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Optimaly conditons and duality for a minimax

nondifferentiable programming problem,
involving (η, ρ, θ)-invex functions

Anton Bătătorescu and Iulian Antonescu

Abstract

We establish necessary and sufficient optimality condition, involving
(η, ρ, θ)-invex functions, for a class of minimax programming problems
with square-root terms in the objective function. Subsequently, we apply
the optimality condition to formulate a parametric dual problem and we
prove weak duality, direct duality, and strict converse duality theorems.

1 Introduction

Let us consider the following continuous differentiable mappings:

f : R
n × R

m → R, g = (g1, . . . , gp) : R
n → R

p.

We denote
P =

{
x ∈ R

n | gi (x) ≤ 0, i = 1, p
}
. (1)

and consider Y ⊆ R
m to be a compact subset of R

m. For r = 1, 2, . . . , q, let
Br be n× n positive semidefinite matrices such that for each (x, y) ∈ P × Y,
we have:

f (x, y) +
q∑

r=1

√
x�Brx ≥ 0.
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In this paper we consider the following nondifferentiable minimax program-
ming problem:

inf
x∈P

sup
y∈Y

{
f (x, y) +

q∑
r=1

√
x�Brx

}
(P)

Many authors investigated the optimality conditions and duality theorems
for minimax programming problems. For details, one can consult [1, 2, 10].
Problems which contain square root terms were also considered by Preda [9],
and Preda and Köller [11].

In an earlier work, under conditions of convexity, Schmittendorf [12] estab-
lished necessary and sufficient optimality conditions for the problem:

inf
x∈P

sup
y∈Y

ψ (x, y) , (P1)

where ψ : R
n ×R

m → R is a continuous differentiable mapping. Later, Yadev
and Mukherjee [14] employed the optimality conditions of Schmittendorf [12]
to construct two dual problems for which they derived some duality theorems
for fractional minimax programming problems, involving convex differentiable
functions.

In this paper, we derive sufficient optimality conditions for (P) and we
apply the optimality conditions to construct a parametric dual problem for
which we formulate a weak duality, a direct duality and a strictly converse
duality theorem. Some definitions and notations are given in Section 2. In
Section 3, we derive sufficient optimality conditions under the assumption of
a particular form of generalized convexity. Using the optimality conditions we
define in Section 4 a parametric dual problem for which we prove the above
mentioned duality results.

2 Notation and Preliminary Results

Throughout this paper, we denote by R
n the n-dimensional Euclidean space

and by R
n
+ its nonnegative orthant. Let us consider the set P defined by (1),

and for each x ∈ P , we define

J (x) = {j ∈ {1, 2, . . . , p} | gj (x) = 0} ,

Y (x) =

{
y ∈ Y

∣∣∣∣∣ f (x, y) +
q∑

r=1

√
x�Brx = sup

z∈Y

(
f (x, z) +

q∑
r=1

√
x�Brx

)}
.

Let A be an m×n matrix and let M, Mi, i = 1, · · · , k, be n×n symmetric
positive semidefinite matrices.
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Lemma 1 [13] We have

Ax ≥ 0 ⇒ c�x+
k∑

i=1

√
x�Mix ≥ 0,

if and only if there exist y ∈ R
m
+ and vi ∈ R

n, i = 1, k, such that

Avi ≥ 0, v�i Mivi ≤ 1, i = 1, k, A�y = c+
k∑

i=1

Mivi.

If all Mi = 0, Lemma 1 becomes the well-known Farkas lemma.
We shall use the generalized Schwarz inequality:

x�Mv ≤
√
x�Mx

√
v�Mv. (2)

We note that equality holds in (2) if Mx = τMv for some τ ≥ 0.
Obviously, from (2), we have

v�Mv ≤ 1 ⇒ x�Mv ≤
√
x�Mx. (3)

The following lemma is given by Schmittendorf [12] for the problem (P1):

Lemma 2 [12] Let x0 be a solution of the minimax problem (P1) and the
vectors ∇gj (x0) , j ∈ J (x0) are linearly independent. Then there exist a
positive integer s ∈ {1, . . . , n+ 1} , real numbers ti ≥ 0, i = 1, s, µj ≥ 0,
j = 1, p, and vectors ȳi ∈ Y (x0) , i = 1, s, such that

s∑
i=1

ti∇xψ (x0, ȳi) +
p∑

j=1

µj∇gj (x0) = 0,

µjgj (x0) = 0, j = 1, p,
s∑

i=1

ti 	= 0.

