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ON LEVEL HYPERSURFACES OF THE

COMPLETE LIFT OF A SUBMERSION

Mehmet Yıldırım

Abstract

Suppose that (M, G) is a Riemannian manifold and f : M → R

is a submersion. Then the complete lift of f, fc : TM → R defined
by fc = ∂f

∂xi yi is also a submersion. This interesting case leads us to
the investigation of the level hypersurfaces of fc as a submanifold of
tangent bundle TM . In addition, we prolonge the level hypersurfaces of

f to N̄ = (fc)−1(0). Also, under the condition ∇̂f is a constant, we

show that N̄ has a lightlike structure with induced metric Ḡ from Gc.

1 Introduction

We denote by ℑ0
0 (M) the algebra of smooth functions on M. For f ∈ ℑ0

0 (M) ,
the complete lift of f to tangent bundle TM is defined by fc = yi ∂f

∂xi . From
the local expression of fc we realize that fc is induced by f . In that case some
geometrical relations must be between found the level hypersurfaces of f and
fc. In addition, the level hypersurfaces of fc can be investigated depending
on f .

To do these investigations we need some tools. These are vertical and
complete lifts of differentiable elements defined on M . The notion of vertical
and complete lift was introduced by K. Yano and S. Kobayashi in [12]. By
using these lifts, in [10], M. Tani introduced the notion of prolongations of the
hypersurfaces to tangent bundle.

In [10], Tani showed that there exist some geometrical relations between
the geometry of S in M and TS in TM for a given hypersurface S.
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Many authors have studied lightlike hypersurfaces of semi-Riemannian
manifolds [1], [6], [7], [9] and others.

In this paper, we discuss the relationships between the geometry of level
surfaces of a real-valued function and its complete lift. The importance of this
paper is that, differently from [10], we find a class of submanifolds in tangent
bundle TM such that these are derived from hypersurfaces in M . Because, in
[10], the obtained submanifold is tangent to original submanifold in M , but it
isn’t so in this work.

In addition, as we know from literature, an application of vertical and
complete lifts to lightlike geometry was not studied yet. We can do these ap-
plications in the present paper. In last section, we establish lightlike structure
on a level hypersurface of complete lift of f and see that fundamental notions
of degenerate submanifold geometry were obtained by a natural way. That is,
we needn’t to any strong condition. This case shows that the problem studied
here is completely suitable and interesting.

In Section 2, we shall give an introductory information. In Section 3, we
shall show that the complete lift of a submersion is also a submersion and
its any level set is a hypersurface (denoted by N̄) in the tangent bundle. In
Section 4, we obtain Gauss and Weingarten formulas for N̄ . In addition, it is
obtained that N̄ is a semi-Riemannian submanifold with index n with respect
to Gc (G is a Riemannian metric on M). By using vertical and complete
lifts, in Section 5, the level hypersurfaces of f have been prolonged to N̄ . In
Section 6 we give a lightlike (null) structure on N̄ . In addition, as in Section 5,
considering the lightlike structure on N̄ we obtain some geometrical relations
between the level hypersurfaces of f and N̄ as well.

2 Notations and Preliminaries

For any differentiable manifold M , we denote by TM its tangent bundle with
the projection πM : TM −→ M and by Tp(M) its tangent space at a point p
of M . ℑr

s (M) is the space of tensor fields of class C∞ and of type (r, s). An
element of ℑ0

0 (M) is a C∞ function defined on M . We denote by ℑ (M) the
tensor algebra on M .

Let M be an n-dimensional differentiable manifold and V be a coordinate
neighborhood in M and (xi) , 1 ≤ i ≤ n, are certain local coordinates defined
in V . We introduce a system of coordinates (xi, yi) in π−1

M (V ) such that (yi)
are cartesian coordinates in each tangent space Tp(M), p being an arbitrary
point of V , with respect to the natural frame ( ∂

∂xi ) of local coordinates (xi).

We call (xi, yi) the coordinates induced in π−1
M (V ) from (xi). We suppose

that all the used maps belong to the class C∞ and we shall adopt the Einstein
summation convention through this paper.
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Now we must recall the definition of vertical and complete lifts of differ-
entiable elements defined on M . Let f,X,w, G and ∇̂ be a function, a vector
field, a 1-form, a tensor field of type (0, 2) and a linear connection, respectively.
We denote by fv,Xv, wv and Gv the vertical lifts and by fc,Xc, wc, Gc and
∇̂c the complete lifts, respectively. For a function f on M , we have

fv = f ◦ πM

fc = yi ∂f

∂xi

with respect to induced coordinates. Moreover these lifts have the properties:

(fX)v = fvXv, (fX)c = fvXc + fcXv

Xvfc = Xcfv = (Xf)v

wv(Xc) = wcXv = (w(X))v

wv(Xv) = 0, wc(Xc) = (w(X))c

[X,Y ]c = [Xc, Y c], [X,Y ]v = [Xv, Y c] = [Xc, Y v],

[Xv, Y v] = 0, (1)

Gc(Xc, Y c) = (G(X,Y ))c,

Gc(Xv, Y c) = Gc(Xc, Y v) = (G(X,Y ))v,

Gc(Xv, Y v) = 0

∇̂c
XcY c = (∇̂XY )c ∇̂c

XvY c = ∇̂c
XcY v = (∇̂XY )v

∇̂c
XvY v = 0

(cf. [11]). Hence it is easily seen that if G is a Riemannian metric on M then
Gc is a semi-Riemannian metric on TM and the index of G is equal to the
dimension of M . Thus if (M,G) is a Riemannian manifold then (TM,Gc)
is a semi-Riemannian manifold. Let ∇̂ be a metrical connection on M with
respect to G. In this case, considering equalities in (1) we can say that ∇̂c is
a metrical connection on TM with respect to Gc. Through this paper, as a
semi-Riemannian structure on TM , we shall consider (TM,Gc, ∇̂c).

