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Infimum and supremum completeness
properties of ordered sets without axioms

Zoltán BOROS ∗ and Árpád SZÁZ

Abstract

In this paper, by using the ideas of the second author, we establish
several intimate connections among the most simple infimum and supre-
mum completeness properties of a generalized ordered set. That is, an
arbitrary set equipped with an arbitrary inequality relation.

In particular, we obtain straightforward extensions of some basic
theorems on partially ordered sets. Due to the equalities inf (A) =
sup ( lb (A)) and sup (A) = inf ( ub (A)) established first by the second
author, the proofs given here are much shorter and more natural than
the usual ones.

1 Prerequisites

Throughout this paper, X will denote an arbitrary set equipped with an arbi-
trary binary relation ≤ . Thus, X may be considered as a generalized ordered
set, or an ordered set without axioms.

For any A ⊂ X , the members of the families

lb (A) =
{

x ∈ X : ∀ a ∈ A : x ≤ a
}

and
ub (A) =

{
x ∈ X : ∀ a ∈ A : a ≤ x

}

are called the lower and upper bounds of A in X , respectively. And the
members of the families
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min (A) = A ∩ lb (A) , max (A) = A ∩ ub (A) ,

inf (A) = max
(
lb (A)

)
, sup (A) = min

(
ub (A)

)

are called the minima, maxima, infima and suprema of A in X , respectively.
Concerning the above basic tools, we shall only need here the following

simple statements of [ 5 ] . Hints for the proofs are included for the reader’s
convenience.

Theorem 1.1 We have

(1) lb (∅) = X and ub (∅) = X ;

(2) lb (B) ⊂ lb (A) and ub (B) ⊂ ub (A) for all A ⊂ B ⊂ X .

Proof. It is convenient to note first that lb (A) =
⋂

a∈A lb (a) , where
lb (a) = lb

({a})
. Hence, the first statements of (1) and (2) are quite obvious.

Theorem 1.2 If A ⊂ X , then

(1) A ⊂ ub
(
lb (A)

)
and A ⊂ lb

(
ub (A)

)
;

(2) lb (A) = lb
(
ub

(
lb (A)

))
and ub (A) = ub

(
lb

(
ub (A)

))
.

Proof. It is convenient to note first that, for any A , B ⊂ X , we have
A ⊂ lb (B) if and only if B ⊂ ub (A) . Hence, by the inclusions lb (A) ⊂
lb (A) and ub (A) ⊂ ub (A) , it is clear that (1) is true.

Now, from the first inclusion of (1), by Theorem 1.1, it is clear that
lb

(
ub

(
lb (A)

)) ⊂ lb (A) . Moreover, from the second inclusion of (1), by
writing lb (A) in place of A , we can see that lb (A) ⊂ lb

(
ub

(
lb (A)

))
.

Therefore, the first statement of (2) is also true.

Theorem 1.3 If A ⊂ X , then

(1) inf (A) = sup
(
lb (A)

)
; (2) sup (A) = inf

(
ub (A)

)
.

Proof. By the corresponding definitions and Theorem 1.2, it is clear that
inf (A) = max

(
lb (A)

)
= ub

(
lb (A)

)∩lb (A) = ub
(
lb (A)

)∩lb
(
ub

(
lb (A)

))
=

min
(
ub

(
lb (A)

))
= sup

(
lb (A)

)
. Therefore, (1) is true.

Theorem 1.4 We have

(1) inf (∅) = ub (X ) = max (X ) = sup (X ) ;

(2) sup (∅) = lb (X ) = min (X ) = inf (X ) .
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Proof. By the corresponding definitions and Theorem 1.1, it is clear that
inf (∅) = max

(
lb (∅)

)
= max (X ) = X ∩ ub (X ) = ub (X ) . Hence, by

Theorem 1.3, it is clear that ub (X ) = inf (∅) = sup
(
lb (∅)

)
= sup (X ) .

Therefore, (1) is true.

2 Infimum and supremum completenesses

Definition 2.1 We say that

(1) X is inf-complete if inf (A) �= ∅ for all A ⊂ X ;

(2) X is quasi-inf-complete if inf (A) �= ∅ for all A ⊂ X with A �= ∅ ;

(3) X is pseudo-inf-complete if inf (A) �= ∅ for all A ⊂ X with
lb (A) �= ∅ ;

(4) X is semi-inf-complete if inf (A) �= ∅ for all A ⊂ X with A �= ∅
and lb (A) �= ∅ .

Remark 2.2 The corresponding sup-completeness properties are to be defined
analogously.

Moreover, X may, for instance, be called complete if it is both inf-complete
and sup-complete.

Example 2.3 Note that the set R of all real numbers, with the usual order-
ing, is semi-complete, but neither quasi-inf-complete nor pseudo-inf-complete,
and neither quasi-sup-complete nor pseudo-sup-complete.

While, the set R = R∪{−∞ , +∞} of all extended real numbers, with the
usual ordering, is already complete.

Example 2.4 Moreover, note that the set R \ {−∞} , with the usual order-
ing, is both pseudo-inf-complete and quasi-sup-complete, but neither quasi-inf-
complete nor pseudo-sup-complete.

While, the set R \ {+∞} , with the usual ordering, is both quasi-inf-
complete and pseudo-sup-complete, but neither pseudo-inf-complete nor quasi-
sup-complete.

Remark 2.5 In addition to Definition 2.1, for instance, we may also natu-
rally say that X is finitely (countably) quasi-inf-complete if inf (A) �= ∅ for all
finite (countable) nonvoid subset A of X . Thus, a partially ordered set may
be called a meet-semilattice if it is finitely quasi-inf-complete.
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Moreover, some lb, ub, min and max completenesses properties can also
be naturally introduced. Namely, for instance, a partially ordered set may be
called well-ordered if it is min-complete. And a preordered (partially ordered)
set may be called directed upward (totally ordered) if it is finitely ub-complete
(max-complete).

In this respect, it is also worth mentioning that a partially ordered set X
may be called inductive (almost inductive) if ub (A) �= ∅ for any totally ordered
(well-ordered) subset A of X . And X may be called strictly inductive (almost
inductive) if sup (A) �= ∅ for any totally ordered (well-ordered) subset A of
X . However, in the sequel, we shall only be interested in the completeness
properties mentioned in Definition 2.1 and Remark 2.2.

3 Relationships among infimum completenesses

By Definition 2.1, we evidently have the following two propositions.

Proposition 3.1 If X is inf-complete, then X is both quasi-inf-complete
and pseudo-inf-complete.

Proposition 3.2 If X is either quasi-inf-complete or pseudo-inf-complete,
then X is semi-inf-complete.

Moreover, by using the corresponding definitions, we can also easily prove
the following two theorems.

Theorem 3.3 The following assertions are equivalent :

(1) X is quasi-inf-complete and X �= ∅ ;

(2) X is semi-inf-complete and lb (X ) �= ∅ .

Proof. If (1) holds, then in particular we have inf (X ) �= ∅ . Hence,
by using that lb (X ) = inf (X ) , we can infer that lb (X ) �= ∅ . Now, by
Proposition 3.2, it is clear that (2) also holds.

On the other hand if (2) holds, then since lb (X ) ⊂ X we have X �= ∅ .
Moreover, since lb (X ) ⊂ lb (A) for all A ⊂ X , we also have lb (A) �= ∅ for
all A ⊂ X . Now, by Definition 2.1, it is clear that (1) also holds.

Theorem 3.4 The following assertions are equivalent :

(1) X is pseudo-inf-complete and X �= ∅ ;

(2) X is semi-inf-complete and ub (X ) �= ∅ .
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Proof. If (1) holds, then since lb (∅) = X we also have inf (∅) �= ∅ .
Hence, by using that inf (∅) = ub (X ) , we can infer that ub (X ) �= ∅ . Now,
by Proposition 3.2, it is clear that (2) also holds.

On the other hand, if (2) holds, then since ub (X ) ⊂ X we have X �=
∅ . Moreover, since inf (∅) = ub (X ) , we also have inf (∅) �= ∅ . Now, by
Definition 2.1, it is clear that (1) also holds.

Analogously to Theorems 3.3 and 3.4, one can also easily prove the fol-
lowing extension of the equivalence of (ii) and (iii) in [ 2 , Theorem 2.31 , p.
47 ] .