Now we give the definitions of (η, ρ, θ)-quasi-invexity and (η, ρ, θ)-pseudo-
invexity as extensions of the invexity notion. The invexity notion of a function
was introduced into optimization theory by Hanson [5] and the name of invex
function was given by Craven [3]. Some extensions of invexity as pseudo-
invexity, quasi-invexity and ρ-invexity, ρ-pseudo-invexity, ρ-quasi-invexity are
presented in Craven and Glover [4], Kaul and Kaur [6], Preda [8], Mititelu and
Stancu-Minasian [7].
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Definition 3 A differentiable function ϕ : C ⊆ R
n → R is (η, ρ, θ)-invex

at x0 ∈ C if there exist functions η : C × C → R
n, θ : C × C → R+ with

θ (x, x) = 0, and ρ ∈ R such that

ϕ (x) − ϕ (x0) ≥ η (x, x0)
� ∇ϕ (x0) + ρθ (x, x0) .

If −ϕ is (η, ρ, θ)-invex at x0 ∈ C, then ϕ is called (η, ρ, θ)-incave at x0 ∈ C.
If the inequality holds strictly, then ϕ is called to be strictly (η, ρ, θ)-invex.

Definition 4 A differentiable function ϕ : C ⊆ R
n → R is (η, ρ, θ)-pseudo-

-invex at x0 ∈ C if there exist functions η : C × C → R
n, θ : C × C → R+

with θ (x, x) = 0, and ρ ∈ R such that the following holds:

η (x, x0)
� ∇ϕ (x0) ≥ −ρθ (x, x0) =⇒ ϕ (x) ≥ ϕ (x0) , ∀x ∈ C,

or equivalently,

ϕ (x) < ϕ (x0) =⇒ η (x, x0)
�∇ϕ (x0) < −ρθ (x, x0) , ∀x ∈ C.

If −ϕ is (η, ρ, θ)-pseudo-invex at x0 ∈ C, then ϕ is called (η, ρ, θ)-pseudo-
incave at x0 ∈ C.

Definition 5 A differentiable function ϕ : C ⊆ R
n → R is strictly (η, ρ, θ)-

pseudo-invex at x0 ∈ C if there exist functions η : C×C → R
n, θ : C×C →

R+ with θ (x, x) = 0, and ρ ∈ R such that the following hold:

η (x, x0)
� ∇ϕ (x0) ≥ −ρθ (x, x0) =⇒ ϕ (x) > ϕ (x0) , ∀x ∈ C, x 	= x0.

Definition 6 A differentiable function ϕ : C ⊆ R
n → R is (η, ρ, θ)-quasi-

invex at x0 ∈ C if there exist functions η : C × C → R
n, θ : C × C → R+

with θ (x, x) = 0, and ρ ∈ R such that the following hold:

ϕ (x) ≤ ϕ (x0) =⇒ η (x, x0)
�∇ϕ (x0) ≤ −ρθ (x, x0) , ∀x ∈ C.

If −ϕ is (η, ρ, θ)-quasi-invex at x0 ∈ C, then ϕ is called (η, ρ, θ)-quasi-incave
at x0 ∈ C.

If in the above definitions the corresponding property of a differentiable
function ϕ : C ⊆ R

n → R is satisfied for any x0 ∈ C, then ϕ has that (η, ρ, θ)-
property on C.
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3 Necessary and Sufficient Optimality Conditions

For any x ∈ P , let us denote the following index sets:

B (x) =
{
r ∈ {1, 2, . . . , q} | x�Brx > 0

}
,

B (x) = {1, 2, . . . , q} \ B (x) =
{
r | x�Brx = 0

}
,

Using Lemma 2, we may prove the following necessary optimality conditions
for problem (P).

