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Compactness and Radon-Nikodym properties
on the Banach space of convergent series

A. L. Barrenechea and C. C. Peña

Abstract

We characterize the bounded linear operators on the Banach space
γ of convergent complex sequences. The class of infinite matrices that
determine such operators is determined, as well as those that induce
conservative, regular or compact operators. It is seeing that γ does
not have the Radon-Nikodym property and hence it is deduced its non
reflexivity and its non uniform convexity.

1 Preliminaries

In this article we investigate the structure of bounded operators on the se-
quence space γ of convergent series, as well as some of their geometric prop-
erties. In 1949 R. G. Cooke characterized the class of bounded operators
between γ and the Banach space c of the convergent sequences (cf. [5]). For
a further study and a more complete list of references and reader can see [9].
The following facts are well-known:

Theorem 1 Let c be the space of convergent complex sequences endowed with
the supremum norm, i.e. ‖z‖c = supn≥1 |zn| for z ∈ c .

(i) With the usual coordinate operations c becomes a Banach space, as it is a
closed subspace of l∞ .

(ii) If e = (1, 1, ...) then c = c0 ⊕C· e, where c0 is the Banach subspace of c of
sequences that converge to zero.
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(iii) c∗0 ≈ l1, where ≈ denotes an isometric isomorphism of Banach spaces and
l1 is the usual Banach space of absolutely convergent series.

(iv) Every ϕ ∈ c∗ can be written in a unique way as

ϕ (z) = ã0 · λ (z) +
∞∑

n=1

an · (zn − λ (z)) if z ∈ c, (1)

where λ ∈ c∗ is defined as λ (z) = limn→∞ zn. Further, an = ϕ (en) if n ≥ 1,
{an}∞n=1 ∈ l1 and ã0 = ϕ (e) . By (1) we can write

ϕ (z) =

(
ã0 −

∞∑
n=1

an

)
λ (z) +

∞∑
n=1

an · zn.

(v) Moreover, if a0 � ã0 −
∞∑

n=1

an then ‖ϕ‖ =
∞∑

n=0

|an| .

In order to be more clear and self-contained we prove the following:

Corollary 2 (cf. [12]) A linear operator A : c → c is bounded if and only if
there is a unique bi-index sequence {an,m}∞n,m=0 so that

A(z) =

{
an,0 · λ (z) +

∞∑
m=1

an,m · zm

}∞

n=1

if z ∈ c (2)

and

‖A‖ = sup
n∈N

∞∑
m=0

|an,m| . (3)

In particular, the following limits exist:

a0,0 � lim
n→∞

∞∑
m=0

an,m, (4)

a0,m � lim
n→∞ an,m, m ∈ N (5)

and {a0,m}∞m=1 ∈ l1 .

Proof. If A ∈ B (c), n ∈ N and χn ∈ c∗ is the projection onto the n-th
coordinate, by (iv) there is a unique sequence {an,m}∞m=0 ∈ l1 so that

(χn ◦ A) (z) = an,0 · λ (z) +
∞∑

m=1

an,m · zm if z ∈ c . (6)
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Indeed, an,0 = (χn ◦ A) (e)−∑∞
m=1 an,m and ‖χn ◦ A‖ =

∑∞
m=0 |an,m| . Since

{(χn ◦ A) (z)}∞n=1 ∈ c if z ∈ c an application of the uniform boundedness
principle gives

σ � sup
n∈N

∞∑
m=0

|an,m| < ∞. (7)

By (6) we see that ‖A‖ ≤ σ and we can assume that σ > 0. If 0 < ε < σ let
n ∈ N so that

∑∞
m=0 |an,m| > σ − ε/2. Then choose m0 ∈ N so that

m0∑
m=0

|an,m| > σ − ε/2 and
∑

m>m0

|an,m| < ε/2.

As in Theorem 1(v), let

z =
m0∑

m=1

u (an,m) · em + u (an,0) ·
(

e−
m0∑

m=1

em

)
.

Then ‖z‖c = 1 and

‖A‖ ≥ |(χn ◦ A) (z)| =

=

∣∣∣∣∣
m0∑

m=0

|an,m| + u (an,0)
∑

m>m0

an,m

∣∣∣∣∣ ≥
≥

m0∑
m=0

|an,m| −
∣∣∣∣∣ ∑
m>m0

an,m

∣∣∣∣∣ ≥
≥ σ − ε/2 −

∑
m>m0

|an,m| ≥

≥ σ − ε.

