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Quenching time of solutions for some
nonlinear parabolic equations

Diabate Nabongo and Théodore K. Boni

Abstract

In this paper, we consider the following initial-boundary value prob-

lem

ue(z,t) = eLu(z, t) + f(u(z,t)) in Qx(0,T),

u(z,t) =0 on 0Q x (0,T),

u(z,0) =uo(z) in Q
where ¢ is a positive parameter, L is an elliptic operator, €2 is a bounded
domain in RY with smooth boundary 9, f(s) is positive, nondecreas-
ing, convex function for s € (—o0,b), lims—p f(s) = +oo with b =
const > 0 and fob f(é‘:) < 400. We show that if € is small enough, the so-
lution u of the above problem quenches in a finite time and its quenching
time tends to the one of the solution of the following differential equation

{ a'(t) = f(a(t), t>0,
a(0) = M,

when € goes to zero, where M = sup,cq uo ().
Finally, we give some numerical results to illustrate our analysis.

1 Introduction

Let © be a bounded domain in RY with smooth boundary 9€2. Consider the
following initial-boundary value problem for a nonlinear parabolic equation of
the form:

ug(x,t) = eLu(x,t) + f(u(x,t)) in Qx(0,7), (1)
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u(z,t) =0 on 0Qx(0,T), (2)

w(z,0) =up(x) >0 in Q, (3)

where f(s) is a positive, nondecreasing, convex function for s € (—o0,b),

lims_,p f(s) = 400 and fob f%i) < 400 with b = const > 0, ¢ is a positive
parameter,

N
0 ou
Lu = 121 8_xi(aij(x)8_xj)’

where a;; : Q — R, a;; € C1(Q), a;; = aji, 1 <4, j < N and there exists a
constant C' > 0 such that

N
Y i@ = Cl &P YaeQ VE=(&,...6n) €RY,
ij=1
where || . || stands for the Euclidean norm of RY.

The initial data ug € C1(Q), uo(z) is nonnegative in 2, sup, ¢, uo(r) = M < b,
uo(x) = 0 on ON.
Here (0,T) is the maximal time interval on which the solution u exists. The
time T may be finite or infinite. When T is infinite, we say that the solution u
exists globally. When T is finite, the solution u reaches the value b in a finite
time, namely

Jimn (. 1) =

where ||u(.,t)|loc = sup,eq |u(z,t)|. In this last case, we say that the solution
u quenches in a finite time and the time T is called the quenching time of the
solution u. Using standard methods based on the maximum principle, it is
not hard to prove the local existence and uniqueness of the solution (see for
instance [3]). On the other hand, since the initial data ug is nonnegative in 2,
from the maximum principle, we see that the solution v is also nonnegative
in © x (0,7). Solutions of nonlinear parabolic equations which quench in a
finite time have been the subject of investigation of many authors (see [3],
[4], [5], [9] and the references cited therein). In [6], Friedman and Lacey have
considered the problem (1)—(3) in the case where the operator L is replaced by
the Laplacian and the term of the source by a function f(s) which is positive,
increasing, convex for nonnegative values of s and fooo % < 400. Under some
additional conditions on the initial data, they have shown that the solution
of (1)—(3) blows up in a finite time and its blow-up time goes to the one of the
solution of the following differential equation

o (t) = flalt), t>0, a(0)=M, (4)
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when € goes to zero, where M = sup,cq uo(z) (we say that a solution u blows
up in a finite time if it reaches the value infinity in a finite time).

The proof developed in [6] is based on the construction of upper and lower so-
lutions and it is difficult to extend the above result using the method described
in [6]. In this paper, we obtain the same result using both a modification of
Kaplan’s method (see [7]) and a method based on the construction of upper
solutions. This method is simple and may be extended to other classes of
parabolic equations. Our paper is written in the following manner. In the
next section, we show that when ¢ is sufficiently small, the solution u of (1)—
(3) quenches in a finite time and its quenching time goes to the one of the
solution of the differential equation defined in (4) when e decays to zero. We
also extend this result to other classes of nonlinear parabolic equations in the
third section. Finally, in the last section we give some numerical results to
illustrate our analysis.

2 Quenching solutions

In this section, we show that the solution u of the problem (1)—(3) quenches in
a finite time for e sufficiently small. In addition, we prove that its quenching
time goes to the one of the solution of the differential equation defined in (4)
as € tends to zero.

Before starting, let us recall a well known result.

Consider the eigenvalue problem

—Lo(z) = Ap(x) in Q, (5)
elx)=0 on 09, (6)
o(x) >0 in . (7)

We know that the above problem has a solution (¢, ) such that A > 0.
Without loss of generality, we may suppose that fQ o(z)dx = 1.

Our first result is the following.

Theorem 1 Assume that ug(z) = 0. Suppose thate < % where A = )\fob %
Then the solution u of (1)—(3) quenches in a finite time and its quenching time
T satisfies the following relation

0<T—-Ty <eTHA+o(e),

where Ty = fob % is the quenching time of the solution «(t) of the differential
equation defined in (4).
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Proof. Since (0,7 is the maximal time interval on which ||u(.,t)|/cc < b, our
aim is to show that T is finite and satisfies the above relation. Since the initial
data ug is nonnegative in €2, the maximum principle implies that the solution
u is also nonnegative in © x (0,7"). Introduce the function v(t) defined as
follows

v(t):/ﬂu(x,t)ga(x)dx.

Take the derivative of v in t and use (1) to obtain

’

V() =< [ plaiute.de+ [ fute0)p)ds

Applying Green’s formula, we arrive at

’

v (#) :E/QU(x,t)Lga(a:)da:+/Qf(u(a:,t))ga(a:)dx.

Since [, ¢(x)dr =1 and f(s) is a convex function for nonnegative values of s,
using Jensen’s inequality and taking into account (5), we deduce that

V(1) 2 =dev(t) + f(v(1)),

which implies that

We observe that

bt
/0 m O<q<b/ f O<9<b f( )

because f(s) is a nondecreasing function for 0 < s < b. We deduce that
v'(t) > (1 — Ae) f(v(t)), which implies that % > (1 — Ae)dt. Integrating the
above inequality over (0,7"), we discover that

1 b ds
T< —— _—
T 1-4e )y f(s)

This implies that the solution u quenches in a finite time and we have an upper
bound of the quenching time.
Now introduce the function z(z,t) defined as follows

(8)

2(x,t) = alt) in Qx (0,Tp).
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A routine computation yields
zi(x,t) — Lz(z,t) — f(z(x,t)) =0 in Qx(0,Ty),
z(x,t) >0 on 00 x (0,Ty),
z2(x,0) > u(z,0) in Q,
where T, = min{T, Tp}. The maximum principle implies that
0 <u(z,t) < z(z,t)=a(t) in Qx(0,T).
Consequently, we find that

b

ds
T>Ty= | —. (9)

o f(s)
In fact, suppose that Ty > T', which implies that «(T) > ||u(.,T)|lcc = b. But
this contradicts the fact that(0,Tp) is the maximal time interval of existence
of the solution a(t). Apply Taylor’s expansion to obtain 1_—1146 =1+ Ae+o(e).

Use (8), (9) and the above relation to complete the rest of the proof.

Remark 1 Let us consider the case where ug = 0. The above theorem shows
that for e small enough, the solution u of (1)—(3) quenches in a finite time.
We want to know what happens when € is large enough. Introduce the function
w(x) defined as follows

Lw(z)+1=0 in K,
w(x)=0 on 00N

We know that w(z) exists and is positive in Q. Let o be a positive constant such
that |w||ss < L. It is not hard to see that if e > L f(al|wl|so) then the solution
u of (1)-(3) exists globally and is bounded from above by a||w|. Indeed, let
z(x,t) = aw(x) in Q x (0,T). A straightforward computation reveals that

zi(x,t) —eLlz(z,t) =ac in Qx(0,T).
Since ae > f(al|lw|e) > f(2(x,t)), we deduce that

zi(x,t) —eLz(x,t) = f(z(x,t) in Qx(0,7T),
z(x,t) =0 on 900 x(0,T),
z(z,0) = aw(z) in Q.

It follows from the mazimum principle that
0 <u(zt) < z(z,t) = aw(x) in Qx(0,T).

Consequently, we get ||[u(.,T)|loo < a||w|loc < b, which leads us to the desired
result.
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Now, let us consider the case where the initial data is not null.
Let a € Q be such that u(a) = M and consider the eigenvalue problem below

—Lip(z) = As¥o(x) in B(a,0),
Y(x)=0 on 0B(a,d),

P(x) >0 in B(a,?),

where § > 0, such that, B(a,d) = {z € RY; ||z —a || < 6}C Q. Tt is well
known that the above eigenvalue problem has a solution (¢, A\s) such that
0<As < 522 where D is a positive constant which depends only on the upper
bound of the coefficients of the operator L and the dimension N.

We can normalize v so that fB(a,é) Y(x)dr = 1.

Now, we are in a position to state our result in the case where the initial data
is not null.

Theorem 2 Assume that sup,cq uo(x) = M > 0 and let K be an upper bound
for the first derivatives of ug. Suppose that ¢ < min{A~3 (K dist(a,0Q))3},

where A = DK?> Ob f‘f‘;), Then the solution uw of (1)-(3) quenches in a finite

time T which obeys the following relation

M
0<T Ty < (ATO + 1/f(7)> /3 4 o(e1/3),

where Ty = f;} fcfz) is the quenching time of the solution a(t) of the differential
equation defined in (4).

Proof. Since (0,7) is the maximal time interval on which ||u(.,t)]|c < b,
our goal is to prove that T is finite and obeys the above relation. The fact
that the initial data ug is nonnegative in € implies that the solution u is also
nonnegative in Q x (0, T) owing to the maximum principle. Since ug € C*(Q),
from the mean value theorem, we get

uo(z) > up(a) — /3 for x € B(a,d) C Q

c1/3

where § =
Let w be the solution of the following initial-boundary value problem

wi(z,t) = eLw(z,t) + f(w(z,t)) in B(a,d) x (0,T),

w(z,t) =0 on 0B(a,d) x (0,T),
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w(z,0) = ug(z) in B(a,d),

where (0, T%) is the maximal time interval of existence of the solution w.
Introduce the function

o(t) = /B RIS

As in the proof of Theorem 2.1, we find that

’

v (t) > —eAso(t) + f(u(t)),

which implies that

. , edsu(t) ; _appge )
(1) 2 F)1 = Feiay) 2 JO)(1 = PDE 5e0s)
D _ DK?

because \s < 5 = =75. As in the proof of Theorem 2.1, we discover that
5 <2/

v (1) 2 ()1 - /2A).
This inequality may be rewritten as follows

oLy
) > (1—¢e/°A)dt.

Integrate the above inequality over (0,7%) to obtain

b b
(1—61/3A)T*§/ £</ _ds_

v(0) (8)_ M—gl/3 (S)

because v(0) > M — £'/3. We deduce that

T < 1 /b ds
T 1—el34 M—_gl/3 f(S)

Consequently, w quenches in a finite time because the quantity on the right
hand side of the above estimate is finite. Since u is nonnegative in 2 x (0,T),
we get

ui(w,t) = eLu(z,t) + f(u(x, 1)) in  Bla,0) x (0,T7),

u(z,t) >0 on 0B(a,d) x (0,T%),



98 DIABATE NABONGO AND THEODORE K.BONI

u(z,0) =up(xz) in Bla,d),
where T* = min{T, T\ }. It follows from the maximum principle that
u(z,t) > w(z,t) in B(a,d) x (0,T7).

We deduce that

1 b ds
T'<T,<-——7prr —-—. 1
o T 1-—¢l/34 /M751/3 f(s) (10)

Indeed, suppose that T' > T.. This implies that ||u(., T%)||oo > [Jw(., Tx)|leo = b
which contradicts the fact that (0,T) is the maximal time interval of existence
of the solution u. On the other hand, as in the proof of Theorem 2.1, it is not
hard to see that

zi(w,t) — Lz(z,t) — f(2(z,t)) =0 in Qx(0,T}),
z(z,t) >0 on 092 x (0,T)),
z(x,0) > u(z,0) in £,

where z(z,t) = a(t) in Q x (0,7p) and T} = min{Tp,T}. The maximum
principle implies that 0 < u(x,t) < z(x,t) = at) in Qx(0,T;). Therefore
we have

b

ds

T>T) = —_—
=0 wm f(s)

Indeed, suppose that T' < Ty which implies that b = ||u(.,T)||cc < a(T) < b.
But this is a contradiction. Obviously

/ b ds _ / P ds | / Yoo ds

M—el/3 f(S) (S) M—el/3 f(S) .

Due to the fact that f(s) is a nondecreasing function for s € (0,b), we find
that

(11)

M ds 51/3 51/3
< = < )
/M—61/3 f(s) = f(M —e/3) = f(&)
which implies that
b b 1/3
ds ds €
< + . 12
/M751/3 f(s) = Ju £(s) (A 12
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Use Taylor’s expansion to obtain

1

_ 1/3 1/3
TESVEY) 14+e/A+o0(e77).

It follows from (10), (11), (12) and the above relation that
M\ 13 1/3
OST—T()S ATQ+1/f(7) 9 +0(€ ),

and the proof is complete.

3 Other quenching solutions

Consider the following initial-boundary value problem

((w)y = eLu+ f(u) in 9% (0,7), (13)
u(z,t) =0 on 00 x(0,7T), (14)
u(z,0) =wuo(x) in Q, (15)

where ©(s) is a nonnegative and increasing function for the positive values of

s. In addition fob "‘;((;)) < +00. Using the methods described in the proofs of
the above theorems, we have the following results.

Theorem 3 Assume that ug(x) = 0. Suppose thate < & where B = )\fob "}((SS)) ds.
Then the solution u of (13)—(15) quenches in a finite time and its quenching

time T satisfies the following relation

0<T Ty <eTyB +o(e),

where Ty = fob "jc((:)) ds is the quenching time of the solution a(t) of the differ-
ential equation defined as follows

{ ¢ (a(t)a' () = flat), t>0,
a(0) = 0.

Theorem 4 Assume that sup,cq uo(x) = M > 0 and let K be an upper bound
for the first derivatives of ug. Suppose that e < min{B~3,(Kdist(a,0Q))3},
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where B = DK? Ob %. Then the solution u of (13)-(15) quenches in a

finite time and its quenching time T satisfies the following relation
M M
071 < (BT + o (/5D) 5+ o),

where Ty = ]\b/[ "jc((ss)) ds is the quenching time of the solution «(t) of the differ-

ential equation defined as follows

{ ¢ (a(t)a () = fa(t), t>0,
a(0) = M.

4 Numerical results

In this section, we consider the radial symmetric solution of the following
initial-boundary value problem

up =eAu+ (1 —u)"? in Bx(0,T),
u(z,t) =0 on Sx(0,T),

u(z,0) = ug(x) in B,

where B ={z € RY; ||z || <1}, S = {z € RY; || = | = 1}. The above
problem may be rewritten in the following form

N -1

ut - E(U‘T”I" + uT‘) + (1 - u)ip’ r 6 (07 ]‘)’ t 6 (07 T)? (16)
w(l,t) =0, te(0,7T), (17)
u(r,0) = ¢(r), re€(0,1). (18)

Here, we take ¢(r) = asin(nr) with a € [0, 1).
Let I be a positive integer and let h = 1/I. Define the grid z; = ih, 0 <
i < I and approximate the solution u of (16)—(18) by the solution U,(Ln)

(Uén), . I(n))T of the following explicit scheme

Uttt o 2ur —2ug”
At,, E

+ (1 - UOn))_p7
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Ui(nH) - Ui(n) _ E(Ui(g - QUi(n) + Ui(il)l n (N-1) Ui(ﬂ - Ui@1) . U(n))—p
At, h? ih 2h v ’

1<i<I-—1,
Ui =0,

Ui(o) = asin(mih), 0<i< 1.

We also approximate the solution u of (16)—(18) by the solution U,(Ln) of the
implicit scheme below

Uén-{-l) . U(gn) _ 8]\72(—_]1(n+1) _ 2Uén+1)

At h? + 1=

n+1 n (n+1) (n+1) (n+1) (n+1) (n+1)
p g L A S S VLl
At, h? ih 2h
+1-UM™yP1<i<I—1,

Ut =0

)

Ui(o) = asin(mih), 0<i<T.

We take At, = min{%,hQ(l - HU}(L")HOO)’J“} for the explicit scheme and
At, = h?(1 — HU}(Ln)HOO)p‘Irl for the implicit scheme where

() (m)
1O Moo = masx U],

We remark that lim,_,o M = u,-(0,t). Hence, if t = 0, we have
u(0,t) = eNupr(0, ) + (1 — u(0,¢)) 7P,

This remark has been used in the construction of our schemes when i = 0.
Let us notice that in the explicit scheme, the restriction on the time step
ensures the nonnegativity of the discrete solution. For the implicit scheme,
existence and nonnegativity are also guaranteed by standard methods (see for
instance [2]).

We need the following definition.
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Definition 1 We say that the discrete solution U,(Ln) of the explicit scheme or
the implicit scheme quenches in a finite time if lim, —, 4 o ||U}(L")||Oo =1 and the

series ZJFOO At, converges. The quantity

2o o Aty is called the numerical

n=0
quenching time of the solution U,(Ln).

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128, 256. We take for the numerical
quenching time T" = E;ZOI At; which is computed at the first time when
|T™Tt — T < 107!, The order(s) of the method is computed from

s — log((Tyn — Ton)/(Ton, — Th))
log(2) '

Numerical experiments for a =0, N =2, p = 1.

First case: ¢ = .

Table 1: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler

method
I Tm n CPU time | s
16 | 0.501259 | 4078 - -
32 | 0.500475 | 15625 | - -
64 | 0.500274 | 59688 | - 1.97
128 | 0.500222 | 227442 | 7 1.96
256 | 0.500208 | 864473 | 56 1.89

Table 2: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler

method
I AL n CPU time | s
16 0.501302 | 4078 - -
32 0.500484 | 15626 1 -
64 | 0.500277 | 59689 | 3 1.99
128 | 0.500223 | 227444 | 20 1.95
256 | 0.500208 | 864473 | 142 1.95

Second case: ¢ = 55

1

Table 3: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
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method

I Tm n CPU time | s
16 | 0.500978 | 4074 - -
32 | 0.500244 | 15608 | - -
64 | 0.500061 | 59614 | 3 2.01

128 | 0.500015 | 227120 | 20 2.00
256 | 0.500004 | 863074 | 141 2.07

Table 4: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method

I T n CPU time | s
16 0.500978 | 4074 - -
32 0.500244 | 15608 - -

64 | 0.500061 | 59614 | 3 2.01
128 | 0.500015 | 227120 | 20 2.00
256 | 0.500004 | 863074 | 141 2.07

Numerical experiments for a = %, N=2p=1.

First case: ¢ = %0.

Table 5: Numerical quenching times, numbers of iterations, CPU times (sec-
onds), and orders of the approximations obtained with the explicit Euler
method

I T n CPU time | s
16 0.161101 | 4007

32 | 0.161389 | 15446 | 1 -

64 | 0.161480 | 59332 | 1 1.67
128 | 0.161509 | 227203 | 9 1.65
256 | 0.161518 | 866278 | 60 1.69

Table 6: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method
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I " n CPU time | s
16 0.161196 | 4007 - -
32 0.161455 | 15446 1 -
64 | 0.161482 | 59333 | 2 3.27
128 | 0.161510 | 227202 | 21 0.05
256 | 0.161518 | 866279 | 148 1.81

Second case: € =

1

100°

Table 7: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler

method
I " n CPU time | s
16 0.128272 | 3843 - -
32 0.128155 | 14700 | - -
64 | 0.128131 | 56045 1 2.29
128 | 0.128126 | 213087 2.27
256 | 0.128125 | 807893 | 57 2.32

Table 8: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler

method
I " n CPU time | s
16 0.128282 | 3843 - -
32 0.128157 | 14700 | - -
64 | 0.128132 | 56045 | 3 2.33
128 | 0.128127 | 213087 | 19 2.33
256 | 0.128126 | 807894 | 139 2.33

Third case: ¢ =

1

500°

Table 9: Numerical quenching times, numbers of iterations, CPU times (sec-
onds), and orders of the approximations obtained with the explicit Euler

method
I AL n CPU time | s
16 0.125842 | 3829 - -
32 0.125672 | 14630 | - -
64 | 0.125631 | 55715 1 2.06
128 | 0.125622 | 211577 | 8 2.20
256 | 0.125619 | 801115 | 55 1.59




QUENCHING TIME OF SOLUTIONS 105

Table 10: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit
Euler method

I T n CPU time | s
16 0.125844 | 3829 -

32 0.125673 | 14630 | - -
64 | 0.125632 | 55715 3 2.07

128 | 0.125622 | 211577 | 19 2.04
256 | 0.125619 | 80115 136 1.74

Remark 2 If we consider the problem (16)-(18) in the case where the initial
data is null and p = 1, it is not hard to see that the quenching time of the
solution of the differential equation defined in (4) equals 0.5. We observe
from Tables 1-4 that when € diminishes, the numerical quenching time decays
to 0.5. This result has been proved in Theorem 2.1. When the initial data
o(r) = %sin(m’) and p = 1, we find that the quenching time of the solution of
the differential equation defined in (4) equals 0.125. We discover from Tables
5-10 that when € diminishes, the numerical quenching time decays to 0.125

which is a result proved in Theorem 2.2.
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