Theorem 7 (necessary conditions) If x0 is an optimal solution of the prob-
lem (P) for which B (x0) = ∅ and ∇gj (x0) , j ∈ J (x0) , are linearly indepen-
dent, then there exist an integer number s ∈ {1, . . . , n+ 1} and the vectors
ȳi ∈ Y (x0) , i = 1, s, t ∈ R

s
+, wr ∈ R

n, r = 1, q, and µ ∈ R
p
+ such that

s∑
i=1

ti

(
∇f (x0, ȳi) +

q∑
r=1

Brwr

)
+

p∑
j=1

µj∇gj (x0) = 0, (4)

p∑
j=1

µjgj (x0) = 0, (5)

s∑
i=1

ti > 0, (6)

w�
r Brwr ≤ 1, x�0 Brwr =

√
x�0 Brx0, r = 1, q. (7)

Proof. Since for all r = 1, q Br are positive definite and f is a differentiable
function, it follows that the function

f (x, y) +
q∑

r=1

√
x�Brx

is differentiable with respect to x for any given y ∈ R
m. In Lemma 2, the

differentiable function ψ in (P1) is replaced by the objective function of (P),
and using the Kuhn-Tucker type formula, it follows that there exist a positive
integer s ∈ {1, . . . , n+ 1} , and vectors t ∈ R

s
+, µ ∈ R

p
+, ȳi ∈ Y (x0) , i = 1, s,

such that

s∑
i=1

ti

(
∇f (x0, ȳi) +

q∑
r=1

Brx0√
x�0 Brx0

)
+

p∑
j=1

µj∇gj (x0) = 0, (8)



36 Anton Bătătorescu and Iulian Antonescu

p∑
j=1

µjgj (x0) = 0, (9)

s∑
i=1

ti > 0. (10)

If we denote
wr =

x0√
x�0 Brx0

,

the equation (8) becomes

s∑
i=1

ti

(
∇f (x0, ȳi) +

q∑
r=1

Brwr

)
+

p∑
j=1

µj∇gj (x0) = 0.

This proves (4) - (6). Furthermore, it verifies easily that for any r = 1, q, we
have

w�
r Brwr = 1, and x�0 Brwr =

√
x�0 Brx0.

So relation (7) also holds, and the theorem is proved.

We notice that, in the above theorem, all matrices Br are supposed to be
positive definite. If B (x0) is not empty, then the objective function of problem
(P) is not differentiable. In this case, the necessary optimality conditions still
hold under some additional assumptions. For this purpose, for an integer
number s ∈ {1, . . . , n+ 1} , for which ȳi ∈ Y (x0) , i = 1, s, the real numbers

ti ≥ 0, with
s∑

i=1

ti > 0, and x0 ∈ P , we define the following vector:

α =
s∑

i=1

ti

⎛
⎝∇f (x0, ȳi) +

∑
r∈B(x0)

Brx0√
x�0 Brx0

⎞
⎠

Now we define a set Z as follows:

Zȳ (x0) =

⎧⎨
⎩z ∈ R

n

∣∣∣∣∣∣
z�∇gj (x0) ≤ 0, j ∈ J (x0) ,

z�α+
s∑

i=1

ti
∑

r∈B(x0)

√
z�Brz < 0.

⎫⎬
⎭

Using Lemma 1, we establish the following result:

Theorem 8 (necessary conditions) Let x0 be an optimal solution of the
problem (P). We consider that for an integer s ∈ {1, . . . , n+ 1} , ȳi ∈ Y (x0) ,
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i = 1, s, and there are real numbers ti ≥ 0, with
s∑

i=1

ti > 0, for which the set

Zȳ (x0) = ∅. Then there exist vectors wr ∈ R
n, r = 1, q, and µ ∈ R

p
+ satisfying

relations (4) - (7).