Let f : M → R be a submersion. In this case for each t ∈ rangef ,
f−1(t) = St is a level hypersurfaces in M , i.e. St is (n − 1)− dimensional
submanifold of M [3]. Let F be a foliation by level sets of f so that

ℑ1
0(F ) = {X ∈ ℑ1

0 (M) : X(f) = 0}.
If (M,G) is a Riemannian manifold, then we write ℑ1

0(F )⊥ = Span{∇̂f},
where ∇̂f is gradient vector field of f . We also state that X ∈ T (F ) if and
only if G(X, ∇̂f) = 0.
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Consequently, if D is a distribution on M, defined by Dp = ker dfp, from
Frobenious Theorem D is integrable and determines the foliation F. It follows
that the integral manifolds of D are the level sets of f or connected components
of these level sets.

We know that a vector field on M belongs to D if Xp ∈ Dp for each
p ∈ M. When this happens we write X ∈ Γ(D). Thus, if X ∈ Γ(D), we call
X is tangent to F, i.e. for any p ∈ St, Xp ∈ TpSt. According to these, we can
write the following equality,

Γ(D) = ℑ1
0(F ),

and we get a local basis of Γ(D) or ℑ1
0(F ) in that form,

{Xi : 1 ≤ i ≤ n − 1, Xi ∈ Γ(D)}.

For the purpose of this paper we must write the tangent bundle of F.
Naturally, the tangent bundle of F is the disjoint union of tangent bundles of
the level hypersurfaces (or integral manifolds of D) that is ,

TF =
⋃

TSt

t ∈ range(f)

.

Then dim TF = 2(n−1) and codim TF = 2. We denote by ℑ1
0(TF ) the vector

fields on M being tangent to the foliation F, from [10] and [11],

ℑ1
0(TF ) = Span{Xc

1 , ...,Xc
n−1,X

v
1 , ...,Xv

n−1}, (2)

and

ℑ1
0(TF )⊥ = Span{ξc, ξv} (3)

where ξ = ∇̂f

|∇̂f | is a unit normal of the foliation F . Thus we have ,

ℑ1
0(TM) |TF = ℑ1

0(TF ) ⊕ℑ1
0(TF )⊥.

From (1), (2) and (3) as a local basis for ℑ1
0 (TM) along TF , we get

{Xc
1 , ...,Xc

n−1,X
v
1 , ...,Xv

n−1, ξ
c, ξv}.

3 Level Hypersurfaces of f c

In this section, we will consider a special level hypersurface of fc. If f is an
element of ℑ0

0 (M) and domain(f) = U is an open set of M , then the complete
lift of f is defined on TU .
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If f : M → R is a submersion, then fc is also. Indeed, let f : M → R is
a submersion, then f has rank one for each p in U . This means that, for at
least i, (1 ≤ i ≤ n), ∂f

∂xi |p 6= 0, p ∈ U. Furthermore, we can write the Jacobian
matrix of fc as follows,

J(fc) |vp
=
[

∂2f
∂xi∂xj |p vi ∂f

∂xi |p
]

for a point vp ∈ TpM. It follows that fc has rank one.
If we put N̄ =

⋃

p∈U

(ker df |p), from definition of fc we say that the restric-

tion of fc to N̄ is identically zero. Thus, we can write

N̄ = (fc)−1(0)

that is, N̄ is a level hypersurface of fc.
Let (V, ϕ) be a coordinate neighbourhood in M . Then (V̂ = π−1(V ), dϕ)

is a coordinate neighbourhood in TM . Let us construct the differentiable
structure of N̄ :

N̄ ∩ V̂ = V̄

=
{

(p, v) ∈ V̂ : p ∈ V, vp ∈ ker dfp

}

=
{

(p, v) ∈ V̂ : p ∈ V, fc(vp) = 0
}

.

Thus, a local coordinate system on V̄ is written to be ϕ̄ = (xi, v̄a), (1 ≤ a ≤
n−1) and we take {V̄α, ϕ̄α}α∈I as a differentiable structure on N̄ . In addition
we can also say that (N̄ , π̄,M, Rn−1) has a vector bundle structure and by
this structure it is a vector subbundle of TM , where π̄ is restriction of πM to
N̄ .

Let ı̄ : N̄ → TM be a natural injection in terms of local coordinates (xi, yi),
ı̄ has the following local expressions

xi = xi, yi = M i
av̄a , rank(M i

a) = n − 1.

Lemma 1 The tangent bundle of each leaf of F is included in N̄ as a sub-
manifold of dimension 2(n-1).

