Compactness and Radon-Nikodym properties on the Banach space of convergent series

A. L. Barrenechea and C. C. Peña

Abstract

We characterize the bounded linear operators on the Banach space γ of convergent complex sequences. The class of infinite matrices that determine such operators is determined, as well as those that induce conservative, regular or compact operators. It is seeing that γ does not have the Radon-Nikodym property and hence it is deduced its non reflexivity and its non uniform convexity.

1 Preliminaries

In this article we investigate the structure of bounded operators on the sequence space γ of convergent series, as well as some of their geometric properties. In 1949 R. G. Cooke characterized the class of bounded operators between γ and the Banach space c of the convergent sequences (cf. [5]). For a further study and a more complete list of references and reader can see [9]. The following facts are well-known:

Theorem 1 Let c be the space of convergent complex sequences endowed with the supremum norm, i.e. $\|z\|_{\mathrm{c}}=\sup _{n \geq 1}\left|z_{n}\right|$ for $z \in \mathrm{c}$.
(i) With the usual coordinate operations c becomes a Banach space, as it is a closed subspace of 1^{∞}.
(ii) If $\mathrm{e}=(1,1, \ldots)$ then $\mathrm{c}=\mathrm{c}_{0} \oplus \mathbb{C} \cdot \mathrm{e}$, where c_{0} is the Banach subspace of c of sequences that converge to zero.

[^0](iii) $\mathrm{c}_{0}^{*} \approx \mathrm{l}^{1}$, where \approx denotes an isometric isomorphism of Banach spaces and 1^{1} is the usual Banach space of absolutely convergent series.
(iv) Every $\varphi \in \mathrm{c}^{*}$ can be written in a unique way as
\[

$$
\begin{equation*}
\varphi(z)=\widetilde{a}_{0} \cdot \lambda(z)+\sum_{n=1}^{\infty} a_{n} \cdot\left(z_{n}-\lambda(z)\right) \text { if } z \in \mathrm{c} \tag{1}
\end{equation*}
$$

\]

where $\lambda \in \mathrm{c}^{*}$ is defined as $\lambda(z)=\lim _{n \rightarrow \infty} z_{n}$. Further, $a_{n}=\varphi\left(e_{n}\right)$ if $n \geq 1$, $\left\{a_{n}\right\}_{n=1}^{\infty} \in 1^{1}$ and $\widetilde{a}_{0}=\varphi(e)$. By (1) we can write

$$
\varphi(z)=\left(\widetilde{a}_{0}-\sum_{n=1}^{\infty} a_{n}\right) \lambda(z)+\sum_{n=1}^{\infty} a_{n} \cdot z_{n}
$$

(v) Moreover, if $a_{0} \triangleq \widetilde{a}_{0}-\sum_{n=1}^{\infty} a_{n}$ then $\|\varphi\|=\sum_{n=0}^{\infty}\left|a_{n}\right|$.

In order to be more clear and self-contained we prove the following:
Corollary 2 (cf. [12]) A linear operator $A: \mathrm{c} \rightarrow \mathrm{c}$ is bounded if and only if there is a unique bi-index sequence $\left\{a_{n, m}\right\}_{n, m=0}^{\infty}$ so that

$$
\begin{equation*}
A(z)=\left\{a_{n, 0} \cdot \lambda(z)+\sum_{m=1}^{\infty} a_{n, m} \cdot z_{m}\right\}_{n=1}^{\infty} \quad \text { if } z \in \mathrm{c} \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\|A\|=\sup _{n \in \mathbb{N}} \sum_{m=0}^{\infty}\left|a_{n, m}\right| \tag{3}
\end{equation*}
$$

In particular, the following limits exist:

$$
\begin{gather*}
a_{0,0} \triangleq \lim _{n \rightarrow \infty} \sum_{m=0}^{\infty} a_{n, m} \tag{4}\\
a_{0, m} \triangleq \lim _{n \rightarrow \infty} a_{n, m}, m \in \mathbb{N} \tag{5}
\end{gather*}
$$

and $\left\{a_{0, m}\right\}_{m=1}^{\infty} \in 1^{1}$.
Proof. If $A \in \mathcal{B}(\mathrm{c}), n \in \mathbb{N}$ and $\chi_{n} \in \mathrm{c}^{*}$ is the projection onto the n-th coordinate, by (iv) there is a unique sequence $\left\{a_{n, m}\right\}_{m=0}^{\infty} \in l^{1}$ so that

$$
\begin{equation*}
\left(\chi_{n} \circ A\right)(z)=a_{n, 0} \cdot \lambda(z)+\sum_{m=1}^{\infty} a_{n, m} \cdot z_{m} \text { if } z \in \mathrm{c} \tag{6}
\end{equation*}
$$