Proof. Relation (6) follows directly from the assumptions.
Since Zȳ (x0) = ∅, for any z ∈ R

n with −z�∇gj (x0) ≥ 0, j ∈ J (x0) , we have

z�α+
s∑

i=1

ti
∑

r∈B(x0)

√
z�Brz ≥ 0.

Let us denote

λ =
s∑

i=1

ti.

Now we apply Lemma 1, by considering

• the rows of matrix A are the vectors [−∇gj (x0)] , j ∈ J (x0) ;

• c = α;

• Mr = λ2Br for r ∈ B (x0) .

It follows that there exist the scalars µj ≥ 0, j ∈ J (x0) , and the vectors
vr ∈ R

n, r ∈ B (x0) , such that

−
∑

j∈J(x0)

µj∇gj (x0) = c+
∑

r∈B(x0)

Mrvr (11)

and
v�r Mrvr ≤ 1, r ∈ B (x0) . (12)

Since gj (x0) = 0 for j ∈ J (x0) , we have: µjgj (x0) = 0 for j ∈ J (x0) . If
j /∈ J (x0) , we put µj = 0. It follows:

p∑
j=1

µjgj (x0) = 0

which shows that relation (5) holds.
Now we define

wr =

⎧⎨
⎩

x0√
x�0 Brx0

, if r ∈ B (x0)

λvr , if r ∈ B (x0) .
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With this notations, equality (11) yields relation (4).
From (12) we get w�

r Brwr ≤ 1 for any r = 1, q. Further, if r ∈ B (x0) , we
have x�0 Brx0 = 0, which implies Brx0 = 0, and then

√
x�0 Brx0 = 0 =

= x�0 Brwr.

If r ∈ B (x0) , we obviously have x�0 Brwr =
√
x�0 Brx0, so relation (7) holds.

Therefore the theorem is proved.
For convenience, if x0 ∈ P so that the vectors ∇gj (x0) , j ∈ J (x0) , are

linear independent and Zȳ (x0) = ∅, then such x0 ∈ P is said to satisfy a
”constraint qualification”.

The results of Theorems 7 and 8 are the necessary conditions for the opti-
mal solution of the problem (P). Actually, the conditions (4) - (7) are also the
sufficient optimality conditions for (P) if some generalized invexity conditions
are fulfilled.

Theorem 9 (sufficient conditions) Let x0 ∈ P be a feasible solution of
(P) such that there exist a positive integer s ∈ {1, . . . , n+ 1} and the vectors
ȳi ∈ Y (x0) , i = 1, s, t ∈ R

s
+, wr ∈ R

n, r = 1, q, and µ ∈ R
p
+ for which the

relations (4) - (7) are satisfied. We define

Φ( · ) =
s∑

i=1

ti

(
f ( · , ȳi) +

q∑
r=1

( · )�Brwr

)
.

If any one of the following four conditions holds:

(a) f ( · , ȳi) +
q∑

r=1

( · )�Brwr is (η, ρi, θ)-invex, for i = 1, s,
p∑

j=1

µjgj ( · ) is

(η, ρ0, θ)-invex, and ρ0 +
s∑

i=1

tiρi ≥ 0;

(b) Φ ( · ) is (η, ρ, θ)-invex and
p∑

j=1

µjgj ( · ) is (η, ρ0, θ)-invex, and ρ+ρ0 ≥ 0;

(c) Φ ( · ) is (η, ρ, θ)-pseudo-invex and
p∑

j=1

µjgj ( · ) is (η, ρ0, θ)-quasi-invex,

and ρ+ ρ0 ≥ 0;

(d) Φ ( · ) is (η, ρ, θ)-quasi-invex and
p∑

j=1

µjgj ( · ) is strictly (η, ρ0, θ)-pseudo-

invex, and ρ+ ρ0 ≥ 0;

then x0 is an optimal solution of (P).
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Proof. On contrary, let us suppose that x0 is not an optimal solution of
(P). Then there exists an x1 ∈ P such that

sup
y∈Y

(
f (x1, y) +

q∑
r=1

√
x�1 Brx1

)
< sup

y∈Y

(
f (x0, y) +

q∑
r=1

√
x�0 Brx0

)