Since ε is arbitrary, (3) follows. As (χn ◦ A) (e) =
∑∞

m=0 an,m, the limit in (4)
exists. The existence of the limits in (5) is immediate as a0,m = λ (A(em)) for
m ∈ N and the conditions are necessary.

On the other hand, let {an,m}∞n,m=0 be a given sequence of complex scalars
so that (7), (4) and (5) hold. We shall show that (2) defines an operator
A ∈ B (c) . For, by (7) giving z ∈ c and n ∈ N the series

∑∞
m=1 an,m · zm

converges. Further,

an,0 · λ (z) +
∞∑

m=1

an,m · zm = λ (z) ·
∞∑

m=0

an,m +
∞∑

m=1

an,m · (zm − λ (z)) . (8)
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By (5) and (7) we see that if M ∈ N. Then

M∑
m=1

|a0,m| = lim
n→∞

M∑
m=1

|an,m| ≤ σ,

i.e. {a0,m}∞m=1 ∈ l1 . Therefore, by (8), (4) and (7), we conclude that

lim
n→∞

{
an,0 · λ (z) +

∞∑
m=1

an,m · zm

}
= a0,0 ·λ (z)+

∞∑
m=1

a0,m ·(zm − λ (z)) , (9)

i.e. A is well defined. That A is bounded is immediate by (7).

Corollary 3 Let A ∈ B (c) . The unique bi-index sequence {an,m}∞n,m=0 that
determinates A is defined as follows:

an,m =

⎧⎪⎪⎨⎪⎪⎩
(χn ◦ A) (em) if n, m ∈ N,

(χn ◦ A) (e) −∑∞
m=1 (χn ◦ A) (em) if n ∈ N, m = 0,

λ (A (em)) if n = 0, m ∈ N,
λ (A (e)) if n = m = 0.

Remark 4 A bi-index sequence {an,m}∞n,m=0 is called c-conservative if it sa-
tisfies the conditions of Corollary 2. Further, {an,m}∞n,m=0 is said c-regular if
it is conservative and its induced bounded operator A on c preserves limits, i.e.
λ (A (z)) = λ (z) for all z ∈ c . From (9) it is easily seeing that {an,m}∞n,m=0
is c-regular if and only if a0,0 = 1 and a0,m = 0 for all m ∈ N.

The study of the properties of γ listed in this paper are motivated on recent
works about the structure and behauviour of derivations on certain Banach
algebras (cf [1], [2]). In particular, intrinsic connections between derivations on
non-amenable nuclear Banach algebras whose underlying space has a shrinking
basis and the corresponding multiplier Banach sequence space were recently
established (cf. [3]). There is a huge literature on the structure of operators
on classic Banach sequence spaces, but we believe that a careful look of γ will
allow a more deeper understand of its Banach algebra of bounded operators.
With this aim we shall try to write this article in order that it be self-contained
as well as possible.

In Section 2 we introduce the Banach space of complex convergent series
and we characterize in Theorem 7 its bounded operators. The so called γ-
regular and γ-conservative operators are determined. In Section 3 we analyze
the Radon-Nikodym property on γ and then we deduce that it is not reflexive
and not uniformly convex Banach space. Finally, in Section 4 it is character-
ized the class of compact operators on γ.
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2 Concerning to the space γ of convergent series

Let γ be the set of complex convergent series endowed with its natural vector
space structure. If z ∈ γ set

‖z‖γ = sup
m≥1

∣∣∣∣∣
m∑

n=1

zn

∣∣∣∣∣ .
We shall write Sm (z) =

∑m
n=1 zn and S(z) =

∑∞
n=1 zn for m ∈ N and z ∈ γ.

Clearly
(
γ, ‖◦‖γ

)
is a complex normed space and {S}∪{Sn}∞n=1 ⊆ Bγ∗ (0, 1) .

Proposition 5
(
γ, ‖◦‖γ

)
is a complex Banach space.