Proof. We know that the each leaf of F is a hypersurface of M . Let S be
a leaf of the foliation F. From [10], TS is a submanifold of TM with dimension
of 2(n − 1). For every vp ∈ TS,

fc(vp) =
∂f

∂xi
vi

= dfp(vp)

= 0.
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Hence TS ⊂ N̄ . Let ı̃ :TS → N̄ be a natural injection, then, in terms of local
coordinates (xi, v̄a), ı̃ has local expressions

xi = xi(ua), v̄a = va,

where (ua, va) are local coordinates on TS.
This case occurs for all leaves of F. For shortness we say that N̄ includes

the tangent bundle of F. We also say that Γ(TF ) ⊂ ℑ1
0(N̄). Hence we write

the following decomposition

ℑ1
0(N̄) = ℑ1

0(TF ) ⊕ Span{Z}
where Z is a tangent vector field to N̄ .

Lemma 2 The gradient vector field of fc with respect to semi Riemannian

metric Gc is the complete lift of ∇̂f. We shall denote
(

∇̂f
)c

as ∇̂cfc.

Proof. If G has its matrix expression [gij ], then the matrix expression of
Gc is as follows:

[

(gij)
c (gij)

v

(gij)
v 0

]

(see [11]).

We can find the inverse of this matrix, say
[

0 (gij)v

(gij)v (gij)c

]

.

From the definition of the gradient vector field, we can have

∇̂cfc =
(

∇̂f
)c

.

The proof is complete.

Since the vector field
(

∇̂f
)c

is orthogonal to the submanifold N̄ and thus

the vector field (∇̂f)c

|(∇̂f)c| is a unit normal vector field of N̄ , we have the lemma.

Lemma 3 For each f ∈ ℑ0
0 (M) , we have the the following properties :

a)
∣

∣

∣
∇̂f
∣

∣

∣

v

= ξv[fc]; b)
∣

∣

∣
∇̂f
∣

∣

∣

c

= ξc[fc]. (4)

Theorem 1 An orthonormal basis for Γ(TF )⊥ in (TM,Gc) is
{

Z =
1√
2

(

√

σc

σv
ξv −

√

σv

σc
ξc

)

, Z̄ =
1√
2

(

√

σc

σv
ξv +

√

σv

σc
ξc

)}

,

such that Z ∈ ℑ1
0(N̄) and Z̄ ∈ ℑ1

0(N̄)⊥,where σ =
∣

∣

∣
∇̂f
∣

∣

∣
.
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Proof. From (3), a vector field normal to TF must be a linear combination
of ξv and ξc. If N is an element of ℑ1

0(N̄) and ortogonal to TF , then we can
write

N = αξv + βξc, for α, β ∈ ℑ0
0

(

N̄
)

.

In this case
Gc(Xc, N) = 0,

for each Xc ∈ ℑ1
0(TF ). On the other hand, since N is tangent to N̄ ,

df c(N |A) = 0 for A ∈
−
N.

By using (4), we obtain,

df c |A(N |A) = df c (α(A)ξv |A + β(A)ξc|A)

= α(A)ξv |A[fc] + β(A)ξc|A [fc] (5)

= α(A)(ξ [f ])v(A) + β(A)(ξ [f ])c(A)

= α(A)
∣

∣

∣
∇̂f
∣

∣

∣

v

(A) + β(A)
∣

∣

∣
∇̂f
∣

∣

∣

c

(A).

This means that df c(N |A) is zero if and only if following equalities are satisfied

α(A) =
∣

∣

∣
∇̂f
∣

∣

∣

c

(A) and β(A) = −
∣

∣

∣
∇̂f
∣

∣

∣

v

(A). (6)

Now, by virtue of (6), we get

N =
∣

∣

∣
∇̂f
∣

∣

∣

c

ξv −
∣

∣

∣
∇̂f
∣

∣

∣

v

ξc (7)

= σcξv − σvξc.

If we put Z = N
|N | , then Z is a timelike unit vector field tangent to N̄ and

orthogonal to TF. On the other hand, we recall that (∇̂f)c = ∇̂cfc and thus
(∇̂f)c is normal to N̄ . We can write the following equalities:

∇̂f =
∣

∣

∣
∇̂f
∣

∣

∣
ξ,

(∇̂f)c =
∣

∣

∣
∇̂f
∣

∣

∣

c

ξv +
∣

∣

∣
∇̂f
∣

∣

∣

v

ξc,

and we have the unit normal vector field to N̄ in the form

Z̄ =
1√
2

(

√

σc

σv
ξv +

√

σv

σc
ξc

)

.

In addition, Z̄ is a spacelike unit vector field and Gc(Z, Z̄) = 0. Thus the
proof is complete.
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Corollary 1 In the case σ is a constant real number we get −Z = Z̄ = ξc.

Corollary 2 As a basis for ℑ1
0(N̄) we will take the set {Xc

1 , ...,Xc
n−1,X

v
1 , ...,Xv

n−1, Z}
such that the set {X1, ...,Xn−1} is a basis for the foliation F.

4 The Submanifold Geometry of N̄ in TM

In this section we assume that σ is not a constant real number. Also, we shall
identify dῑ(X̄) with X̄, for X̄ ∈ ℑ1

0(N̄).

Let us consider a Riemannian structure (M,G, ∇̂). If we denote by Ḡ the
induced metric on N̄ from Gc, then by definition we have

Ḡ(X̄, Ȳ ) = Gc(X̄, Ȳ ) for X̄, Ȳ ∈ ℑ1
0(N̄)(see [8]).