Indeed, $a_{n, 0}=\left(\chi_{n} \circ A\right)(\mathrm{e})-\sum_{m=1}^{\infty} a_{n, m}$ and $\left\|\chi_{n} \circ A\right\|=\sum_{m=0}^{\infty}\left|a_{n, m}\right|$. Since $\left\{\left(\chi_{n} \circ A\right)(z)\right\}_{n=1}^{\infty} \in \mathrm{c}$ if $z \in \mathrm{c}$ an application of the uniform boundedness principle gives

$$
\begin{equation*}
\sigma \triangleq \sup _{n \in \mathbb{N}} \sum_{m=0}^{\infty}\left|a_{n, m}\right|<\infty \tag{7}
\end{equation*}
$$

By (6) we see that $\|A\| \leq \sigma$ and we can assume that $\sigma>0$. If $0<\varepsilon<\sigma$ let $n \in \mathbb{N}$ so that $\sum_{m=0}^{\infty}\left|a_{n, m}\right|>\sigma-\varepsilon / 2$. Then choose $m_{0} \in \mathbb{N}$ so that

$$
\sum_{m=0}^{m_{0}}\left|a_{n, m}\right|>\sigma-\varepsilon / 2 \text { and } \sum_{m>m_{0}}\left|a_{n, m}\right|<\varepsilon / 2
$$

As in Theorem $1(v)$, let

$$
z=\sum_{m=1}^{m_{0}} \overline{u\left(a_{n, m}\right)} \cdot e_{m}+\overline{u\left(a_{n, 0}\right)} \cdot\left(\mathrm{e}-\sum_{m=1}^{m_{0}} e_{m}\right) .
$$

Then $\|z\|_{\mathrm{c}}=1$ and

$$
\begin{aligned}
\|A\| & \geq\left|\left(\chi_{n} \circ A\right)(z)\right|= \\
& =\left|\sum_{m=0}^{m_{0}}\right| a_{n, m}\left|+\overline{u\left(a_{n, 0}\right)} \sum_{m>m_{0}} a_{n, m}\right| \geq \\
& \geq \sum_{m=0}^{m_{0}}\left|a_{n, m}\right|-\left|\sum_{m>m_{0}} a_{n, m}\right| \geq \\
& \geq \sigma-\varepsilon / 2-\sum_{m>m_{0}}\left|a_{n, m}\right| \geq \\
& \geq \sigma-\varepsilon .
\end{aligned}
$$

Since ε is arbitrary, (3) follows. As $\left(\chi_{n} \circ A\right)(e)=\sum_{m=0}^{\infty} a_{n, m}$, the limit in (4) exists. The existence of the limits in (5) is immediate as $a_{0, m}=\lambda\left(A\left(e_{m}\right)\right)$ for $m \in \mathbb{N}$ and the conditions are necessary.

On the other hand, let $\left\{a_{n, m}\right\}_{n, m=0}^{\infty}$ be a given sequence of complex scalars so that (7), (4) and (5) hold. We shall show that (2) defines an operator $A \in \mathcal{B}(\mathrm{c})$. For, by (7) giving $z \in \mathrm{c}$ and $n \in \mathbb{N}$ the series $\sum_{m=1}^{\infty} a_{n, m} \cdot z_{m}$ converges. Further,

$$
\begin{equation*}
a_{n, 0} \cdot \lambda(z)+\sum_{m=1}^{\infty} a_{n, m} \cdot z_{m}=\lambda(z) \cdot \sum_{m=0}^{\infty} a_{n, m}+\sum_{m=1}^{\infty} a_{n, m} \cdot\left(z_{m}-\lambda(z)\right) . \tag{8}
\end{equation*}
$$

By (5) and (7) we see that if $M \in \mathbb{N}$. Then

$$
\sum_{m=1}^{M}\left|a_{0, m}\right|=\lim _{n \rightarrow \infty} \sum_{m=1}^{M}\left|a_{n, m}\right| \leq \sigma
$$

i.e. $\left\{a_{0, m}\right\}_{m=1}^{\infty} \in l^{1}$. Therefore, by (8), (4) and (7), we conclude that

$$
\lim _{n \rightarrow \infty}\left\{a_{n, 0} \cdot \lambda(z)+\sum_{m=1}^{\infty} a_{n, m} \cdot z_{m}\right\}=a_{0,0} \cdot \lambda(z)+\sum_{m=1}^{\infty} a_{0, m} \cdot\left(z_{m}-\lambda(z)\right),
$$

i.e. A is well defined. That A is bounded is immediate by (7).

