}$, then the table (4) becomes (2).
Therefore, except for the detailed table (3), the K-algebra $K\left[D_{n}\right]$ decomposes in $K\left[D_{n}\right]=T^{+} \oplus T^{-}$, with multiplication table (2).

3 A pair of Jordan Triple Systems

Let $T=\left(T^{+}, T^{-}\right)$be the pair of K-vector spaces defined in the previous section.

Unlikely the Jordan pairs, where we have to do with quadratic mappings $Q_{\sigma}: T^{\sigma} \rightarrow \operatorname{Hom}\left(T^{-\sigma}, T^{\sigma}\right), \sigma= \pm$, the decomposition of $K\left[D_{n}\right]=T^{+} \oplus T^{-}$, via table (2), leads to the quadratic mappings $Q_{\sigma}: T^{\sigma} \rightarrow \operatorname{End}\left(T^{-\sigma}\right)$. More exactly, for any $x \in T^{\sigma}$ and $y \in T^{-\sigma}, \sigma= \pm$, the product $x y x \in T^{-\sigma}$. Thus the assignments $x \mapsto Q_{\sigma}(x): y \mapsto x y x$, give rise to maps $Q_{\sigma}: T^{\sigma} \rightarrow \operatorname{End}\left(T^{-\sigma}\right)$, $\sigma= \pm$. Does the pair $Q=\left(Q_{+}, Q_{-}\right)$, defined above, verify the conditions JP1-JP3? For, supposing the characteristic $\neq 2$, these conditions become the following linear identities:

JP1' $\{x y\{x z x\}\}=\{x\{y x z\} x\}$,
JP2' $\{\{x y x\} y z\}=\{x\{y x y\{z\}$,
JP3' $\{\{x y x\} z\{x y x\}\}=\{x\{y\{x z x\} y\} x\}$.
for all $x, z \in T^{\sigma}$ and $y \in T^{-\sigma}$, where $\{x y z\}:=Q_{\sigma}(x, z) y=D_{\sigma}(x, y) z=$ $Q(x+z) y-Q(x) y-Q(z) y$.

Studying the succession of the signs in JP1 ${ }^{\prime}$ and $\mathrm{JP2}^{\prime}$ we conclude that the pair $Q=\left(Q_{+}, Q_{-}\right)$cannot satisfy these axioms or others of their type.

Concerning JP3, the permitted successions of the signs in the JP3' lead us to consider, in addition to products $x y x$, with $x \in T^{\sigma}$ and $y \in T^{-\sigma}$, the products $x z x$, with $x, z \in T^{\sigma}$. So, every K-vector space T^{σ} together with the quadratic applications $P_{\sigma}: T^{\sigma} \rightarrow \operatorname{End}\left(T^{\sigma}\right)$ defined by the assignments $x \rightarrow P_{\sigma}(x): x \rightarrow x z x$, is a Jordan triple system; that is, the following identities and their liniarizations hold:
$\mathrm{JTS} 1 L_{\sigma}(x, y) P_{\sigma}(x)=P_{\sigma}(x) L_{\sigma}(y, x)$,
JTS2 $L_{\sigma}\left(P_{\sigma}(x) y, y\right)=L_{\sigma}\left(x, P_{\sigma}(y) x\right)$,
JTS3 $\quad P_{\sigma}\left(P_{\sigma}(x) y\right)=P_{\sigma}(x) P_{\sigma}(y) P_{\sigma}(x)$,
where $L_{\sigma}(x, y) z=P_{\sigma}(x, z) y=P_{\sigma}(x+z) y-P_{\sigma}(x) y-P_{\sigma}(z) y$.
Finally, the condition JP3 is replaced by the following three connective relations between the mappings P_{σ} and Q_{σ} :
(CR1) $Q_{\sigma}\left(P_{\sigma}(x) y\right)=Q_{\sigma}(x) Q_{\sigma}(y) Q_{\sigma}(x)$,
for all $x, y \in T^{\sigma}$;
(CR2) $\quad P_{\sigma}\left(Q_{-\sigma}(x) y\right)=Q_{-\sigma}(x) Q_{\sigma}(y) Q_{-\sigma}(x)$,
for all $x \in T^{-\sigma}, y \in T^{\sigma}$;
(CR3) $\quad Q_{\sigma}\left(Q_{-\sigma}(x) y\right)=P_{\sigma}(x) Q_{-\sigma}(y) P_{\sigma}(x)$, for all $x \in T^{-\sigma}, y \in T^{\sigma}$.

In this way, we are led to the following definition.
Definition 3.1 Let T^{+}and T^{-}be two Jordan triple systems relative to the quadratic mapping $P_{\sigma}: T^{\sigma} \rightarrow \operatorname{End}\left(T^{\sigma}\right), \sigma= \pm$. Let $Q_{\sigma}: T^{\sigma} \rightarrow \operatorname{End}\left(T^{-\sigma}\right)$, $\sigma= \pm$, be two quadratic applications. We say that $T=\left(T^{+}, T^{-}\right)$is a pair of Jordan triple systems of Jordan pair type if the connecting axioms CR1-CR3 and their liniarizations are fulfilled for $\sigma= \pm$.

References

[1] E. Asadurian and M. Ştefănescu, Algebre Jordan, Ed. Niculescu, Bucureşti, 2001.
[2] O. Loos, Jordan Pairs, Lect. Notes Math. 460, Springer-Verlag, Berlin, Heidelberg, New York, 1975.

University of Piteşti,
Department of Mathematics and Informatics, Str. Târgu din Vale, Nr.1,
0300, Piteşti,
Romania
e-mail: edi@linux.math.upit.ro