In addition, if we denote by ∇̄ the induced covariant differentiation on N̄ from
∇̂c, then by definition we have,

∇̂c
X̄

Ȳ = ∇̄X̄ Ȳ + B̄(X̄, Ȳ )Z̄, for X̄, Ȳ ∈ ℑ1
0(N̄),

Z̄ being the unit normal of N̄ given in Theorem 1 and B̄ being a certain tensor
field of type (0, 2) on N̄ . We call B̄ the second fundamental form of N̄ and
we define the tensor field H̄ of type (1, 1) by

B̄(X̄, Ȳ ) = Ḡ(H̄X̄, Ȳ ).

If B̄ is identically zero, we say that N̄ is a totally geodesic hypersurface of
TM . The equation of Weingarten for N̄ in TM is written as

∇̂c
X̄

Z̄ = −H̄X̄,

where X̄ and Ȳ are arbitrary elements of ℑ1
0(N̄) and H̄ is the shape operator

of N̄ (see [4]).

Theorem 2 N̄ is a non degenerate semi-Riemannian submanifold with index
n of TM with respect to Gc.

Proof. Let {X1, ...,Xn−1} be an orthonormal basis for the foliation F .
Then it is easily seen that the basis {Xc

1 , ...,Xc
n−1,X

v
1 , ...,Xv

n−1} consists of
null vectors completely. Now, by using this basis we construct an orthonormal
basis for TF as in [2] . If we put

Ei =
1√
2
(Xc

i − Xv
i ), E∗

i =
1√
2
(Xc

i + Xv
i ), 1 ≤ i ≤ n − 1,
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we get

Gc(Ei, Ej) = −(G(Xi,Xj))
v (8)

= −δij ,

and

Gc(E∗
i , E∗

j ) = (G(Xi,Xj))
v (9)

= δij .

By Theorem 1 in Section 3, (8) and (9), the set Φ̄ = {E1, ..., En−1, E
∗
1 , ..., E∗

n−1, Z}
is an orthonormal basis for N̄ and indN̄ = n.

Consequently, the restriction of Gc to N̄ has this matrix form with respect
to Φ̄ :

Gc |N̄=





−In−1 0n−1 0
0n−1 In−1 0

0 0 −1



 ,

where 0n−1 and 0 are (n − 1) × (n − 1) and 1 × 1 zero matrices, respectively.
Thus, rankGc |N̄= 2n − 1 and it follows that N̄ is a non-degenerate semi-
Riemannian submanifold of TM and N̄ has index n. From Theorem 2 we
understand that N̄ has co-index 0.

Now, let us compute the second fundamental form B̄ with respect to basis
{Xc

1 , ...,Xc
n−1,X

v
1 , ...,Xv

n−1, Z} such that {X1, ...,Xn−1} is an arbitrary basis
for the foliation F. We know from [4] that

B̄(Xc
i ,Xc

j ) = B̄i j = Gc(∇̂c
Xc

i
Xc

j , Z̄)

B̄(Xc
i ,Xv

j ) = B̄i j̄ = Gc(∇̂c
Xc

i
Xv

j , Z̄)

B̄(Xv
i ,Xv

j ) = B̄ı̄ j̄ = Gc(∇̂c
Xv

i
Xv

j , Z̄) (10)

B̄(Xc
i , Z) = B̄i 0 = Gc(∇̂c

Xc
i
Z, Z̄)

B̄(Xv
i , Z) = B̄ı̄ 0 = Gc(∇̂c

Xv
i
Z, Z̄)

B̄(Z,Z) = B̄00 = Gc(∇̂c
ZZ, Z̄).
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Thus we get

B̄i j = 1√
2

[√

σv

σc gc(HcXc
i ,Xc

j ) +
√

σc

σv gc(HvXc
i ,Xc

j )
]

,

B̄i j̄ = 1√
2

√

σv

σc (gc(HcXc
i ,Xv

j ),

B̄ı̄ j̄ = 0,

B̄i 0 = Xc
i [ln

√

σc

σv ]

B̄ı̄ 0 = Xv
i [ln

√

σc

σv ]

B̄00 = Gc(∇̂c
ZZ, Z̄)

= −Gc(Z, ∇̂c
ZZ̄)

= −Z[ln
√

σc

σv ],

(11)

where H is the shape operator of F .
By virtue of (10) and (11) we have the following theorem.

Theorem 3 If the following conditions are satisfied, then N̄ is a totally geo-
desic hypersurface of TM:

i) The foliation F is totally geodesic,
ii) σc/σv is a constant real number.

5 Prolongation of Level Hypersurfaces to N̄

Let S be a level hypersurfaces or a leaf of f . In this section we investigate the
geometry of TS in N̄ and we find some relationships between the submanifold
geometry of S and TS. This investigation is quite natural, because fc is
induced by f .

If we denote by g the induced metric on S from G, then we have

g(X,Y ) = G(X,Y ), X, Y ∈ ℑ1
0(S).

Let us consider the Riemannian covariant differentiation ∇̂ determined by G
in M. Then we have along S

∇̂BXBY = B(∇XY ) + g(HX,Y )ξ

where ξ and H are a unit normal and shape operator of S, respectively. We
know that from submanifold theory ∇ is determined by induced metric g.