We note that, for ȳi ∈ Y (x0) , i = 1, s, we have

sup
y∈Y

(
f (x0, y) +

q∑
r=1

√
x�0 Brx0

)
= f (x0, ȳi) +

q∑
r=1

√
x�0 Brx0,

and

f (x1, ȳi) +
q∑

r=1

√
x�1 Brx1 ≤ sup

y∈Y

(
f (x1, y) +

q∑
r=1

√
x�1 Brx1

)
.

Thus, we have

f (x1, ȳi) +
q∑

r=1

√
x�1 Brx1 < f (x0, ȳi) +

q∑
r=1

√
x�0 Brx0, for i = 1, s. (13)

Using the relations (3), (7), (13), and (6), we obtain

Φ (x1) =
s∑

i=1

ti

(
f (x1, ȳi) +

q∑
r=1

x�1 Brwr

)
≤

s∑
i=1

ti

(
f (x1, ȳi) +

q∑
r=1

√
x�1 Brx1

)

<
s∑

i=1

ti

(
f (x0, ȳi) +

q∑
r=1

√
x�0 Brx0

)
=

s∑
i=1

ti

(
f (x0, ȳi) +

q∑
r=1

x�0 Brwr

)

= Φ (x0) .

It follows that
Φr (x1) < Φr (x0) . (14)

1. If the hypothesis (a) holds, then for i = 1, s, we have

f (x1, ȳi) +
q∑

r=1
x�1 Brwr − f (x0, ȳi) −

q∑
r=1

x�0 Brwr ≥

≥ η (x1, x0)
�
(
∇f (x0, ȳi) +

q∑
r=1

Brwr

)
+ ρiθ (x1, x0) ,

(15)

Now, multiplying (15) by ti, and then suming up these inequalities, we obtain

Φ (x1) − Φ(x0) ≥
≥ η (x1, x0)

� s∑
i=1

ti

(
∇f (x0, ȳi) +

q∑
r=1

Brwr

)
+

+
s∑

i=1

tiρiθ (x1, x0) .
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Further, by (4) and (η, ρ0, θ)-invexity of
p∑

j=1

µjgj ( · ) , we get

Φ (x1) − Φ (x0) ≥ −η (x1, x0)
� p∑

j=1

µj∇gj (x0) +
s∑

i=1

tiρiθ (x1, x0)

≥ −
p∑

j=1

µjgj (x1) +
p∑

j=1

µjgj (x0) +
(
ρ0 +

s∑
i=1

tiρi

)
θ (x1, x0) .

Since x1 ∈ P , we have gi (x1) ≤ 0, i = 1, s, and using (5) it follows

Φ (x1) − Φ (x0) ≥
(
ρ0 +

s∑
i=1

tiρi

)
θ (x1, x0) ≥ 0,

which contradicts the inequality (14).
2. If the hypothesis (b) holds, we have

Φ (x1) − Φ (x0) ≥
≥ η (x1, x0)

� s∑
i=1

ti

(
∇f (x0, ȳi) +

p∑
j=1

Brwr

)
+ ρθ (x1, x0) .

Using relation (4) and the (η, ρ0, θ)-invexity of
p∑

j=1

µjgj ( · ) , we obtain

Φ (x1) − Φ (x0) ≥ −η (x1, x0)
�

p∑
j=1

µj∇gj (x0) + ρθ (x1, x0) ≥

≥ −
p∑

j=1

µjgj (x1) +
p∑

j=1

µjgj (x0) + (ρ+ ρ0) θ (x1, x0) ≥

≥ (ρ+ ρ0) θ (x1, x0) ≥ 0,

which contradicts the inequality (14).
3. If the hypothesis (c) holds, using the (η, ρ, θ)-pseudo-invexity of Φ, it

follows from (14) that

Φ (x1) < Φ(x0) =⇒ η (x1, x0)
� ∇Φ (x0) < −ρθ (x1, x0) . (16)

Using again relation (4), from (16) and ρ+ ρ0 ≥ 0, we get

η (x1, x0)
�

p∑
j=1

µj∇gj (x0) > ρθ (x1, x0) ≥ −ρ0θ (x1, x0) . (17)
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Since x1 ∈ P imply gi (x1) ≤ 0, i = 1, s, and µ ∈ R
p
+, using (5) we have

p∑
j=1

µjgj (x1) ≤ 0 =
p∑

j=1

µjgj (x0) . (18)

Using the (η, ρ0, θ)-quasi-invexity of
p∑

j=1

µjgj ( · ) , we get from the last relation

η (x1, x0)
�

p∑
j=1

µj∇gj (x0) ≤ ρ0θ (x1, x0)

which contradicts the inequality (17).
4. If the hypothesis (d) holds, the (η, ρ, θ)-quasi-invexity of Φ imply

Φ (x1) ≤ Φ (x0) =⇒ η (x1, x0)
� ∇Φ (x0) ≤ −ρθ (x1, x0) .

From here, together with (4) and ρ+ ρ0 ≥ 0, we have

η (x1, x0)
�

p∑
j=1

µj∇gj (x0) ≥ ρθ (x1, x0) ≥ −ρ0θ (x1, x0) . (19)

Since (18) is true, the strictly (η, ρ, θ)-pseudo-invexity of
p∑

j=1

µjgj ( · ) imply

η (x1, x0)
�

p∑
j=1

µj∇gj (x0) < ρ0θ (x1, x0)

which contradicts the inequality (19).
Therefore the proof of the theorem is complete.

4 Duality

Let us denote

K (x) =

⎧⎪⎪⎨
⎪⎪⎩(s, t, y)

∣∣∣∣∣∣∣∣
s ∈ {1, . . . , n+ 1} ,
t ∈ R

s
+, and

s∑
i=1

ti = 1,

y = (y1, · · · , ys) , with yi ∈ Y (x) , i = 1, s

⎫⎪⎪⎬
⎪⎪⎭ .

We consider further the set H (s, t, y) consisting of all (z, µ, λ, w) ∈ R
n ×

R
p
+ × R+ × R

n which satisfy the following conditions:

s∑
i=1

ti

(
∇f (z, yi) +

q∑
r=1

Brw

)
+

p∑
j=1

µj∇gj (z) ≥ 0, (20)
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s∑
i=1

ti

(
f (z, yi) +

q∑
r=1

z�Brw

)
≥ λ, (21)

p∑
j=1

µjgj (z) ≥ 0, (22)

(s, t, y) ∈ K (z) (23)

w�Brw ≤ 1. (24)

The optimality conditions, stated in the preceding section for the minimax
problem (P), suggest us to define the following dual problem:

max
(s,t,y)∈K(z)

sup {λ | (z, µ, λ, w) ∈ H (s, t, y)} (DP)

If, for a triple (s, t, y) ∈ K (z) , the set H (s, t, y) = ∅, then we define the
supremum over H (s, t, y) to be −∞. Further, we denote

Φ ( · ) =
s∑

i=1

ti

(
f ( · , yi) +

q∑
r=1

( · )�Brw

)

Now, we can state the following weak duality theorem for (P) and (DP).

Theorem 10 (weak duality) Let x ∈ P be a feasible solution of (P) and
(x, µ, λ, w, s, t, y) be a feasible solution of (DP). If any of the following four
conditions holds:

(a) f ( · , yi) +
q∑

r=1

( · )�Brw is (η, ρi, θ)-invex for i = 1, s,
p∑

j=1

µjgj ( · ) is

(η, ρ0, θ)-invex, and ρ0 +
s∑

i=1

tiρi ≥ 0,

(b) Φ ( · ) is (η, ρ, θ)-invex and
p∑

j=1

µjgj ( · ) is (η, ρ0, θ)-invex, and ρ+ρ0 ≥ 0,

(c) Φ ( · ) is (η, ρ, θ)-pseudo-invex and
p∑

j=1

µjgj ( · ) is (η, ρ0, θ)-quasi-invex,

and
ρ+ ρ0 ≥ 0,

(d) Φ ( · ) is (η, ρ, θ)-quasi-invex and
p∑

j=1

µjgj ( · ) is strictly (η, ρ0, θ)-pseudo-

invex, and ρ+ ρ0 ≥ 0,
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then

sup
y∈Y

(
f (x, y) +

q∑
r=1

√
x�Brx

)
≥ λ (25)

Proof. If we suppose, on contrary, that

sup
y∈Y

(
f (x, y) +

q∑
r=1

√
x�Brx

)
< λ

then we have, for all y ∈ Y,

f (x, y) +
q∑

r=1

√
x�Brx < λ.

It follows that, for ti ≥ 0, i = 1, s, with
s∑

i=1

ti = 1,

ti

[
f (x, y) +

q∑
r=1

√
x�Brx− λ

]
≤ 0, i = 1, s, (26)

with at least one strict inequality, because t = (t1, · · · , ts) 	= 0.
Taking into account the relations (3), (24), (26) and (21), we have

Φ (x) − λ =
s∑

i=1

ti

[
f (x, yi) +

q∑
r=1

x�Brw − λ

]

≤
s∑

i=1

ti

[
f (x, yi) +

q∑
r=1

√
x�Brx− λ

]

< 0 ≤
s∑

i=1

ti

[
f (z, yi) +

q∑
r=1

z�Brw − λ

]
= Φ (z) − λ,

that is
Φ (x) < Φ (z) . (27)

1. If hypothesis (a) holds, then for i = 1, s, we have

f (x, yi) +
q∑

r=1

x�Brw − f (z, yi) −
q∑

r=1

z�Brw ≥

≥ η (x, z)�
(
∇f (z, yi) +

q∑
r=1

Brw

)
+ ρiθ (x, z) ,

(28)
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Now, multiplying (28) by ti, and then sum up these inequalities, we obtain

Φ (x) − Φ (z) ≥ η (x, z)�
s∑

i=1

ti

(
∇f (z, yi) +

q∑
r=1

Brw

)
+

s∑
i=1

tiρiθ (x, z) .

Further, by (20) and (η, ρ0, θ)-invexity of
p∑

j=1

µjgj ( · ) , we get

Φ (x) − Φ (z) ≥ −η (x, z)�
p∑

j=1

µj∇gj (z) +
s∑

i=1

tiρiθ (x, z)

≥ −
p∑

j=1

µjgj (x) +
p∑

j=1

µjgj (z) +

(
ρ0 +

s∑
i=1

tiρi

)
θ (x, z) .

Since x ∈ P , we have gi (x) ≤ 0, i = 1, s, and using (22) it follows

Φ (x) − Φ (z) ≥
(
ρ0 +

s∑
i=1

tiρi

)
θ (x, z) ≥ 0,

which contradicts the inequality (27). Hence, the inequality (25) is true.
2. The case of hypothesis (b) follows with the same argument as before by

using (a).
3. If hypothesis (c) holds, using the (η, ρ, θ)-pseudo-invexity of Φ, we get

from (27) that
η (x, z)� ∇Φ (z) < −ρθ (x, z) (29)

Consequently, relations (20), (29) and ρ+ ρ0 ≥ 0 yield

η (x, z)�
p∑

j=1

µj∇gj (z) > ρθ (x, z) ≥ −ρ0θ (x, z) . (30)

Because x ∈ P , µ ∈ R
p
+, and (22), we have

p∑
j=1

µjgj (x) ≤ 0 =
p∑

j=1

µjgj (z) .

