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Quenching time of solutions for some
nonlinear parabolic equations

Diabate Nabongo and Théodore K. Boni

Abstract

In this paper, we consider the following initial-boundary value prob-
lem ��

�
ut(x, t) = εLu(x, t) + f(u(x, t)) in Ω × (0, T ),
u(x, t) = 0 on ∂Ω × (0, T ),
u(x, 0) = u0(x) in Ω

where ε is a positive parameter, L is an elliptic operator, Ω is a bounded
domain in R

N with smooth boundary ∂Ω, f(s) is positive, nondecreas-
ing, convex function for s ∈ (−∞, b), lims→b f(s) = +∞ with b =

const > 0 and
� b

0
ds

f(s)
< +∞. We show that if ε is small enough, the so-

lution u of the above problem quenches in a finite time and its quenching
time tends to the one of the solution of the following differential equation�

α
′
(t) = f(α(t)), t > 0,

α(0) = M,

when ε goes to zero, where M = supx∈Ω u0(x).
Finally, we give some numerical results to illustrate our analysis.

1 Introduction

Let Ω be a bounded domain in R
N with smooth boundary ∂Ω. Consider the

following initial-boundary value problem for a nonlinear parabolic equation of
the form:

ut(x, t) = εLu(x, t) + f(u(x, t)) in Ω × (0, T ), (1)
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u(x, t) = 0 on ∂Ω × (0, T ), (2)

u(x, 0) = u0(x) ≥ 0 in Ω, (3)

where f(s) is a positive, nondecreasing, convex function for s ∈ (−∞, b),
lims→b f(s) = +∞ and

∫ b

0
ds

f(s) < +∞ with b = const > 0, ε is a positive
parameter,

Lu =
N∑

i,j=1

∂

∂xi
(aij(x)

∂u

∂xj
),

where aij : Ω → R, aij ∈ C1(Ω), aij = aji, 1 ≤ i, j ≤ N and there exists a
constant C > 0 such that

N∑
i,j=1

aij(x)ξiξj ≥ C‖ ξ ‖2 ∀ x ∈ Ω ∀ ξ = (ξ1, ..., ξN ) ∈ R
N ,

where ‖ . ‖ stands for the Euclidean norm of R
N .

The initial data u0 ∈ C1(Ω), u0(x) is nonnegative in Ω, supx∈Ω u0(x) = M < b,
u0(x) = 0 on ∂Ω.
Here (0, T ) is the maximal time interval on which the solution u exists. The
time T may be finite or infinite. When T is infinite, we say that the solution u
exists globally. When T is finite, the solution u reaches the value b in a finite
time, namely

lim
t→T

‖u(., t)‖∞ = b

where ‖u(., t)‖∞ = supx∈Ω |u(x, t)|. In this last case, we say that the solution
u quenches in a finite time and the time T is called the quenching time of the
solution u. Using standard methods based on the maximum principle, it is
not hard to prove the local existence and uniqueness of the solution (see for
instance [3]). On the other hand, since the initial data u0 is nonnegative in Ω,
from the maximum principle, we see that the solution u is also nonnegative
in Ω × (0, T ). Solutions of nonlinear parabolic equations which quench in a
finite time have been the subject of investigation of many authors (see [3],
[4], [5], [9] and the references cited therein). In [6], Friedman and Lacey have
considered the problem (1)–(3) in the case where the operator L is replaced by
the Laplacian and the term of the source by a function f(s) which is positive,
increasing, convex for nonnegative values of s and

∫ ∞
0

ds
f(s) < +∞. Under some

additional conditions on the initial data, they have shown that the solution u
of (1)–(3) blows up in a finite time and its blow-up time goes to the one of the
solution of the following differential equation

α
′
(t) = f(α(t)), t > 0, α(0) = M, (4)
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when ε goes to zero, where M = supx∈Ω u0(x) (we say that a solution u blows
up in a finite time if it reaches the value infinity in a finite time).
The proof developed in [6] is based on the construction of upper and lower so-
lutions and it is difficult to extend the above result using the method described
in [6]. In this paper, we obtain the same result using both a modification of
Kaplan’s method (see [7]) and a method based on the construction of upper
solutions. This method is simple and may be extended to other classes of
parabolic equations. Our paper is written in the following manner. In the
next section, we show that when ε is sufficiently small, the solution u of (1)–
(3) quenches in a finite time and its quenching time goes to the one of the
solution of the differential equation defined in (4) when ε decays to zero. We
also extend this result to other classes of nonlinear parabolic equations in the
third section. Finally, in the last section we give some numerical results to
illustrate our analysis.

2 Quenching solutions

In this section, we show that the solution u of the problem (1)–(3) quenches in
a finite time for ε sufficiently small. In addition, we prove that its quenching
time goes to the one of the solution of the differential equation defined in (4)
as ε tends to zero.
Before starting, let us recall a well known result.
Consider the eigenvalue problem

−Lϕ(x) = λϕ(x) in Ω, (5)

ϕ(x) = 0 on ∂Ω, (6)

ϕ(x) > 0 in Ω. (7)

We know that the above problem has a solution (ϕ, λ) such that λ > 0.
Without loss of generality, we may suppose that

∫
Ω ϕ(x)dx = 1.

Our first result is the following.

Theorem 1 Assume that u0(x) = 0. Suppose that ε < 1
A where A = λ

∫ b

0
ds

f(s) .
Then the solution u of (1)–(3) quenches in a finite time and its quenching time
T satisfies the following relation

0 ≤ T − T0 ≤ εT0A+ o(ε),

where T0 =
∫ b

0
ds

f(s) is the quenching time of the solution α(t) of the differential
equation defined in (4).
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Proof. Since (0, T ) is the maximal time interval on which ‖u(., t)‖∞ < b, our
aim is to show that T is finite and satisfies the above relation. Since the initial
data u0 is nonnegative in Ω, the maximum principle implies that the solution
u is also nonnegative in Ω × (0, T ). Introduce the function v(t) defined as
follows

v(t) =
∫

Ω

u(x, t)ϕ(x)dx.

Take the derivative of v in t and use (1) to obtain

v
′
(t) = ε

∫
Ω

ϕ(x)Lu(x, t)dx +
∫

Ω

f(u(x, t))ϕ(x)dx.

Applying Green’s formula, we arrive at

v
′
(t) = ε

∫
Ω

u(x, t)Lϕ(x)dx +
∫

Ω

f(u(x, t))ϕ(x)dx.

Since
∫
Ω
ϕ(x)dx = 1 and f(s) is a convex function for nonnegative values of s,

using Jensen’s inequality and taking into account (5), we deduce that

v
′
(t) ≥ −λεv(t) + f(v(t)),

which implies that

v
′
(t) ≥ f(v(t))(1 − λεv(t)

f(v(t))
).

We observe that
∫ b

0

dt

f(t)
≥ sup

0≤s≤b

∫ s

0

dt

f(t)
≥ sup

0≤s≤b

s

f(s)

because f(s) is a nondecreasing function for 0 ≤ s ≤ b. We deduce that
v

′
(t) ≥ (1−Aε)f(v(t)), which implies that dv

f(v) ≥ (1−Aε)dt. Integrating the
above inequality over (0, T ), we discover that

T ≤ 1
1 −Aε

∫ b

0

ds

f(s)
. (8)

This implies that the solution u quenches in a finite time and we have an upper
bound of the quenching time.
Now introduce the function z(x, t) defined as follows

z(x, t) = α(t) in Ω × (0, T0).
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A routine computation yields

zt(x, t) − Lz(x, t) − f(z(x, t)) = 0 in Ω × (0, T∗),

z(x, t) ≥ 0 on ∂Ω × (0, T∗),

z(x, 0) ≥ u(x, 0) in Ω,

where T∗ = min{T, T0}. The maximum principle implies that

0 ≤ u(x, t) ≤ z(x, t) = α(t) in Ω × (0, T∗).

Consequently, we find that

T ≥ T0 =
∫ b

0

ds

f(s)
. (9)

In fact, suppose that T0 > T , which implies that α(T ) ≥ ‖u(., T )‖∞ = b. But
this contradicts the fact that(0, T0) is the maximal time interval of existence
of the solution α(t). Apply Taylor’s expansion to obtain 1

1−Aε = 1+Aε+o(ε).
Use (8), (9) and the above relation to complete the rest of the proof.

Remark 1 Let us consider the case where u0 = 0. The above theorem shows
that for ε small enough, the solution u of (1)–(3) quenches in a finite time.
We want to know what happens when ε is large enough. Introduce the function
w(x) defined as follows {

Lw(x) + 1 = 0 in Ω,
w(x) = 0 on ∂Ω

We know that w(x) exists and is positive in Ω. Let α be a positive constant such
that ‖w‖∞ < b

α . It is not hard to see that if ε ≥ 1
αf(α‖w‖∞) then the solution

u of (1)–(3) exists globally and is bounded from above by α‖w‖∞. Indeed, let
z(x, t) = αw(x) in Ω × (0, T ). A straightforward computation reveals that

zt(x, t) − εLz(x, t) = αε in Ω × (0, T ).

Since αε ≥ f(α‖w‖∞) ≥ f(z(x, t)), we deduce that⎧⎨
⎩

zt(x, t) − εLz(x, t) = f(z(x, t) in Ω × (0, T ),
z(x, t) = 0 on ∂Ω × (0, T ),
z(x, 0) = αw(x) in Ω.

It follows from the maximum principle that

0 ≤ u(x, t) ≤ z(x, t) = αw(x) in Ω × (0, T ).

Consequently, we get ‖u(., T )‖∞ ≤ α‖w‖∞ < b, which leads us to the desired
result.
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Now, let us consider the case where the initial data is not null.
Let a ∈ Ω be such that u(a) = M and consider the eigenvalue problem below

−Lψ(x) = λδψ(x) in B(a, δ),

ψ(x) = 0 on ∂B(a, δ),

ψ(x) > 0 in B(a, δ),

where δ > 0, such that, B(a, δ) = {x ∈ R
N ; ‖ x − a ‖ < δ}⊂ Ω. It is well

known that the above eigenvalue problem has a solution (ψ, λδ) such that
0 < λδ ≤ D

δ2 where D is a positive constant which depends only on the upper
bound of the coefficients of the operator L and the dimension N.
We can normalize ψ so that

∫
B(a,δ)

ψ(x)dx = 1.
Now, we are in a position to state our result in the case where the initial data
is not null.

Theorem 2 Assume that supx∈Ω u0(x) = M > 0 and let K be an upper bound
for the first derivatives of u0. Suppose that ε < min{A−3,(Kdist(a, ∂Ω))3},
where A = DK2

∫ b

0
ds

f(s) . Then the solution u of (1)–(3) quenches in a finite
time T which obeys the following relation

0 ≤ T − T0 ≤
(
AT0 + 1/f(

M

2
)
)
ε1/3 + o(ε1/3),

where T0 =
∫ b

M
ds

f(s) is the quenching time of the solution α(t) of the differential
equation defined in (4).

Proof. Since (0, T ) is the maximal time interval on which ‖u(., t)‖∞ < b,
our goal is to prove that T is finite and obeys the above relation. The fact
that the initial data u0 is nonnegative in Ω implies that the solution u is also
nonnegative in Ω× (0, T ) owing to the maximum principle. Since u0 ∈ C1(Ω),
from the mean value theorem, we get

u0(x) ≥ u0(a) − ε1/3 for x ∈ B(a, δ) ⊂ Ω

where δ = ε1/3

K .
Let w be the solution of the following initial-boundary value problem

wt(x, t) = εLw(x, t) + f(w(x, t)) in B(a, δ) × (0, T∗),

w(x, t) = 0 on ∂B(a, δ) × (0, T∗),
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w(x, 0) = u0(x) in B(a, δ),

where (0, T∗) is the maximal time interval of existence of the solution w.
Introduce the function

v(t) =
∫

B(a,δ)

w(x, t)ψ(x)dx.

As in the proof of Theorem 2.1, we find that

v
′
(t) ≥ −ελδv(t) + f(v(t)),

which implies that

v
′
(t) ≥ f(v(t))(1 − ελδv(t)

f(v(t))
) ≥ f(v(t))(1 − ε1/3DK2 v(t)

f(v(t))
)

because λδ ≤ D
δ2 = DK2

ε2/3 . As in the proof of Theorem 2.1, we discover that

v
′
(t) ≥ f(v(t))(1 − ε1/3A).

This inequality may be rewritten as follows

dv

f(v)
≥ (1 − ε1/3A)dt.

Integrate the above inequality over (0, T∗) to obtain

(1 − ε1/3A)T∗ ≤
∫ b

v(0)

ds

f(s)
≤

∫ b

M−ε1/3

ds

f(s)

because v(0) ≥M − ε1/3. We deduce that

T∗ ≤ 1
1 − ε1/3A

∫ b

M−ε1/3

ds

f(s)
.

Consequently, w quenches in a finite time because the quantity on the right
hand side of the above estimate is finite. Since u is nonnegative in Ω× (0, T ),
we get

ut(x, t) = εLu(x, t) + f(u(x, t)) in B(a, δ) × (0, T ∗),

u(x, t) ≥ 0 on ∂B(a, δ) × (0, T ∗),
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u(x, 0) = u0(x) in B(a, δ),

where T ∗ = min{T, T∗}. It follows from the maximum principle that

u(x, t) ≥ w(x, t) in B(a, δ) × (0, T ∗).

We deduce that

T ≤ T∗ ≤ 1
1 − ε1/3A

∫ b

M−ε1/3

ds

f(s)
. (10)

Indeed, suppose that T > T∗. This implies that ‖u(., T∗)‖∞ ≥ ‖w(., T∗)‖∞ = b
which contradicts the fact that (0, T ) is the maximal time interval of existence
of the solution u. On the other hand, as in the proof of Theorem 2.1, it is not
hard to see that

zt(x, t) − Lz(x, t) − f(z(x, t)) = 0 in Ω × (0, T ∗
∗ ),

z(x, t) ≥ 0 on ∂Ω × (0, T ∗
∗ ),

z(x, 0) ≥ u(x, 0) in Ω,

where z(x, t) = α(t) in Ω × (0, T0) and T ∗
∗ = min{T0, T }. The maximum

principle implies that 0 ≤ u(x, t) ≤ z(x, t) = α(t) in Ω× (0, T ∗∗ ). Therefore
we have

T ≥ T0 =
∫ b

M

ds

f(s)
. (11)

Indeed, suppose that T < T0 which implies that b = ‖u(., T )‖∞ ≤ α(T ) < b.
But this is a contradiction. Obviously

∫ b

M−ε1/3

ds

f(s)
=

∫ b

M

ds

f(s)
+

∫ M

M−ε1/3

ds

f(s)
.

Due to the fact that f(s) is a nondecreasing function for s ∈ (0, b), we find
that ∫ M

M−ε1/3

ds

f(s)
≤ ε1/3

f(M − ε1/3)
≤ ε1/3

f(M
2 )
,

which implies that

∫ b

M−ε1/3

ds

f(s)
≤

∫ b

M

ds

f(s)
+

ε1/3

f(M
2 )
. (12)
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Use Taylor’s expansion to obtain

1
1 − ε1/3A

= 1 + ε1/3A+ o(ε1/3).

It follows from (10), (11), (12) and the above relation that

0 ≤ T − T0 ≤
(
AT0 + 1/f(

M

2
)
)
ε1/3 + o(ε1/3),

and the proof is complete.

3 Other quenching solutions

Consider the following initial-boundary value problem

(ϕ(u))t = εLu+ f(u) in Ω × (0, T ), (13)

u(x, t) = 0 on ∂Ω × (0, T ), (14)

u(x, 0) = u0(x) in Ω, (15)

where ϕ(s) is a nonnegative and increasing function for the positive values of

s. In addition
∫ b

0
ϕ

′
(s)

f(s) < +∞. Using the methods described in the proofs of
the above theorems, we have the following results.

Theorem 3 Assume that u0(x) = 0. Suppose that ε < 1
B where B = λ

∫ b

0
ϕ

′
(s)

f(s) ds.
Then the solution u of (13)–(15) quenches in a finite time and its quenching
time T satisfies the following relation

0 ≤ T − T0 ≤ εT0B + o(ε),

where T0 =
∫ b

0
ϕ

′
(s)

f(s) ds is the quenching time of the solution α(t) of the differ-
ential equation defined as follows

{
ϕ

′
(α(t))α

′
(t) = f(α(t)), t > 0,

α(0) = 0.

Theorem 4 Assume that supx∈Ω u0(x) = M > 0 and let K be an upper bound
for the first derivatives of u0. Suppose that ε < min{B−3,(Kdist(a, ∂Ω))3},
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where B = DK2
∫ b

0
ϕ

′
(s)ds

f(s) . Then the solution u of (13)–(15) quenches in a
finite time and its quenching time T satisfies the following relation

0 ≤ T − T0 ≤
(
BT0 + ϕ

′
(
M

2
)/f(

M

2
)
)
ε1/3 + o(ε1/3),

where T0 =
∫ b

M
ϕ

′
(s)

f(s) ds is the quenching time of the solution α(t) of the differ-
ential equation defined as follows

{
ϕ

′
(α(t))α

′
(t) = f(α(t)), t > 0,

α(0) = M.