Proof. Let
{
zk
}∞

k=1
be a Cauchy sequence in γ, with zk =

(
zk

n

)∞
n=1

if
k ∈ N. Since

∣∣zk
1 − zk+h

1

∣∣ ≤ ∥∥zk − zk+h
∥∥

γ
if k, h ∈ N then

(
zk
1

)∞
k=1

becomes a

Cauchy sequence in C. Thus it has a limit, say limk→∞ zk
1 � z1. Further, let

assume that the limits limk→∞ zk
j � zj exist if 1 ≤ j < J. Since∣∣∣∣∣

J∑
n=1

(
zk

n − zk+h
n

)∣∣∣∣∣ ≥ ∣∣zk
J − zk+h

J

∣∣− ∣∣∣∣∣
J−1∑
n=1

(
zk

n − zk+h
n

)∣∣∣∣∣
we see that

∣∣zk
J − zk+h

J

∣∣ ≤ 2
∥∥zk − zk+h

∥∥
γ

if k, h ∈ N, i.e.
(
zk

J

)∞
k=1

is a Cauchy

sequence. Hence we can write limk→∞ zk
J � zJ and inductively we constructed

a sequence z � (zn)∞n=1 . If ε > 0 let k (ε) ∈ N be so that
∥∥zk − zk+h

∥∥
γ
≤ ε/4

if k ≥ k (ε) and h ∈ N. Whence, if m ∈ N then∣∣∣∣∣
m∑

n=1

(
zk

n − zk+h
n

)∣∣∣∣∣ ≤ ∥∥zk − zk+h
∥∥

γ
≤ ε/4

and letting h → ∞ we deduce that
∣∣∑m

n=1

(
zk

n − zn

)∣∣ ≤ ε. Since zk(ε) ∈ γ

there exists k0 ∈ N so that
∣∣∣∑k+h

n=k z
k(ε)
n

∣∣∣ ≤ ε/2 if k ≥ k0 and h ∈ N. Finally,
if k ≥ k0 and h ∈ N then∣∣∣∣∣

k+h∑
n=k

zn

∣∣∣∣∣ =
∣∣∣∣∣
k+h∑
n=1

(zn − zk(ε)
n ) −

k−1∑
n=1

(zn − zk(ε)
n ) +

k+h∑
n=k

zk(ε)
n

∣∣∣∣∣ ≤ ε

and so z ∈ γ. By the previous reasoning we get
∥∥z − zk

∥∥
γ
≤ ε if k ≥ k (ε).
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Theorem 6 A linear form t on γ is bounded if and only if there is a unique
sequence a = (an)∞n=1 so that

t (z) = λ (a) · S(z) +
∞∑

n=1

(an − an+1) · Sn (z) if z ∈ γ (10)

and (an − an+1)
∞
n=1 ∈ l1 . Indeed,

‖t‖ = |λ (a)| +
∞∑

n=1

|an − an+1| . (11)

Proof. The map S0 : γ → c so that S0 (z) = {Sn (z)}∞n=1 if z ∈ γ is a
well defined linear isomorphism of γ onto c whose inverse for w ∈ c is given
by S−1

0 (w) = (w1, w2 − w1, w3 − w2, ...) . Thus, if t ∈ γ and t̃ � t ◦ S−1
0 then

t̃ ∈ c∗. By Th.1(iv) we know that
{
t̃ (en)

}∞
n=1

∈ l1 . Hence {t (en)}∞n=1 ∈ c
and if z = S−1

0 (w) for w ∈ c and z ∈ γ then

t (z) = t̃ (w) = lim
n→∞ t (en) · λ (w) +

∞∑
n=1

t (en − en+1) · wn

= lim
n→∞ t (en) · S(z) +

∞∑
n=1

t (en − en+1) · Sn(z),

i.e. a � {t(en − en+1)}∞n=1. The uniqueness of this sequence follows from
Theorem 1. On the other hand, clearly (10) defines a linear form t ∈ γ∗ if the
sequence a = (an)∞n=1 is choosen so that (an − an+1)

∞
n=1 ∈ l1. Further, since

S0 is a linear isometric isomorphism of γ onto c then (11) holds.

Theorem 7 There is an 1-1 correspondence between B (γ) and the set of in-
finite complex matrices {am,p}∞m,p=1 so that

(i) supm∈N

{
|limp→∞ am,p| +

∑∞
p=1 |am,p − am,p+1|

}
< ∞.

(ii) Letting am � {am,n}∞n=1 then

sup
n∈N

{ ∞∑
p=1

∣∣∣∣∣
n∑

m=1

(am,p − am,p+1)

∣∣∣∣∣+
∣∣∣∣∣

n∑
m=1

λ (am)

∣∣∣∣∣
}

< ∞. (12)

(iii) {am,1}∞m=1 ∈ γ.

(iv)
{{am,p − am,p+1}∞m=1 : p ∈ N

} ⊆ γ.
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Proof. Take πn : γ → C so that πn (z) = zn if z ∈ γ. