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A generalized system of nonlinear relaxed
cocoercieve variational inclusions with

(A, η)-monotone mappings

Xiaolong Qin1, Yongfu Su1, Shin Min Kang2 and Meijuan Shang3

Abstract

In this paper, we introduce a generalized system of nonlinear relaxed
cocoercive variational inclusions involving (A, η)-monotone mappings in
the framework of Hilbert spaces. Based on the generalized resolvent
operator technique associated with (A, η)-monotonicity, we consider the
approximation solvability of solutions. Since (A, η)-monotonicity gen-
eralizes A-monotonicity and H-monotonicity, our results improve and
extend the recent ones announced by many others.

1. Introduction

Variational inclusions problems are among the most interesting and inten-
sively studied classes of mathematical problems and have wide applications
in the fields of optimization and control, economics and transportation equi-
librium and engineering sciences. Variational inclusions problems have been
generalized and extended in different directions using the novel and innova-
tive techniques. Various kinds of iterative algorithms to solve the variational
inequalities and variational inclusions have been developed by many authors.
There exists a vast literature [1-12] on the approximation solvability of non-
linear variational inequalities as well as nonlinear variational inclusions using
projection type methods, resolvent operator type methods or averaging tech-
niques. In most of the resolvent operator methods, the maximal monotonicity
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has played a key role, but more recently introduced notions of A-monotonicity
[10] and H-monotonicity [3,4] have not only generalized the maximal mono-
tonicity, but gave a new edge to resolvent operator methods. Recently Verma
[12] generalized the recently introduced and studied notion of A-monotonicity
to the case of (A, η)-monotonicity. Resolvent operator techniques have been
in use for a while in literature, especially with the general framework involv-
ing set-valued maximal monotone mappings, but it got a new empowerment
by the recent developments of A-monotonicity and H-monotonicity. Further-
more, these developments added a new dimension to the existing notion of
the maximal monotonicity and its applications to several other fields such as
convex programming and variational inclusions. Inspired and motivated by
the recent research going on in this area, in this paper, we explore the ap-
proximation solvability of a generalized system of nonlinear variational inclu-
sion problems based on (A, η)-resolvent operator technique in the framework
Hilbert spaces.

2. Preliminaries

In this section we explore some basic properties derived from the notion
of (A, η)-monotonicity. Let H denote a real Hilbert space with the norm ‖ · ‖
and inner product 〈·, ·〉, respectively. Let η : H × H :→ H be a single-valued
mapping. The mapping η is called τ -Lipschitz continuous if there is a constant
τ > 0 such that

‖η(u, v)‖ ≤ τ‖u − v‖, ∀u, v ∈ H.

Let M : H → 2H be a multi-valued mapping from a Hilbert space H to
2H , the power set of H . We recall following:

(i) The set D(M) defined by

D(M) = {u ∈ H : M(u) �= ∅},

is called the effective domain of M.
(ii) The set R(M) defined by

R(M) =
⋃

u∈H

M(u),

is called the range of M .
(iii) The set G(M) defined by

G(M) = {(u, v) ∈ H × H : u ∈ D(M), v ∈ M(u)},

is the graph of M .
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Definition 2.1. Let η : H × H → H be a single-valued mapping and let
M : H → 2H be a multi-valued mapping on H .

(i) The map M is said to be (r, η)-strongly monotone if

〈u∗ − v∗, η(u, v)〉 ≥ r‖u − v‖, ∀(u, u∗), (v, v∗) ∈ G(M).

(ii) η-pseudo-monotone if 〈v∗, η(u, v)〉 ≥ 0 implies

〈u∗, η(u, v)〉 ≥ 0, ∀(u, u∗), (v, v∗) ∈ G(M).

(iii) (m, η)-relaxed monotone if there exists a positive constant m such that

〈u∗ − v∗, η(u, v)〉 ≥ −m‖u − v‖2, ∀(u, u∗), (v, v∗) ∈ G(M).

Definition 2.2 [3,4]. Let H : X → X be a nonlinear mapping on a Hilbert
space X and let M : X → 2X be a multi-valued mapping on X . The map M
is said to be H-monotone if (H + ρM)X = X for ρ > 0.