The complete lift gc of g to TS is a semi Riemannian metric on TS. More-
over, gc is induced by Gc [10]. On the other hand, let us consider the induced
metric tensor from the metric structure (N̄ , Ḡ) which is defined by,

G̃(X̃, Ỹ ) = Ḡ(B̃X̃, B̃Ỹ ),
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where B̃ is the differential mapping of ı̃.
Now, we can ask if ”does there exist a relationship between gc and G̃ ?”

First of all, since TpS is isomorphic to ker df |p, for an element A of TpS ,
B(A) is included in N̄ . This means that, range(B) is a subset of N̄ . Then we
have following the equality:

G̃(X̃, Ỹ ) = Ḡ(X̃, Ỹ ) (12)

= Gc(X̃, Ỹ )

= gc(X̃, Ỹ ),

for any X̃, Ỹ ∈ ℑ1
0(TS). By virtue of (12) we have

G̃ = gc.

Since ∇ is the covariant differentiation determined by g, similarly ∇c is the
covariant differentiation determined by gc (see [10]).

Thus, if ∇̃ is the induced covariant differentiation from ∇̄ , then ∇̃ = ∇c.
In this case, for arbitrary elements X,Y of ℑ1

0(S), we have

∇̂c
XcY c = ∇̄XcY c + Ḡ(H̄Xc, Y c)Z̄c

= ∇c
XcY c + gc(H̃Xc, Y c)Z + Ḡ(H̄Xc, Y c)Z̄ (13)

= ∇c
XcY c + gc(H̃Xc, Y c)Z + Ḡ(H̄Xc, Y c)Z̄,

where H̃ is the shape operator of TS in
On the other hand, we have from [10],

∇̂c
XcY c = ∇c

XcY c + gc(HcXc, Y c)ξv + gc(HvXc, Y c)ξc. (14)

The equalities (13) and (14) allow us to determine a relation among H̃,Hc and
Hv. If N̄ is a totally geodesic submanifold of TM , then we get the following
equality :

g̃(H̃Xc, Y c) = Ḡ(H̃Xc, Y c)

= Ḡ(−∇̄XcZ, Y c)

= Gc(−∇̄XcZ, Y c)

= Gc(−∇̂c
XcZ, Y c) (15)

= − 1√
2
Gc(

√

σc

σv
HvXc −

√

σv

σc
HcXc, Y c)

= − 1√
2
Gc(

√

σc

σv
HvXc −

√

σv

σc
HcXc, Y c)

=
1√
2
gc(

√

σc

σv
HcXc −

√

σv

σc
HvXc, Y c).
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Theorem 4 Let N̄ be a totally geodesic submanifold of TM , H̃ be the shape
operator of TS in N̄ and H be the shape operator of S in M . In this case
there exists the following relation among H̃,Hc and Hv:

H̃ =
1√
2
(

√

σv

σc
Hc −

√

σc

σv
Hv). (16)

Proof. Since g is nondegenerate, from (15) the proof is clear.

Theorem 5 Let N̄ be a totally geodesic submanifold of TM. If S is a totally
geodesic submanifold, then TS is totally geodesic in N̄ .

Proof. If we assume that S is totally geodesic, then the second funda-
mental tensor of S vanishes always identically. If we denote by B̃ the second
fundamental tensor of TS , by virtue of (16) we have

B̃(Xc, Y c) = gc(H̃Xc, Y c)

= gc(
1√
2
(

√

σv

σc
HcXc −

√

σc

σv
HvXc), Y c)

=
1√
2

(

√

σv

σc
gc(HcXc, Y c) −

√

σc

σv
gc(HvXc, Y c)

)

=
1√
2

(

√

σv

σc
(g(HX,Y ))c −

√

σc

σv
(g(HX,Y ))v

)

= 0,

for X,Y ∈ ℑ1
0(S).

Corollary 3 Let N̄ be a totally geodesic submanifold of TM. If TS is totally
geodesic, then S is totally geodesic if and only if the following differential
equation is satisfied

(g(HX,Y ))cσv = (g(HX,Y ))vσc.

If we denote by m̃ the mean curvature of TS in N̄ , m̃ is defined as follows,

m̃ =
1

2(n − 1)
trace(H̃) (see [4]).

Theorem 6 If N̄ is a totally geodesic submanifold of TM , then the mean
curvature of TS in N̄ is written under the form

m̃ =

√
2

2(n − 1)

√

σv

σc
mv

where m is mean curvature of S.
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Proof. By virtue of (15) we have

m̃ =
1

2(n − 1)
trace

(

1√
2
(

√

σv

σc
Hc −

√

σc

σv
Hv)

)

.

Since traceHc = 2(traceH)v and traceHv = 0, the proof is complete.
S is said to be totally umbilical in M , if there exists a scalar field λ such

that

B(X,Y ) = λg(X,Y )

for arbitrary elements X,Y of ℑ1
0(S) (see [4]), that is H = λI, where I is

identity on ℑ1
0(S). Thus we have

Hc = λcIv + λvIc and Hv = λvIv. (17)

We recall that Ic is the identity on ℑ1
0(TS) (see [11]).

Corollary 4 Let N̄ be a totally geodesic submanifold of TM. In this case S
is minimal if and only if TS is minimal in N̄ .