4 Numerical results

In this section, we consider the radial symmetric solution of the following
initial-boundary value problem

ut = ε∆u+ (1 − u)−p in B × (0, T ),

u(x, t) = 0 on S × (0, T ),

u(x, 0) = u0(x) in B,

where B = {x ∈ R
N ; ‖ x ‖ < 1}, S = {x ∈ R

N ; ‖ x ‖ = 1}. The above
problem may be rewritten in the following form

ut = ε(urr +
N − 1
r

ur) + (1 − u)−p, r ∈ (0, 1), t ∈ (0, T ), (16)

u(1, t) = 0, t ∈ (0, T ), (17)

u(r, 0) = ϕ(r), r ∈ (0, 1). (18)

Here, we take ϕ(r) = a sin(πr) with a ∈ [0, 1).
Let I be a positive integer and let h = 1/I. Define the grid xi = ih, 0 ≤
i ≤ I and approximate the solution u of (16)–(18) by the solution U

(n)
h =

(U (n)
0 , ..., U

(n)
I )T of the following explicit scheme

U
(n+1)
0 − U

(n)
0

∆tn
= εN

2U (n)
1 − 2U (n)

0

h2
+ (1 − U

(n)
0 )−p,
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U
(n+1)
i − U

(n)
i

∆tn
= ε(

U
(n)
i+1 − 2U (n)

i + U
(n)
i−1

h2
+

(N − 1)
ih

U
(n)
i+1 − U

(n)
i−1

2h
) + (1 − U

(n)
i )−p,

1 ≤ i ≤ I − 1,

U
(n)
I = 0,

U
(0)
i = a sin(πih), 0 ≤ i ≤ I.

We also approximate the solution u of (16)–(18) by the solution U
(n)
h of the

implicit scheme below

U
(n+1)
0 − U

(n)
0

∆tn
= εN

2U (n+1)
1 − 2U (n+1)

0

h2
+ (1 − U

(n)
0 )−p,

U
(n+1)
i − U

(n)
i

∆tn
= ε(

U
(n+1)
i+1 − 2U (n+1)

i + U
(n+1)
i−1

h2
+

(N − 1)
ih

U
(n+1)
i+1 − U

(n+1)
i−1

2h
)

+(1 − U
(n)
i )−p, 1 ≤ i ≤ I − 1,

U
(n+1)
I = 0,

U
(0)
i = a sin(πih), 0 ≤ i ≤ I.

We take ∆tn = min{ h2

2Nε , h
2(1 − ‖U (n)

h ‖∞)p+1} for the explicit scheme and
∆tn = h2(1 − ‖U (n)

h ‖∞)p+1 for the implicit scheme where

‖U (n)
h ‖∞ = max

0≤i≤I
|U (n)

i |.

We remark that limr→0
ur(r,t)

r = urr(0, t). Hence, if t = 0, we have

ut(0, t) = εNurr(0, t) + (1 − u(0, t))−p.

This remark has been used in the construction of our schemes when i = 0.
Let us notice that in the explicit scheme, the restriction on the time step
ensures the nonnegativity of the discrete solution. For the implicit scheme,
existence and nonnegativity are also guaranteed by standard methods (see for
instance [2]).
We need the following definition.
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Definition 1 We say that the discrete solution U (n)
h of the explicit scheme or

the implicit scheme quenches in a finite time if limn→+∞ ‖U (n)
h ‖∞ = 1 and the

series
∑+∞

n=0 ∆tn converges. The quantity
∑+∞

n=0 ∆tn is called the numerical
quenching time of the solution U

(n)
h .

In the following tables, in rows, we present the numerical quenching times,
the numbers of iterations, CPU times and the orders of the approximations
corresponding to meshes of 16, 32, 64, 128, 256. We take for the numerical
quenching time T n =

∑n−1
j=0 ∆tj which is computed at the first time when

|T n+1 − T n| ≤ 10−16. The order(s) of the method is computed from

s =
log((T4h − T2h)/(T2h − Th))

log(2)
.

Numerical experiments for a = 0, N = 2, p = 1.
First case: ε = 1

10 .

Table 1: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I T n n CPU time s
16 0.501259 4078 - -
32 0.500475 15625 - -
64 0.500274 59688 - 1.97
128 0.500222 227442 7 1.96
256 0.500208 864473 56 1.89

Table 2: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method

I T n n CPU time s
16 0.501302 4078 - -
32 0.500484 15626 1 -
64 0.500277 59689 3 1.99
128 0.500223 227444 20 1.95
256 0.500208 864473 142 1.95

Second case: ε = 1
50 .