Corollary 3 Let $A \in \mathcal{B}(c)$. The unique bi-index sequence $\left\{a_{n, m}\right\}_{n, m=0}^{\infty}$ that determinates A is defined as follows:

$$
a_{n, m}=\left\{\begin{array}{cl}
\left(\chi_{n} \circ A\right)\left(e_{m}\right) & \text { if } \quad n, m \in \mathbb{N} \\
\left(\chi_{n} \circ A\right)(\mathrm{e})-\sum_{m=1}^{\infty}\left(\chi_{n} \circ A\right)\left(e_{m}\right) & \text { if } n \in \mathbb{N}, m=0 \\
\lambda\left(A\left(e_{m}\right)\right) & \text { if } n=0, m \in \mathbb{N} \\
\lambda(A(\mathrm{e})) & \text { if } n=m=0
\end{array}\right.
$$

Remark 4 A bi-index sequence $\left\{a_{n, m}\right\}_{n, m=0}^{\infty}$ is called c-conservative if it satisfies the conditions of Corollary 2. Further, $\left\{a_{n, m}\right\}_{n, m=0}^{\infty}$ is said c-regular if it is conservative and its induced bounded operator A on c preserves limits, i.e. $\lambda(A(z))=\lambda(z)$ for all $z \in \mathrm{c}$. From (9) it is easily seeing that $\left\{a_{n, m}\right\}_{n, m=0}^{\infty}$ is c-regular if and only if $a_{0,0}=1$ and $a_{0, m}=0$ for all $m \in \mathbb{N}$.

The study of the properties of γ listed in this paper are motivated on recent works about the structure and behauviour of derivations on certain Banach algebras (cf [1], [2]). In particular, intrinsic connections between derivations on non-amenable nuclear Banach algebras whose underlying space has a shrinking basis and the corresponding multiplier Banach sequence space were recently established (cf. [3]). There is a huge literature on the structure of operators on classic Banach sequence spaces, but we believe that a careful look of γ will allow a more deeper understand of its Banach algebra of bounded operators. With this aim we shall try to write this article in order that it be self-contained as well as possible.

In Section 2 we introduce the Banach space of complex convergent series and we characterize in Theorem 7 its bounded operators. The so called γ regular and γ-conservative operators are determined. In Section 3 we analyze the Radon-Nikodym property on γ and then we deduce that it is not reflexive and not uniformly convex Banach space. Finally, in Section 4 it is characterized the class of compact operators on γ.

2 Concerning to the space γ of convergent series

Let γ be the set of complex convergent series endowed with its natural vector space structure. If $z \in \gamma$ set

$$
\|z\|_{\gamma}=\sup _{m \geq 1}\left|\sum_{n=1}^{m} z_{n}\right|
$$

We shall write $S_{m}(z)=\sum_{n=1}^{m} z_{n}$ and $S(z)=\sum_{n=1}^{\infty} z_{n}$ for $m \in \mathbb{N}$ and $z \in \gamma$. Clearly $\left(\gamma,\|\circ\|_{\gamma}\right)$ is a complex normed space and $\{S\} \cup\left\{S_{n}\right\}_{n=1}^{\infty} \subseteq \overline{\mathrm{B}}_{\gamma^{*}}(0,1)$.

Proposition $5\left(\gamma,\|\circ\|_{\gamma}\right)$ is a complex Banach space.
Proof. Let $\left\{z^{k}\right\}_{k=1}^{\infty}$ be a Cauchy sequence in γ, with $z^{k}=\left(z_{n}^{k}\right)_{n=1}^{\infty}$ if $k \in \mathbb{N}$. Since $\left|z_{1}^{k}-z_{1}^{k+h}\right| \leq\left\|z^{k}-z^{k+h}\right\|_{\gamma}$ if $k, h \in \mathbb{N}$ then $\left(z_{1}^{k}\right)_{k=1}^{\infty}$ becomes a Cauchy sequence in \mathbb{C}. Thus it has a limit, say $\lim _{k \rightarrow \infty} z_{1}^{k} \triangleq z_{1}$. Further, let assume that the limits $\lim _{k \rightarrow \infty} z_{j}^{k} \triangleq z_{j}$ exist if $1 \leq j<J$. Since

$$
\left|\sum_{n=1}^{J}\left(z_{n}^{k}-z_{n}^{k+h}\right)\right| \geq\left|z_{J}^{k}-z_{J}^{k+h}\right|-\left|\sum_{n=1}^{J-1}\left(z_{n}^{k}-z_{n}^{k+h}\right)\right|
$$

we see that $\left|z_{J}^{k}-z_{J}^{k+h}\right| \leq 2\left\|z^{k}-z^{k+h}\right\|_{\gamma}$ if $k, h \in \mathbb{N}$, i.e. $\left(z_{J}^{k}\right)_{k=1}^{\infty}$ is a Cauchy sequence. Hence we can write $\lim _{k \rightarrow \infty} z_{J}^{k} \triangleq z_{J}$ and inductively we constructed a sequence $z \triangleq\left(z_{n}\right)_{n=1}^{\infty}$. If $\varepsilon>0$ let $k(\varepsilon) \in \mathbb{N}$ be so that $\left\|z^{k}-z^{k+h}\right\|_{\gamma} \leq \varepsilon / 4$ if $k \geq k(\varepsilon)$ and $h \in \mathbb{N}$. Whence, if $m \in \mathbb{N}$ then

$$
\left|\sum_{n=1}^{m}\left(z_{n}^{k}-z_{n}^{k+h}\right)\right| \leq\left\|z^{k}-z^{k+h}\right\|_{\gamma} \leq \varepsilon / 4
$$

and letting $h \rightarrow \infty$ we deduce that $\left|\sum_{n=1}^{m}\left(z_{n}^{k}-z_{n}\right)\right| \leq \varepsilon$. Since $z^{k(\varepsilon)} \in \gamma$ there exists $k_{0} \in \mathbb{N}$ so that $\left|\sum_{n=k}^{k+h} z_{n}^{k(\varepsilon)}\right| \leq \varepsilon / 2$ if $k \geq k_{0}$ and $h \in \mathbb{N}$. Finally, if $k \geq k_{0}$ and $h \in \mathbb{N}$ then

$$
\left|\sum_{n=k}^{k+h} z_{n}\right|=\left|\sum_{n=1}^{k+h}\left(z_{n}-z_{n}^{k(\varepsilon)}\right)-\sum_{n=1}^{k-1}\left(z_{n}-z_{n}^{k(\varepsilon)}\right)+\sum_{n=k}^{k+h} z_{n}^{k(\varepsilon)}\right| \leq \varepsilon
$$

and so $z \in \gamma$. By the previous reasoning we get $\left\|z-z^{k}\right\|_{\gamma} \leq \varepsilon$ if $k \geq k(\varepsilon)$.

Theorem 6 A linear form t on γ is bounded if and only if there is a unique sequence $a=\left(a_{n}\right)_{n=1}^{\infty}$ so that

$$
\begin{equation*}
t(z)=\lambda(a) \cdot S(z)+\sum_{n=1}^{\infty}\left(a_{n}-a_{n+1}\right) \cdot S_{n}(z) \text { if } z \in \gamma \tag{10}
\end{equation*}
$$

and $\left(a_{n}-a_{n+1}\right)_{n=1}^{\infty} \in 1^{1}$. Indeed,

$$
\begin{equation*}
\|t\|=|\lambda(a)|+\sum_{n=1}^{\infty}\left|a_{n}-a_{n+1}\right| \tag{11}
\end{equation*}
$$

Proof. The map $S_{0}: \gamma \rightarrow$ c so that $S_{0}(z)=\left\{S_{n}(z)\right\}_{n=1}^{\infty}$ if $z \in \gamma$ is a well defined linear isomorphism of γ onto c whose inverse for $w \in \mathrm{c}$ is given by $S_{0}^{-1}(w)=\left(w_{1}, w_{2}-w_{1}, w_{3}-w_{2}, \ldots\right)$. Thus, if $t \in \gamma$ and $\tilde{t} \triangleq t \circ S_{0}^{-1}$ then $\widetilde{t} \in \mathrm{c}^{*}$. By Th.1(iv) we know that $\left\{\widetilde{t}\left(e_{n}\right)\right\}_{n=1}^{\infty} \in 1^{1}$. Hence $\left\{t\left(e_{n}\right)\right\}_{n=1}^{\infty} \in \mathrm{c}$ and if $z=S_{0}^{-1}(w)$ for $w \in \mathrm{c}$ and $z \in \gamma$ then

$$
\begin{aligned}
t(z) & =\widetilde{t}(w)=\lim _{n \rightarrow \infty} t\left(e_{n}\right) \cdot \lambda(w)+\sum_{n=1}^{\infty} t\left(e_{n}-e_{n+1}\right) \cdot w_{n} \\
& =\lim _{n \rightarrow \infty} t\left(e_{n}\right) \cdot S(z)+\sum_{n=1}^{\infty} t\left(e_{n}-e_{n+1}\right) \cdot S_{n}(z)
\end{aligned}
$$

i.e. $\quad a \triangleq\left\{t\left(e_{n}-e_{n+1}\right)\right\}_{n=1}^{\infty}$. The uniqueness of this sequence follows from Theorem 1. On the other hand, clearly (10) defines a linear form $t \in \gamma^{*}$ if the sequence $a=\left(a_{n}\right)_{n=1}^{\infty}$ is choosen so that $\left(a_{n}-a_{n+1}\right)_{n=1}^{\infty} \in l^{1}$. Further, since S_{0} is a linear isometric isomorphism of γ onto c then (11) holds.

Theorem 7 There is an 1-1 correspondence between $\mathcal{B}(\gamma)$ and the set of infinite complex matrices $\left\{a_{m, p}\right\}_{m, p=1}^{\infty}$ so that
(i) $\sup _{m \in \mathbb{N}}\left\{\left|\lim _{p \rightarrow \infty} a_{m, p}\right|+\sum_{p=1}^{\infty}\left|a_{m, p}-a_{m, p+1}\right|\right\}<\infty$.
(ii) Letting $a_{m} \triangleq\left\{a_{m, n}\right\}_{n=1}^{\infty}$ then

$$
\begin{equation*}
\sup _{n \in \mathbb{N}}\left\{\sum_{p=1}^{\infty}\left|\sum_{m=1}^{n}\left(a_{m, p}-a_{m, p+1}\right)\right|+\left|\sum_{m=1}^{n} \lambda\left(a_{m}\right)\right|\right\}<\infty . \tag{12}
\end{equation*}
$$

(iii) $\left\{a_{m, 1}\right\}_{m=1}^{\infty} \in \gamma$.
(iv) $\left\{\left\{a_{m, p}-a_{m, p+1}\right\}_{m=1}^{\infty}: p \in \mathbb{N}\right\} \subseteq \gamma$.

Proof. Take $\pi_{n}: \gamma \rightarrow \mathbb{C}$ so that $\pi_{n}(z)=z_{n}$ if $z \in \gamma$. Then $\sup _{n \in \mathbb{N}}\left\|\pi_{n}\right\|_{\gamma^{*}} \leq$ 2. So, given $B \in \mathcal{B}(\gamma)$ and $m \in \mathbb{N}$ by Theorem 6 there is a uniquely determined sequence $a_{m} \triangleq\left\{a_{m, n}\right\}_{n=1}^{\infty}$ so that $\left\{a_{m, n}-a_{m, n+1}\right\}_{n=1}^{\infty} \in l^{1}$,

$$
\left(\pi_{m} \circ B\right)(z)=\lambda\left(a_{m}\right) \cdot S(z)+\sum_{n=1}^{\infty}\left(a_{m, n}-a_{m, n+1}\right) \cdot S_{n}(z) \text { if } z \in \gamma
$$

and

$$
\left\|\pi_{m} \circ B\right\|_{\gamma^{*}}=\left|\lambda\left(a_{m}\right)\right|+\sum_{p=1}^{\infty}\left|a_{m, p}-a_{m, p+1}\right|
$$

Now (i) follows by the uniform boundedness principle. If $A \triangleq S_{0} \circ B \circ S_{0}^{-1}$ then $A \in \mathcal{B}(c)$ and

$$
\left(\chi_{n} \circ A\right)(w)=\lambda(w) \cdot \sum_{m=1}^{n} \lambda\left(a_{m}\right)+\sum_{p=1}^{\infty} w_{p} \sum_{m=1}^{n}\left(a_{m, p}-a_{m, p+1}\right)
$$

if $w \in \mathrm{c}$ and $n \in \mathbb{N}$. We shall write

$$
\theta_{n, p}=\left\{\begin{array}{cc}
\sum_{m=1}^{n} \lambda\left(a_{m}\right) & \text { if } p=0 \tag{13}\\
\sum_{m=1}^{n}\left(a_{m, p}-a_{m, p+1}\right) & \text { if } p \in \mathbb{N}
\end{array}\right.
$$

If $n \in \mathbb{N}$, by Theorem $1(v)$, we know that $\left\|\chi_{n} \circ A\right\|_{c^{*}}=\sum_{p=0}^{\infty}\left|\theta_{n, p}\right|$ and, by the uniform boundedness principle, we get (12). Moreover, by Corollary 2 the following limits exist

$$
\begin{align*}
\theta_{0,0} & \triangleq \lim _{n \rightarrow \infty} \sum_{p=0}^{\infty} \theta_{n, p} \tag{14}\\
& =\lim _{n \rightarrow \infty} \sum_{m=1}^{n}\left[\lambda\left(a_{m}\right)+\sum_{p=1}^{\infty}\left(a_{m, p}-a_{m, p+1}\right)\right]=\sum_{m=1}^{\infty} a_{m, 1}, \\
\theta_{0, p} & \triangleq \lim _{n \rightarrow \infty} \theta_{n, p}=\lim _{n \rightarrow \infty} \sum_{m=1}^{n}\left(a_{m, p}-a_{m, p+1}\right), \text { with } p \in \mathbb{N} \tag{15}
\end{align*}
$$

i.e. (iii) and (iv) hold.

Let $\left\{a_{m, p}\right\}_{m, p=1}^{\infty}$ be a given sequence so that (i), (ii), (iii) and (iv) hold. If $m \in \mathbb{N}$ set

$$
\begin{equation*}
B_{m}(z)=\lambda\left(a_{m}\right) \cdot S(z)+\sum_{p=1}^{\infty}\left(a_{m, p}-a_{m, p+1}\right) \cdot S_{p}(z) \text { for } z \in \gamma \tag{16}
\end{equation*}
$$

By (i) and Theorem 6 we know that $B_{m} \in \gamma^{*}$. Using the above notation, if $z \in \gamma$ and $n \in \mathbb{N}$ by (16) we have

$$
\begin{aligned}
\sum_{m=1}^{n} B_{m}(z) & =S(z) \sum_{m=1}^{n} \lambda\left(a_{m}\right)+\sum_{p=1}^{\infty} \sum_{m=1}^{n}\left(a_{m, p}-a_{m, p+1}\right) \cdot S_{p}(z) \\
& =\theta_{n, 0} \cdot \lambda\left(S_{0}(z)\right)+\sum_{p=1}^{\infty} \theta_{n, p} \cdot \chi_{p}\left(S_{0}(z)\right) \\
& =\lambda\left(S_{0}(z)\right) \cdot \sum_{p=0}^{\infty} \theta_{n, p}+\sum_{p=1}^{\infty} \theta_{n, p} \cdot\left(\chi_{p}\left(S_{0}(z)\right)-\lambda\left(S_{0}(z)\right)\right)
\end{aligned}
$$

By (i), (iii) and (iv) the limits in (14) and (15) exist. Further, by (ii) we see that $\sup _{n \in \mathbb{N}} \sum_{p=0}^{\infty}\left|\theta_{n, p}\right|<\infty$. Hence $\left\{\theta_{0, p}\right\}_{p=1}^{\infty} \in l^{1}$ and then

$$
\sum_{m=1}^{\infty} B_{m}(z)=\lambda\left(S_{0}(z)\right) \cdot \sum_{m=1}^{\infty} a_{m, 1}+\sum_{p=1}^{\infty} \theta_{0, p}\left(\chi_{p}\left(S_{0}(z)\right)-\lambda\left(S_{0}(z)\right)\right)
$$

Whence $B(z) \triangleq\left\{B_{m}(z)\right\}_{m=1}^{\infty}$ if $z \in \gamma$ defines a linear mapping on γ that is now clearly bounded.

Remark $8\left\{a_{m, p}\right\}_{m, p=1}^{\infty}$ is γ-conservative if it verifies the conditions of Theorem 7. Further, it called γ-regular if it is γ-conservative and its induced bounded operator B on γ preserves sums, i.e. $\lambda\left(S_{0}(B(z))\right)=\lambda\left(S_{0}(z)\right)$ for all $z \in \gamma$. It is now readily seeing that $\left\{a_{m, p}\right\}_{m, p=1}^{\infty}$ is γ-regular if and only if $\sum_{m=1}^{\infty} a_{m, p}=1$ for all $p \in \mathbb{N}$.

Example 9 If $\left\{a_{m}\right\}_{m=1}^{\infty} \in \gamma$ set $a_{m, p}=a_{m}, m, p \in \mathbb{N}$. Then

$$
B(z) \triangleq\left\{a_{m} \cdot S(z)\right\}_{m=1}^{\infty}, z \in \gamma
$$

defines a bounded linear functional on γ.
Example 10 Let $a_{m, p}=m^{-s} \cdot p^{-t}$, where $m, p \in \mathbb{N}, s>1, t>0$. Then we get

$$
B(z)=\left\{m^{-s}\left(S(z)+\sum_{p=1}^{\infty}\left((p+1)^{-t}-p^{-t}\right) S_{p}(z)\right)\right\}_{m=1}^{\infty}, z \in \gamma
$$

Example 11 Let $a_{m, p}=p /\left(1+p m^{s}\right)$, where $m, p \in \mathbb{N}, s>1$. In this case

$$
B(z)=\left\{\frac{S(z)}{m^{s}}-\sum_{p=1}^{\infty} \frac{S_{p}(z)}{\left(1+p m^{s}\right)\left(1+(p+1) m^{s}\right)}\right\}_{m=1}^{\infty}, z \in \gamma
$$

3 Radon-Nikodym type properties of γ

Proposition 12 The Banach space γ does not have the Radon-Nikodym property.

Proof. We shall use a modified crude argument of J. Diestel \& J. J. Uhl (cf. [6], p. 60). Let Λ be the σ-field of Lebesgue measurable subsets of $[0,1]$. If $n \in \mathbb{N}$ and $E \in \Lambda$ we set

$$
H_{n}(E)=\left\{\begin{array}{cl}
\int_{E} \sin (2 \pi t) d m(t) & \text { if } \quad n=1 \\
-2 \int_{E} \sin \left(2^{n-2} \pi t\right) \cos \left(3 \cdot 2^{n-2} \pi t\right) d m(t) & \text { if } \quad n \geq 2
\end{array}\right.
$$

where m denotes the Lebesgue measure on $[0,1]$. Thus H is a well γ-valued function of Λ. For, if $E \in \Lambda$ and $m \in \mathbb{N}$ we have

$$
\begin{equation*}
\sum_{n=1}^{m} H_{n}(E)=\int_{E} \sin \left(2^{m} \pi t\right) d m(t) \tag{17}
\end{equation*}
$$

According to the Riemann-Lebesgue lemma, we conclude that $\sum_{n=1}^{\infty} H_{n}(E)=$ 0 . Indeed, by (17) we have that $\|H(E)\|_{\gamma} \leq m(E)$ for all $E \in \Lambda$. Now, it is clear that H is countable additive, m-continuous and of bounded variation. Suppose there exist a Bochner integrable $h:[0,1] \rightarrow \gamma$ so that $H(E)=\int_{E} h(t) d m(t)$ for all $E \in \Lambda$. Then, if $h_{n}=\pi_{n} \circ h$ for $n \in \mathbb{N}$ and $E \in \Lambda$ we obtain

$$
\pi_{n}(H(E))=\int_{E} \pi_{n}(h(t)) d m(t)=\int_{E} h_{n}(t) d m(t)
$$

Hence it can be easily deduced that for almost all $t \in[0,1]$ we have

$$
h_{n}(t)=\left\{\begin{array}{cl}
\sin (2 \pi t) & \text { if } \quad n=1 \\
-2 \sin \left(2^{n-2} \pi t\right) \cos \left(3 \cdot 2^{n-2} \pi t\right) & \text { if } \quad n \geq 2
\end{array}\right.
$$

Then if $m \in \mathbb{N}$ is

$$
\begin{equation*}
\sum_{n=1}^{m} h_{n}(t)=\sin \left(2^{m} \pi t\right) \text { a.e.. } \tag{18}
\end{equation*}
$$

We already know that $\operatorname{Im}(H) \subseteq \operatorname{ker}(S)$. Since $S \in \gamma^{*}$ and h is Bochner integrable then $S \circ h \in \mathrm{~L}^{1}[0,1]$ and $\int_{E} S(h(t)) d m(t)=0$ for all $E \in \Lambda$ (cf. [8]). So by (18) we have $S(h(t))=\lim _{m \rightarrow \infty} \sin \left(2^{m} \pi t\right)=0$ almost everywhere on $[0,1]$. However, given $n \in \mathbb{N}$ we set

$$
E_{n} \triangleq\left\{t \in[0,1]:\left|\sin \left(2^{n} \pi t\right)\right| \geq 1 / \sqrt{2}\right\}
$$

If $t \in E_{n}$ there is an integer $1 \leq k \leq 2^{n-1}$ so that
$\frac{2(k-1)+1 / 4}{2^{n}} \leq t \leq \frac{2(k-1)+3 / 4}{2^{n}}$ or $\frac{2(k-1)+5 / 4}{2^{n}} \leq t \leq \frac{2(k-1)+7 / 4}{2^{n}}$.
Consequently $m\left(E_{n}\right)=1 / 2$ for all $n \in \mathbb{N}$ and

$$
m\left(\varlimsup_{n \rightarrow \infty} E_{n}\right)=\lim _{n \rightarrow \infty} m\left(\cup_{l=n}^{\infty} E_{l}\right) \geq 1 / 2
$$

But certainly $S(h(t)) \neq 0$ on $\varlimsup_{n \rightarrow \infty} E_{n}$. Therefore h is not almost everywhere γ-valued and thus G has no Radon-Nikodym derivative with respect to m.

Corollary 13γ is not reflexive nor uniformly convex.
Proof. Since the Radon-Nikodym property does not hold on γ this claim follows from R. S. Phillips theorem (cf. [11]). On the other hand, it is well known that any uniformly convex Banach space is reflexive (cf. [4]).

4 Compact operators on γ

The notion of Hausdorff measure of non compactness provides a way to characterize compact operators acting on certain Banach spaces. Precisely, given a bounded subset Q of a normed space X set

$$
q(Q)=\inf \{\varepsilon>0: Q \text { has a finite } \varepsilon \text {-net in } X\}
$$

The function q is called the Hausdorff measure of non compactness (cf. [7]). If X, Y are Banach spaces and $T \in \mathcal{B}(X, Y)$ we write $\|T\|_{q} \triangleq q\left(T B_{X}[0,1]\right)$, where $B_{X}[0,1]$ is the closed unit ball of X centered at zero. Consequently, T becomes compact if and only if $\|T\|_{q}=0$. With the notation of Corollary 2 the following result of B. de Malafosse, E. Malkowsky \& V. Rakočević holds:
Theorem 14 (cf. [10]) If $A \in \mathcal{B}$ (c) then

$$
\begin{aligned}
& \frac{1}{2} \varlimsup_{n \rightarrow \infty}\left(\left|a_{n, 0}-a_{0,0}+\sum_{m=1}^{\infty} a_{0, m}\right|+\sum_{m=1}^{\infty}\left|a_{n, m}-a_{0, m}\right|\right) \\
& \leq\|A\|_{q} \leq \varlimsup_{n \rightarrow \infty}\left(\left|a_{n, 0}-a_{0,0}+\sum_{m=1}^{\infty} a_{0, m}\right|+\sum_{m=1}^{\infty}\left|a_{n, m}-a_{0, m}\right|\right)
\end{aligned}
$$

Theorem 15 Let $B \in \mathcal{B}(\gamma)$ be the unique bounded operator induced by a biindex sequence $\left\{a_{m, p}\right\}_{m, p=1}^{\infty}$ that verifies the conditions of Theorem 7. Then B is compact if and only if

$$
\varlimsup_{n \rightarrow \infty}\left\{\left|\lim _{p \rightarrow \infty} \sum_{m=n}^{\infty} a_{m, p}\right|+\sum_{p=1}^{\infty}\left|\sum_{m=n}^{\infty}\left(a_{m, p}-a_{m, p+1}\right)\right|\right\}=0
$$

Proof.We use the notation of Theorem 7. By Theorem 14 we see that $B \in C(\gamma)$ if and only if

$$
\varlimsup_{n \rightarrow \infty}\left(\left|\theta_{n, 0}-\theta_{0,0}+\sum_{m=1}^{\infty} \theta_{0, m}\right|+\sum_{m=1}^{\infty}\left|\theta_{n, m}-\theta_{0, m}\right|\right)=0
$$

By (13), (14) and (15) if $n \in \mathbb{N}$ we obtain

$$
\begin{equation*}
\theta_{n, 0}-\theta_{0,0}+\sum_{m=1}^{\infty} \theta_{0, m}=\sum_{m=1}^{n} \lambda\left(a_{m}\right)-\sum_{m=1}^{\infty} a_{m, 1}+\sum_{p=1}^{\infty} \sum_{m=1}^{\infty}\left(a_{m, p}-a_{m, p+1}\right) \tag{19}
\end{equation*}
$$

Using (iii) and (iv) of Theorem 7, it is seeing recursively that $\sum_{m=1}^{\infty} a_{m, p}$ converge for all $p \in \mathbb{N}$. Therefore in (19) we have

$$
\begin{align*}
\theta_{n, 0}-\theta_{0,0}+\sum_{m=1}^{\infty} \theta_{0, m} & =\sum_{m=1}^{n} \lambda\left(a_{m}\right)-\lim _{p \rightarrow \infty} \sum_{m=1}^{\infty} a_{m, p} \tag{20}\\
& =-\lim _{p \rightarrow \infty} \sum_{m=n+1}^{\infty} a_{m, p}
\end{align*}
$$

Analogously,

$$
\begin{equation*}
\sum_{p=1}^{\infty}\left|\theta_{n, p}-\theta_{0, p}\right|=\sum_{p=1}^{\infty}\left|\sum_{m=n+1}^{\infty}\left(a_{m, p}-a_{m, p+1}\right)\right| \tag{21}
\end{equation*}
$$

and the claim follows from (20) and (21).

References

[1] A. L. Barrenechea, C. C. Peña, Some remarks about bounded derivations on the Hilbert algebra of square summable matrices, Matematicki Vesnik, 57(4)(2005), 78-95.
[2] A. L. Barrenechea, C. C. Peña, On innerness of derivations on $S(H)$, Lobachevskii J. of. Maths., 1(2005), 21-32.
[3] A. L. Barrenechea, C. C. Peña, On the structure of derivations on certain nonamenable nuclear Banach algebras, Preprint, 2007.
[4] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40(1936), 396-414,
[5] R. G. Cooke Infinite matrices and sequence spaces, Macmillan and Co., London, 1949.
[6] J. Diestel, J. J. Uhl, Vector measures, Math. Surveys and Monographs, No. 5. AMS, Providence, R.I, 1977.
[7] I. T. Gohberg, L. S. Goldenstein, A. S. Markus Investigations of some properties of bounded linear operators with their q-norms, Učenie Zapiski, Kishinevskii Gosuniversitet 29(1957), 29-36.
[8] E. Hille, R. S. Phillips Functional analysis and semigroups, AMS Colloq. Publ., vol. 31, rev. ed., Providence, R.I, 1957.
[9] I. J. Maddox, Infinite matrices of operators, Lect. Notes in Maths., 786, SpringerVerlag, Berlín-Heidelberg-N.Y., 1980.
[10] B. de Malafosse, E. Malkowsky, V. Rakočević, Measure of non compactness of operators and matrices on the spaces c and c_{0}, International J. of Maths. and Math. Sciences, 29(2006), 1-5.
[11] R. S. Phillips, On linear transformations, Trans. Amer. Math. Soc., 48(1940), 516-541.
[12] I. Schur, Über lineare Transformationen in der Theorie der unendlichen Reihen, J. f. reine u. angew. Math., 151(1921), 79-111.

Dpto. de Matemáticas - NuCOMPA
UNCPBA - Argentina.
e-mails:
ccpenia@exa.unicen.edu.ar
analucia@exa.unicen.edu.ar

[^0]: Key Words: Conservative and regular operators; Radon-Nikodym type properties; Hausdorff measure of non compactness; Uniform convexity of Banach spaces.

 Mathematics Subject Classification: 40C05; 40E05
 Received: 8 November, 2007
 Accepted: January, 2008