Theorem 7 Let N̄ be a totally geodesic submanifold of TM and S be totally
umbilical and H = λI be the shape operator on S. In this case TS is totally
umbilical in N̄ if and only if following equality is satisfied,

λvσc = λcσv (18)

Proof. If we assume that the equality (17) is satisfied, by virtue of (15),
we get

H̃ =
1√
2

(

√

σv

σc
(λcIv + λvIc) −

√

σc

σv
λvIv

)

=
1√
2

(

(

√

σv

σc
λc −

√

σc

σv
λv)Iv +

√

σv

σc
λvIc

)

=
1√
2

√

σv

σc
λvIc.

Thus, H̃ is proportional to the identity transformation of ℑ1
0(TS).

Conversely, we assume that TS is totally umbilical in N̄ . In this case, the
shape operator of TS is written in the following form

H̃ = λ̃Ic.
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By means of (16) and (17 ) we have

H̃ =
1√
2
((

√

σv

σc
λc −

√

σc

σv
λv)Iv +

√

σv

σc
λvIc). (19)

= λ̃Ic,

Because Iv and Ic are linearly independent, we deduce, from (19),

√

σv

σc
λc −

√

σc

σv
λv = 0

and
1√
2

√

σv

σc
λv = λ̃.

Thus, the equality (18) is satisfied.

6 Lightlike Structure on N̄

In this section, we investigate the lightlike submanifold structure of N̄ in a
semi-Riemannian manifold (TM,Gc). For this purpose we need some infor-
mations about the lightlike submanifold geometry.

Firstly, we note that the notation and fundamental formulas used in this
study are the same as in [5]. Let M̄ be an (m+2)-dimensional semi-Riemannian
manifold with index q ∈ {1, ...,m+1}. Let M be a hypersurface of M̄ . Denote
by g the induced tensor field by ḡ on M . M is called a lightlike hypersurface
if g is of constant rank m. Consider the vector bundles TM⊥ and Rad(TM)
whose fibres are defined by

TxM⊥ = {Yx ∈ TXM | gx(Yx,Xx) = 0,∀Xx ∈ TxM}, Rad(TxM) = TxM∩TxM⊥,

for any x ∈ M, respectively. Thus, a hypersurface M of M̄ is lightlike if and
only if Rad(TxM) 6= {0} for all x ∈ M .

If M is a lightlike hypersurface, then we consider the complementary dis-
tribution S(TM) of TM⊥in TM which is called a screen distribution. From
[2], we know that it is nondegenerate. Thus we have a direct orthogonal sum

TM = S(TM) ⊥ TM⊥ (20)

Since S(TM) is non-degenerate with respect to ḡ we have

TM̄ = S(TM) ⊥ S(TM)⊥
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where S(TM)⊥ is the orthogonal complementary vector bundle to S(TM) in
TM̄ |M .

Now, we will give an important theorem about lightlike hypersurfaces
which enables us to set fundamental equations of M .

Theorem 8 (see [5]) Let (M, g, S(TM)) be a lightlike hypersurface of M̄ .
Then there exists a unique vector bundle tr(TM) of rank 1 over M such that,
for any non-zero section ξ of TM⊥ on a coordinate neighborhood U ⊂ M ,
there exists a unique section N of tr(TM) on U satisfying

ḡ(N, ξ) = 1

and
ḡ(N,N) = ḡ(N,W ) = 0,∀W ∈ Γ(S(TM)|U ).

From Theorem 8, we have

TM̄ |M = S(TM) ⊥ (TM⊥ ⊕ tr(TM)) = TM ⊕ tr(TM). (21)

tr(TM) is called the null transversal vector bundle of M with respect to
S(TM). Let ∇ be Levi-Civita connection on M . We have

∇̄XY =
∗
∇XY + h(X,Y ), X, Y ∈ Γ(TM) (22)

and
∇̄XV = −AV X + ∇t

XV,X ∈ Γ(TM), V ∈ Γ(tr(TM)) (23)

where
∗
∇XY, AV X ∈ Γ(TM) and h(X,Y ), ∇t

XV ∈ Γ(tr(TM)). ∇ is a sym-
metric linear connection on M which is called an induced linear connection, ∇t

is a linear connection on the vector bundle tr(TM), h is a Γ(tr(TM))-valued
symmetric bilinear form and AV is the shape operator of M concerning V .

Locally, suppose {ξ,N} is a pair of sections on U ⊂ M in Theorem 8.
Then define a symmetric F (U)−bilinear form B and a 1-form τ on U by

B(X,Y ) = ḡ(h(X,Y ), ξ),∀X,Y ∈ (TM |U )

and
τ(X) = ḡ(∇t

XN, ξ)

Thus (22) and (23) locally become

∇̄XY =
∗
∇XY + B(X,Y )N (24)
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and
∇̄XN = −ANX + τ(X)N (25)

respectively.
Let denote P as the projection of TM on S(TM). We consider the de-

composition
∗
∇XPY = ∇XPY + C(X,PY )ξ (26)

and
∗
∇Xξ = −A∗

ξX − τ(X)ξ (27)

where ∇XPY , A∗
ξX belong to S(TM) and C is a 1-form on U . Note that ∇

is not a metric connection (see [2]). We have the following equations

g(ANX,PY ) = C(X,PY ), ḡ(ANX,N) = 0, (28)

g(A∗
ξX,PY ) = B(X,PY ), ḡ(A∗

ξX,N) = 0, (29)

for any X,Y ∈ Γ(TM).
Now we will apply the above theory to the hypersurface N̄ .