Definition 2.3 [10]. Let A : H → H be a nonlinear mapping on a Hilbert
space H and let M : H → 2H be a multivalued mapping on H . The map M
is said to be A-monotone if
(i) M is m-relaxed monotone.
(ii) A + ρM is maximal monotone for ρ > 0.

Remark 2.1. A-monotonicity generalizes the notion of H-monotonicity in-
troduced by Fang and Huang [2,3].

Definition 2.4 [8]. A mapping M : H → 2H is said to be maximal (m, η)-
relaxed monotone if
(i) M is (m, η)-relaxed monotone,
(ii) for (u, u∗) ∈ H × H and

〈u∗ − v∗, η(u, v)〉 ≥ −m‖u − v‖2, (v, v∗) ∈ graph(M),

we have u∗ ∈ M(u).

Definition 2.5 [8]. Let A : H → H and η : H ×H → H be two single-valued
mappings. The map M : H → 2H is said to be (A, η)-monotone if
(i) M is (m, η)-relaxed monotone,
(ii) R(A + ρM) = H for ρ > 0.
Note that alternatively, the map M : H → 2H is said to be (A, η)-monotone if
(i) M is (m, η)-relaxed monotone,
(ii) A + ρM is η-pseudomonotone for ρ > 0.

Remark 2.2. (A, η)-monotonicity generalizes the notion of A-monotonicity
introduced by Verma [10].
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Definition 2.6. Let A : H → H be an (r, η)-strong monotone mapping
and let M : H → H be an (A, η)-monotone mapping. Then the generalized
resolvent operator JA,η

M,ρ : H → H is defined by

JA,η
M,ρ(u) = (A + ρM)−1(u), ∀u ∈ H,

where ρ > 0 is a constant.

Definition 2.7. The map N : H × H is said to be relaxed (β, γ)-cocoercive
with respect to A in the first argument if there exists two positive constants
α, β such that

〈T (x, u) − T (y, u), Ax − Ay〉 ≥ (−β)‖T (x, u) − T (y, u)‖2 + γ‖x − y‖2,

for all (x, y, u) ∈ H × H × H.

Proposition 2.1 [3]. Let H : X → X be a strictly monotone mapping and
let M : X → 2X be an H-monotone mapping. Then the operator (H +ρM)−1

is single-valued.

Proposition 2.2 [9,10]. Let A : H → H be an r-strongly monotone mapping
and let M : H → 2H be an A-monotone mapping. Then the operator (A +
ρM)−1 is single-valued.

Proposition 2.3 [12]. Let η : H× → H be a single-valued mapping, A :
H → H be (r, η)-strongly monotone mapping and M : H → 2H be an (A, η)-
monotone mapping. Then the mapping (A + ρM)−1 is single-valued.

3. Results on algorithmic convergence analysis

Let N : H × H → H , η : H × H → H g : H → H be three nonlinear
mappings. Let M : H → 2H be an (A, η)-monotone mapping. Then the
nonlinear system of variational inclusion (NSVI) problem: determine elements
u, v ∈ H such that

0 ∈ Ag(u) − Ag(v) + ρ1[N(v, u) + Mg(u)], (3.1)

0 ∈ Ag(v) − Ag(u) + ρ2[N(u, v) + Mg(v)]. (3.2)

Next, we consider some special cases of NSVI problem (3.1)-(3.2).
(I) If g = I in NSVI (3.1)-(3.2), then NSVI problem (3.1)-(3.2) reduces to

the following NSVI problem: find u, v ∈ H such that

0 ∈ Au − Av + ρ1[N(v, u) + Mu], (3.3)

0 ∈ Av − Au + ρ2[N(u, v) + Mv]. (3.4)
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(II) If g = I, ρ1 = ρ2 and u = v in NSVI (3.1)-(3.2), we have the following
NVI problem: find an element u ∈ H such that

0 ∈ N(u, u) + Mu, (3.5)

In order to prove our main results, we need the following lemmas.