Theorem 3.5 The following assertions are equivalent :

(1) X is inf-complete ;

(2) X is quasi-inf-complete and ub (X ) �= ∅ ;

(3) X is pseudo-inf-complete and lb (X ) �= ∅ ;

(4) X is semi-inf-complete and lb (X ) �= ∅ and ub (X ) �= ∅ .

Remark 3.6 The above theorems can be reformulated by using that lb (X ) =
min (X ) = inf (X ) and ub (X ) = max (X ) = sup (X ) .

Moreover, it is also worth noticing that the results of this section can be
dualized by writing sup, ub and lb in place of inf , lb and ub , respectively.

4 Relationships between infimum and supremum com-
pletenesses

The following theorem is a straightforward extension of [ 1 , Theorem 3, p.
112 ] and the equivalence (i) and (ii) in [ 2 , Theorem 2.31 , p. 47 ] . Due to
Theorem 1.3, the proof given here is much shorter and more natural then the
usual one.

Theorem 4.1 The following assertions are equivalent :

(1) X is inf-complete ; (2) X is sup-complete .

Proof. To prove (1) =⇒ (2), note that if (1) holds and A ⊂ X , then
by Definition 2.1 we have inf

(
ub (A)

) �= ∅ . Moreover, by Theorem 1.3, we
also have sup (A) = inf

(
ub (A)

)
. Therefore, sup (A) �= ∅ , and thus (2) also

holds.
Hence, it is clear that in particular we also have
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Corollary 4.2 X complete if and only if it is either inf-complete or sup-
complete.

Analogously to Theorem 4.1, we can also easily prove the following im-
provement of [ 4 , Theorem 17 , p. 61 ] and [ 2 , Lemma 2.30 , p. 47 ] .

Theorem 4.3 The following assertions are equivalent :

(1) X is quasi-inf-complete ; (2) X is pseudo-sup-complete .

Proof. If (1) holds, and moreover A ⊂ X such that ub (A) �= ∅ , then
by Definition 2.1 we have inf

(
ub (A)

) �= ∅ . Moreover, by Theorem 1.3, we
also have sup (A) = inf

(
ub (A)

)
. Therefore, sup (A) �= ∅ , and thus (2) also

holds.
To prove the converse implication, suppose now that (2) holds, and more-

over A ⊂ X such that A �= ∅ . Then, by Theorem 1.2, we have A ⊂
ub

(
lb (A)

)
. Therefore, ub

(
lb (A)

) �= ∅ . Hence, by (2), it follows that
sup

(
lb (A)

) �= ∅ . Moreover, by Theorem 1.3, we have inf (A) = sup
(
lb (A)

)
.

Therefore, inf (A) �= ∅ , and thus (1) also holds.
Now, as an obvious dual of the above theorem, we can also state

Theorem 4.4 The following assertions are equivalent :

(1) X is quasi-sup-complete ; (2) X is pseudo-inf-complete .

Hence, it is clear that in particular we also have

Corollary 4.5 X is quasi-complete if and only if it is pseudo-complete.

Moreover, by using Theorems 1.2 and 1.3, we can also quite easily prove
the following extension of a basic theorem on the conditional completeness of
partially ordered sets. ( For a related result, see [ 1 , Theorem 8, p. 114 ] .)

Theorem 4.6 The following assertions are equivalent :

(1) X is semi-inf-complete ; (2) X is semi-sup-complete .

Proof. To prove (1) =⇒ (2), suppose that (1) holds, and moreover A ⊂ X
such that A �= ∅ and ub (A) �= ∅ . Then, by Theorem 1.2, we have A ⊂
lb

(
ub (A)

)
. Therefore, lb

(
ub (A)

) �= ∅ is also true. Hence, by Definition
2.1, it is clear that inf

(
ub (A)

) �= ∅ . Moreover, by Theorem 1.3, we also have
sup (A) = inf

(
ub (A)

)
. Therefore, sup (A) �= ∅ , and thus (2) also holds.

Hence, it is clear that in particular we also have

Corollary 4.7 X is semi-complete if and only if it is either semi-inf-complete
or semi-sup-complete.
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