Using the (η, ρ0, θ)-quasi-invexity of
p∑

j=1

µjgj ( · ) , we get from the last relation

η (x, z)�
p∑

j=1

µj∇gj (z) ≤ ρ0θ (x, z) ,
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which contradicts the inequality (30).
4. The result under the hypothesis (d) follows similarly like before in step

3.
Therefore the proof of the theorem is complete.

Theorem 11 (direct duality) Let x̄ be an optimal solution of the problem
(P). Assume that x̄ satisfies a constraint qualification for (P). Then there exist
(s̄, t̄, ȳ) ∈ K (x̄) and

(
x̄, µ̄, λ̄, w̄

) ∈ H (s̄, t̄, ȳ) such that (x̄, µ̄, λ̄, w̄, s̄, t̄, ȳ) is a
feasible solution of (DP). If the hypotheses of Theorem 10 are also satisfied,
then

(
x̄, µ̄, λ̄, w̄, s̄, t̄, ȳ

)
is an optimal solution for (DP), and both problems (P)

and (DP) have the same optimal value.

Proof. By Theorems 7 and 8, there exist (s̄, t̄, ȳ) ∈ K (x̄) and (x̄, µ̄, λ̄, w̄) ∈
H (s̄, t̄, ȳ) such that

(
x̄, µ̄, λ̄, w̄, s̄, t̄, ȳ

)
is a feasible solution of (DP), and

λ̄ = f (x̄, ȳ) +
q∑

r=1

√
(x̄)�Brx̄.

The optimality of this feasible solution for (DP) follows from Theorem 10.

Theorem 12 (strict converse duality) Let x̂ and
(
z̄, µ̄, λ̄, w̄, s̄, t̄, ȳ

)
be the

optimal solutions of (P) and (DP), respectively, and that the hypotheses of
Theorem 11 are fulfilled. If any one of the following three conditions holds:

(a) one of f ( · , ȳi) +
q∑

r=1
( · )�Brw̄ is strictly (η, ρi, θ)-invex for i = 1, s, or

p∑
j=1

µ̄jgj ( · ) is strictly (η, ρ0, θ)-invex, and ρ0 +
s∑

i=1

t̄iρi ≥ 0;

(b) either
s∑

i=1

t̄i

(
f ( · , ȳi) +

q∑
r=1

( · )�Brw̄

)
is strictly (η, ρ, θ)-invex or

p∑
j=1

µ̄jgj ( · )
is strictly (η, ρ0, θ)-invex, and ρ+ ρ0 ≥ 0;

(c) the function
s∑

i=1

t̄i

(
f ( · , ȳi) +

q∑
r=1

( · )�Brw̄

)
is strictly (η, ρ, θ)-pseudo-

invex and
p∑

j=1

µ̄jgj ( · ) is (η, ρ0, θ)-quasi-invex, and ρ+ ρ0 ≥ 0;

then x̂ = z̄, that is, z̄ is an optimal solution for problem (P) and

sup
y∈Y

(
f (z̄, y) +

q∑
r=1

√
z̄�Brz̄

)
= λ̄.
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Proof. Suppose on the contrary that x̂ 	= z̄. From Theorem 11 we know
that there exist

(
ŝ, t̂, ŷ

) ∈ K (x̂) and
(
x̂, µ̂, λ̂, ŵ

)
∈ H

(
ŝ, t̂, ŷ

)
such that(

x̂, µ̂, λ̂, ŵ, ŝ, t̂, ŷ
)

is a feasible solution for (DP) with the optimal value

λ̂ = sup
y∈Y

(
f (x̂, y) +

q∑
r=1

√
x̂�Brx̂

)
.

Now, we proceed similarly as in the proof of Theorem 10, replacing x by x̂ and
(z, µ, λ, w, s, t, y) by

(
z̄, µ̄, λ̄, w̄, s̄, t̄, ȳ

)
, so that we arrive at the strict inequality

sup
y∈Y

(
f (x̂, y) +

q∑
r=1

√
x̂�Brx̂

)
> λ̄.

But this contradicts the fact

sup
y∈Y

(
f (x̂, y) +

q∑
r=1

√
x̂�Brx̂

)
= λ̂ = λ̄,

and we conclude that x̂ = z̄. Hence, the proof of the theorem is complete.
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