Lemma 3.1 [8,12]. Let H be a real Hilbert space and let η : H ×H → H be a
τ-Lipschitz continuous nonlinear mapping. Let A : H → H be a (r, η)-strongly
monotone and let M : H → 2H be (A, η)-monotone. Then the generalized
resolvent operator JA,η

M,ρ : H → H is τ/(r − ρm), that is,

‖JA,η
M,ρ(x) − JA,η

M,ρ(y)‖ ≤ τ

r − ρm
‖x − y‖, ∀x, y ∈ H.

Lemma 3.2. Let H be a real Hilbert space, let A : H → H be (r, η)-strongly
monotone, and let M : H → 2H be (A, η)-monotone. Let η : H × H → H
be a τ-Lipschitz continuous nonlinear mapping. Then (u, v) is the solution of
NSVI (3.1)-(3.2) if and only if it satisfies

g(u) = JA,η
M,ρ1

[Ag(v) − ρ1N(v, u)], (3.6)

g(v) = JA,η
M,ρ2

[Ag(u) − ρ2N(u, v)]. (3.7)

Proof. The fact directly follows from the Definition 2.6.
Next, we consider the following algorithms.

Algorithm 3.1. For any u0, v0 ∈ H , compute the sequences {un} and {vn}
by the iterative process:{

un+1 = un − g(un) + JA,η
M,ρ1

[Ag(vn) − ρ1N(vn, un)],
g(vn) = JA,η

M,ρ2
[Ag(un) − ρ2N(un, vn)].

(3.8)

(I) If g = I in Algorithm 3.1, then we have the following algorithm:

Algorithm 3.2. For any u0, v0 ∈ H , compute the sequence {un} and {vn}
by the iterative process:{

un+1 = JA,η
M,ρ1

[Ag(vn) − ρ1N(vn, un)],
g(vn) = JA,η

M,ρ2
[Ag(un) − ρ2N(un, vn)].

(3.9)

Remark 3.1. Algorithm 3.2 gives the approximate solution to the NSVI
(3.3)-(3.4).
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(II) If g = I, ρ1 = ρ2 and un = vn in Algorithm 3.1, then we have the
following algorithm:

Algorithm 3.3. For any u0 ∈ H , compute the sequence {un} by the iterative
processes:

un+1 = JA,η
M,ρ[Aun − ρN(un, un)]. (3.10)

Remark 3.2. Algorithm 3.3 gives the approximate solution to the NVI (3.5).

Now, we are in the position to prove our main results.

Theorem 3.1. Let H be a real Hilbert space, let A : H × H → H be (r, η)-
strongly monotone and s-Lipschitz continuous and let M : H → 2H be (A, η)-
monotone. Let η : H×H → H be a τ-Lipschitz continuous nonlinear mapping
and let N : H × H → H be relaxed (α, β)-cocoercive (with respect to Ag) and
µ-Lipschitz continuous in the first variable. Let N be ν-Lipschitz continuous
in the second variable and g : H → H be relaxed (γ, δ)-cocoercive and σ-
Lipschitz. Let (u∗, v∗) be the solution of NSVI problem (3.1)-(3.2), {un} and
{vn} be sequences generated by Algorithm 3.1. Suppose the following condition
are satisfied:

τ2θ2θ1

(r − ρ1m)[(1 − θ3)(r − ρ2m) − τρ2ν]
+

τρ1ν

r − ρ1m
< 1 − θ3,

where θ1 =
√

σ2s2 − 2ρ1β + 2ρ1αµ2 + ρ2
1µ

2, θ2 =
√

σ2s2 − 2ρ2β + 2ρ2αµ2 + ρ2
2µ

2,

and θ3 =
√

1 + 2σ2γ − 2δ + σ2. Then the sequences {un} and {vn} converges
strongly to u∗ and v∗, respectively.

Proof. Let (u∗, v∗) ∈ H is the solution of NSVI problem (3.1)-(3.2), we have

{
u∗ = u∗ − g(u∗) + JA,η

M,ρ1
[Ag(v∗) − ρ1N(v∗, u∗)],

g(v∗) = JA,η
M,ρ2

[Ag(u∗) − ρ2N(u∗, v∗)].
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It follows that

‖un+1 − u∗‖
= ‖un − g(un) + JA,η

M,ρ1
[Ag(vn) − ρ1N(vn, un)] − u∗‖

= ‖un − g(un) + JA,η
M,ρ1

[Ag(vn) − ρ1N(vn, un)] − u∗ + g(u∗)

− JA,η
M,ρ1

[Ag(v∗) − ρ1N(v∗, u∗)]‖
≤ ‖un − u∗ − [g(un) − g(u∗)]‖

+ ‖JA,η
M,ρ1

[Ag(vn) − ρ1N(vn, un)] − JA,η
M,ρ1

[Ag(v∗) − ρ1N(v∗, u∗)]‖
≤ ‖un − u∗ − [g(un) − g(u∗)]‖

+
τ

r − ρ1m
‖Ag(vn) − Ag(v∗) − ρ1[N(vn, un) − N(v∗, un)]

− ρ1[N(v∗, un) − N(v∗, u∗)]‖.

(3.11)

It follows from relaxed (α, β)-cocoercive monotonicity and µ-Lipschitz conti-
nuity of N in the first variable, A is s-Lipschitz continuous and g is σ-Lipschitz
continuous that

‖Ag(vn) − Ag(v∗) − ρ(N(vn, un) − N(v∗, un))‖2

= ‖Ag(vn) − Ag(v∗)‖2 − 2ρ1〈N(vn, un) − N(v∗, un), Ag(vn) − Ag(v∗)〉
+ ρ2

1‖N(vn, un) − N(v∗, un)‖2

≤ θ2
1‖vn − v∗‖2,

(3.12)
where θ1 =

√
σ2s2 − 2ρ1β + 2ρ1αµ2 + ρ2

1µ
2. Observe that the ν-Lipschitz con-

tinuity of N in the second argument yields that

‖N(v∗, u∗) − N(v∗, un)‖ ≤ ν‖un − u∗‖. (3.13)

On the other hand, we have

‖g(vn) − g(v∗)‖
= ‖JA,η

M,ρ2
[Ag(un) − ρ2N(un, vn)] − JA,η

M,ρ2
[Ag(u∗) − ρ2N(u∗, v∗)]‖

≤ τ

r − ρ2m
‖Ag(un) − Ag(u∗) − ρ2[N(un, vn) − N(u∗, v∗)]‖

≤ τ

r − ρ2m
‖Ag(un) − Ag(u∗) − ρ2[N(un, vn) − N(u∗, vn)]

− ρ2[N(u∗, vn) − N(u∗, v∗)]‖.

(3.14)

It follows from relaxed (α, β)-cocoercive monotonicity and µ-Lipschitz continu-
ity of N in the first variable, A2 is s-Lipschitz continuous and g is σ-Lipschitz
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continuous that

‖Ag(un) − Ag(u∗) − ρ(N(un, vn) − N(u∗, vn))‖2

= ‖Ag(un) − Ag(u∗)‖2 − 2ρ2〈N(un, vn) − N(u∗, vn), Ag(un) − Ag(u∗)〉
+ ρ2

2‖N(un, vn) − N(u∗, vn)‖2

≤ θ2
2‖un − u∗‖2,

(3.15)
where θ2 =

√
σ2s2 − 2ρ2β + 2ρ2αµ2 + ρ2

2µ
2. Observe that the ν-Lipschitz con-

tinuity of N in the second argument yields that

‖N(u∗, v∗) − N(u∗, vn)‖ ≤ ν‖vn − v∗‖. (3.16)

Substituting (3.15) and (3.16) into (3.14), we have

‖g(vn) − g(v∗)‖ ≤ τθ2

r − ρ2m
‖un − u∗‖ +

τρ2ν

r − ρ2m
‖vn − v∗‖. (3.17)

Observe that

‖vn − v∗‖ ≤ ‖vn − v∗ − [g(vn) − g(v∗)]‖ + ‖g(vn) − g(v∗)‖. (3.18)

Since the relaxed (γ, δ)-cocoercive monotonicity and σ-Lipschitz continuity of
g that

‖vn − v∗ − g(vn) − g(v∗)‖2

= ‖vn − v∗‖2 − 2〈g(vn) − g(v∗), vn − v∗〉 + ‖g(vn) − g(v∗)‖2

≤ ‖vn − v∗‖2 − 2[−γ‖g2(vn) − g2(v∗)‖2 + δ‖vn − v∗‖2] + ‖g2(vn) − g2(v∗)‖2

≤ ‖vn − v∗‖2 + 2σ2γ‖vn − v∗‖2 − 2δ‖vn − v∗‖2 + σ2‖vn − v∗‖2

= θ2
3‖vn − v∗‖2,

(3.19)
where θ3 =

√
1 + 2σ2γ − 2δ + σ2. Substitute (3.17) and (3.19) into (3.18)

yields that

‖vn − v∗‖ ≤ θ3|vn − v∗‖ +
τθ2

r − ρ2m
‖un − u∗‖ +

τρ2ν

r − ρ2m
‖vn − v∗‖,

which implies that

‖vn − v∗‖ ≤ τθ2

(1 − θ3)(r − ρ2m) − τρ2ν
‖un − u∗‖. (3.20)

Substitute (3.20) into (3.12) yields that

‖Ag(vn) − Ag(v∗) − ρ(N(vn, un) − N(v∗, un))‖
≤ τθ2θ1

(1 − θ3)(r − ρ2m) − τρ2ν
‖un − u∗‖. (3.21)
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On the other hand, we can obtain similarly

‖un − u∗ − g(un) − g(u∗)‖ ≤ θ3‖un − u∗‖. (3.22)

Substituting (3.13), (3.21) and (3.22) into (3.11), we arrive at

‖un+1 − u∗‖

≤ θ3‖un − u∗‖ +
τ2θ2θ1

(r − ρ1m)[(1 − θ3)(r − ρ2m) − τρ2ν]
‖un − u∗‖

+
τρ1ν

r − ρ1m
‖un − u∗‖

= (θ3 +
τ2θ2θ1

(r − ρ1m)[(1 − θ3)(r − ρ2m) − τρ2ν]
+

τρ1ν

r − ρ1m
)‖un − u∗‖.

(3.23)

Observing condition θ3 + τ2θ2θ1
(r−ρ1m)[(1−θ3)(r−ρ2m)−τρ2ν] + τρ1ν

r−ρ1m < 1, we can
prove the desired conclusion. This completes the proof.

From Theorem 2.1, we have the following results immediately.

Theorem 3.2. Let H be a real Hilbert space, let A : H × H → H be (r, η)-
strongly monotone and s-Lipschitz continuous and let M : H → 2H be (A, η)-
monotone. Let η : H×H → H be a τ-Lipschitz continuous nonlinear mapping
and let N : H × H → H be relaxed (α, β)-cocoercive (with respect to A) and
µ-Lipschitz continuous in the first variable. Let N be ν-Lipschitz continuous
in the second variable. Let u∗, v∗ be the solution of NSVI problem (3.3)-(3.4),
{un} and {vn} be sequences generated by Algorithm 3.2. Suppose the following
condition are satisfied:

τ2θ2θ1

(r − ρ1m)[(r − ρ2m) − τρ2ν]
+

τρ1ν

r − ρ1m
< 1,

where θ1 =
√

s2 − 2ρ1β + 2ρ1αµ2 + ρ2
1µ

2 and θ2 =
√

s2 − 2ρ2β + 2ρ2αµ2 + ρ2
2µ

2.
Then the sequences {un} and {vn} converges strongly to u∗ and v∗, respec-
tively.

Theorem 3.3. Let H be a real Hilbert space, let A : H × H → H be (r, η)-
strongly monotone and s-Lipschitz continuous and let M : H → 2H be (A, η)-
monotone. Let η : H×H → H be a τ-Lipschitz continuous nonlinear mapping
and let N : H × H → H be relaxed (α, β)-cocoercive (with respect to A) and
µ-Lipschitz continuous in the first variable. Let N be ν-Lipschitz continuous
in the second variable. Let u∗ be the solution of NVI problem (3.5), {un} be
a sequence generated by Algorithm 3.3. Suppose the following condition are
satisfied:

(θ + ρν)τ < (r − ρm),
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where θ =
√

s2 − 2ρβ + 2ραµ2 + ρ2µ2. Then the sequence {un} converges
strongly to u∗.
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