Theorem 9 If
∣

∣

∣
∇̂f
∣

∣

∣
is a constant real number on domain of f, then N̄ is a

lightlike hypersurface of TM.

Proof. From (7) σc = 0 , i.e.
∣

∣

∣
∇̂f
∣

∣

∣
is a constant, then we see that Z = ξc.

Since Gc(ξc, ξc) = 0, the vector field Z is a lightlike vector field on N̄ . We
recall that Z is a tangent vector field to N̄ .

On the other hand, for any X̄ ∈ ℑ1
0(N̄),

Ḡ(X̄, Z) = Gc(X̄, Z)

= Gc(X̄, ξc)

= Gc(X̄,
1

∣

∣

∣
∇̂f
∣

∣

∣

∇̂cfc)

=
1

∣

∣

∣
∇̂f
∣

∣

∣

Gc(X̄, ∇̂cfc)

= 0

that is ξc is orthogonal to N̄ . Thus ξc is an element of Rad(TN̄).
To describe a screen subspace of TN̄, we must write the following decom-

position from (20),

TuN̄ = S(TuN̄) ⊥ Rad(TuN̄).
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We also know that the restriction of Gc to ℑ1
0(TF ) has rank 2(n−1). It follows

that, as a screen subspace of TuN̄ can be written following equality,

S(TuN̄) = TuTSt u ∈ TSt t ∈ range(f).

From now on, as a screen subspace of TN̄ we shall consider TF . In this case
we get

ℑ1
0(N̄) = ℑ1

0(TF ) ⊥ Γ(Rad(TN̄)

= Span{Xc
1 , ...,Xc

n−1,X
v
1 , ...,Xv

n−1} ⊥ Span{ξc},

where the set {X1, ...,Xn−1} is an orthonormal basis for ℑ1
0(F ).

On the other hand, from (21), we have the following decomposition for
ℑ1

0(TM),

ℑ1
0(TM)|N̄ = Γ(S(TN̄)) ⊥ Γ(Rad(TN̄)) ⊕ tr(TN̄)) (30)

= Span{Xc
1 , ...,Xc

n−1,X
v
1 , ...,Xv

n−1, ξ
c} ⊕ tr(TN̄).

Using (1), we have the equalities:

Gc(ξv, ξv) = 0, Gc(ξv, ξc) = 1

and
Gc(ξv, X̄) = 0, ∀X̄ ∈ Γ(STN̄ |Ū ),

on a coordinate neighbourhood Ū . Thus, from Theorem 8, the lightlike transver-
sal bundle of N̄ is as follows,

tr(TN̄ |Ū ) =
⋃

u∈Ū

Span{ξv |u} ,

with respect to S(TN̄). By means of (20) and (21) for X̂ ∈ ℑ1
0(TM) we can

write the following decomposition

X̂ |Ū= X̃ + λξc + µξv, X̃ ∈ ℑ1
0(TF ), λ, µ ∈ ℑ0

0(N̄),

on a neighbourhood Ū .

7 The Induced Geometrical Objects

In this section we investigate the lightlike submanifold geometry of N̄ . By
using (22) and (23), we get
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∇̂c
X̄

Ȳ = ∇̄X̄ Ȳ + h̄(X̄, Ȳ ), (31)

and

∇̂c
X̄

V = −AV X̄ + ∇t
X̄

V (32)

for any X̄, Ȳ ∈ ℑ1
0(N̄) and V ∈ Γ(trT N̄). Here, ∇̄ and ∇t are induced con-

nections on N̄ and trT N̄ respectively, h̄ and AV are second fundamental form
and shape operator of N̄ , respectively. The equalities (31) and (32) are the
Gauss and Weingarten formulae, respectively [5].

Define a symmetric bilinear form B̄ and a 1-form τ on Ū ⊂ N̄ by

B̄(X̄, Ȳ ) = Gc(h̄(X̄, Ȳ ), ξc) ∀X̄, Ȳ ∈ ℑ1
0(N̄).

τ(X̄) = Gc(∇t
X̄

ξv, ξc) ∀X̄ ∈ ℑ1
0(N̄).

It follows that

h̄(X̄, Ȳ ) = B̄(X̄, Ȳ )ξv

and

∇t
X̄

ξv = τ(X̄)ξv.

Hence, on Ū , (24) and (25) become

∇̂c
X̄

Ȳ = ∇̄X̄ Ȳ + B̄(X̄, Ȳ )ξv

and

∇̂c
X̄

ξv = −AξvX̄ + τ(X̄)ξv,

respectively.
On the other hand, if P denotes the projection of ℑ1

0(N̄) to ℑ1
0(TF ) with

respect to the decomposition TuN̄ = S(TuN̄) ⊥ Rad(TuN̄), we obtain the
local Gauss and Weingarten formulae on S(TN̄)

∇̄X̄PȲ = ∇̃X̄PȲ + C̃(X̄, P Ȳ )ξv

∇̄X̄ξc = −ÃξcX̄ − τ̃(X̄)ξc X̄ ∈ ℑ1
0(N̄), Ỹ ∈ ℑ1

0(TF )

where C̃, Ãξc and ∇̃ are the local second form, the local shape operator and
the linear connection on S(TN̄).

Theorem 10 The 1-form τ is identically zero.
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Proof. By virtue of (25), we have

τ(X̄) = Gc(∇̂c
X̄

ξv + AξvX̄, ξc) (33)

= Gc(∇̂c
X̄

ξv, ξc).

On the other hand, for any u ∈ N̄ and X̄ ∈ ℑ1
0(N̄), from the decomposition

(20), we can write,

X̄u = X̃u + λξc
u, λ ∈ R, X̃ ∈ ℑ1

0(TF ),

and hence (33) becomes

τ(X̄u) = Gc(∇̂c

X̃u+λξc
u

ξv, ξc
u)

= Gc(∇̂c

X̃u
ξv, ξc

u) + λGc(∇̂c
ξc

u
ξv, ξc

u)

= Gc(−HvX̃u, ξc
u) + λ(G(∇̂ξξ, ξ))

v
u

= 0,

where H is the shape operator of the foliation F . Recall from (14) that Hv is
one of the shape operators of the tangent foliation of F in (TM ,Gc) [10].

Corollary 5 For any X̄ ∈ ℑ1
0(N̄), the vector field ∇̂c

X̄
ξv is tangent to N̄ .

Now, let us discuss the fundamental form of N̄ .

B̄(X̄, Ȳ ) = Gc(h̄(X̄, Ȳ ), ξc)

= Gc(∇̂c
X̄

Ȳ − ∇̄X̄ Ȳ , ξc)

= Gc(∇̂c
X̄

Ȳ , ξc)

= Gc(∇̂c

X̃+λξc Ỹ + µξc, ξc)

= Gc(∇̂c

X̃
Ỹ + X̃[µ]ξc + µ∇̂c

X̃
ξc + λ∇̂c

ξc Ỹ (34)

+λξc[µ]ξc + λµ∇̂c
ξcξc, ξc)

= Gc(∇̂c

X̃
Ỹ , ξc)

= Gc(∇c

X̃
Ỹ + Bc(X̃, Ỹ )ξv + Bv(X̃, Ỹ )ξc, ξc)

= Bc(X̃, Ỹ )

= Bc(PX̄, P Ȳ ),

where B denotes the second fundamental form of F in M. From (34) we have
following theorem.
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Theorem 11 If F is a totally geodesic foliation in M, then N̄ is also a totally
geodesic submanifold in TM.

In addition, we get

∇̂c
X̄

PȲ = ∇̄X̄PȲ + h̄(X̄, Ȳ )

= ∇̃X̄PȲ + h̃(X̄, P Ȳ ) + h̄(X̄, Ȳ )

= ∇̃X̄PȲ + C̃(X̄, P Ȳ )ξc + B̄(X̄, Ȳ )ξv

= ∇̃X̃+λξc Ỹ + C̃(X̃ + λξc, Ỹ )ξc + (35a)

B̄(X̃ + λξc, Ỹ )ξv

= ∇̃X̃ Ỹ + λ∇̃ξc Ỹ + [C̃(X̃, Ỹ ) + λC̃(ξc, Ỹ )]ξc

+[B̄(X̃, Ỹ ) + λB̄(ξc, Ỹ )]ξv

= ∇̃X̃ Ỹ + λ∇̃ξc Ỹ + C̃(X̃, Ỹ )ξc + Bc(X̃, Ỹ )ξv.

On the other hand, we can also write the following from

∇̂c
X̄

PȲ = ∇̂c
X̄

Ỹ

= ∇̂c

X̃+λξc Ỹ (36)

= ∇̂c

X̃
Ỹ + λ∇̂c

ξc Ỹ

= ∇c

X̃
Ỹ + Bv(X̃, Ỹ )ξc + Bc(X̃, Ỹ )ξv + λ∇̂c

ξc Ỹ .

Thus by using (34), (35a) and (36) we can state the following corollary.

Corollary 6 Assume that ∇ is the induced Riemannian connection on the
foliation F,

B is the second fundamental form of F,

P denotes the projection of ℑ1
0(N̄) to ℑ1

0(TF ),

∇̃ is the linear connection on the screen bundle S(TN̄) = TF induced from
∇̂,

B̄ is the second fundamental form of N̄ ,

C̃ is the second fundamental form on S(TN̄).

Then we have

i) ∇cX̃ ◦ P = ∇̃X̄,

ii) Bv ◦ (P × P ) = C̃,

iii) Bc ◦ (P × P ) = B̄.
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Example Let us consider an n-dimensional Euclidean space E
n with stan-

dard inner product G as a Riemannian metric and a function f : E
n → R,

f(x1, ..., xn) =
n
∑

i=1

aix
i + b, ∃ai 6= 0, ai, b ∈ R, 1 ≤ i ≤ n. It is easily seen that

f is a submersion and the level hypersurfaces of f are (n−1)-planes of E
n. In

addition, the gradient vector field of f is given in the following form

∇f =

n
∑

i=1

ai

∂

∂xi
.

Thus |∇f | is a constant real number. A unit vector in direction of ∇f can be

written as ξ = ∇f
|∇f | . The complete lift of f is given by fc(xi, yi) =

n
∑

i=1

aiy
i,

where yi’s are cartesian coordinates on tangent bundle TE
n. The level hyper-

surface of fc at zero is given by

N̄ = {(xi, yi) |
n
∑

i=1

aiy
i = 0} = E

n × Dn−1,

where Dn−1 is an (n − 1)-plane in E
n. From Corollary 1, ξc ∈ Γ(Rad(TN̄)

and thus N̄ is a lightlike hypersurface of TE
n.
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