Table 3: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
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method

I T n n CPU time s
16 0.500978 4074 - -
32 0.500244 15608 - -
64 0.500061 59614 3 2.01
128 0.500015 227120 20 2.00
256 0.500004 863074 141 2.07

Table 4: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method

I T n n CPU time s
16 0.500978 4074 - -
32 0.500244 15608 - -
64 0.500061 59614 3 2.01
128 0.500015 227120 20 2.00
256 0.500004 863074 141 2.07

Numerical experiments for a = 1
2 , N = 2, p = 1.

First case: ε = 1
10 .

Table 5: Numerical quenching times, numbers of iterations, CPU times (sec-
onds), and orders of the approximations obtained with the explicit Euler
method

I T n n CPU time s
16 0.161101 4007 - -
32 0.161389 15446 1 -
64 0.161480 59332 1 1.67
128 0.161509 227203 9 1.65
256 0.161518 866278 60 1.69

Table 6: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method
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I T n n CPU time s
16 0.161196 4007 - -
32 0.161455 15446 1 -
64 0.161482 59333 2 3.27
128 0.161510 227202 21 0.05
256 0.161518 866279 148 1.81

Second case: ε = 1
100 .

Table 7: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the explicit Euler
method

I T n n CPU time s
16 0.128272 3843 - -
32 0.128155 14700 - -
64 0.128131 56045 1 2.29
128 0.128126 213087 8 2.27
256 0.128125 807893 57 2.32

Table 8: Numerical quenching times, numbers of iterations, CPU times (sec-
onds) and orders of the approximations obtained with the implicit Euler
method

I T n n CPU time s
16 0.128282 3843 - -
32 0.128157 14700 - -
64 0.128132 56045 3 2.33
128 0.128127 213087 19 2.33
256 0.128126 807894 139 2.33

Third case: ε = 1
500 .

Table 9: Numerical quenching times, numbers of iterations, CPU times (sec-
onds), and orders of the approximations obtained with the explicit Euler
method

I T n n CPU time s
16 0.125842 3829 - -
32 0.125672 14630 - -
64 0.125631 55715 1 2.06
128 0.125622 211577 8 2.20
256 0.125619 801115 55 1.59
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Table 10: Numerical quenching times, numbers of iterations, CPU times
(seconds) and orders of the approximations obtained with the implicit
Euler method

I T n n CPU time s
16 0.125844 3829 - -
32 0.125673 14630 - -
64 0.125632 55715 3 2.07
128 0.125622 211577 19 2.04
256 0.125619 80115 136 1.74

Remark 2 If we consider the problem (16)–(18) in the case where the initial
data is null and p = 1, it is not hard to see that the quenching time of the
solution of the differential equation defined in (4) equals 0.5. We observe
from Tables 1-4 that when ε diminishes, the numerical quenching time decays
to 0.5. This result has been proved in Theorem 2.1. When the initial data
ϕ(r) = 1

2 sin(πr) and p = 1, we find that the quenching time of the solution of
the differential equation defined in (4) equals 0.125. We discover from Tables
5-10 that when ε diminishes, the numerical quenching time decays to 0.125
which is a result proved in Theorem 2.2.
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[6] A. Friedman and A. A. Lacey, The blow-up time for solutions of nonlinear heat equa-
tions with small diffusion, SIAM J. Math. Anal., 18 (1987), 711-721.

[7] S. Kaplan, On the growth of the solutions of quasi-linear parabolic equations, Comm.
Pure. Appl. Math., 16 (1963), 305-330.

[8] O. A. Ladyzenskaya, V. A. Solonnikov and N. N. Ural’ceva, Linear and quasilinear
equations of parabolic type, Trans. Math. Monogr., 23, AMS, Providence, RI, (1968).

[9] H. A. Levine, Quenching, nonquenching and beyond quenching for solutions of some
semilinear parabolic equations, Annali Math. Pura Appl., 155 (1990), 243-260.

[10] T. Nakagawa, Blowing up on the finite difference solution to ut = uxx + u2, Appl.
Math. Optim., 2(1976), 337-350.

[11] M. H. Protter and H. F. Weinberger, Maximum principles in differential equations,
Prentice Hall, Englewood Cliffs, NJ, (1967).

[12] W. Walter, Differential-und Integral-Ungleichungen, Springer, Berlin, (1964).

Diabate Nabongo
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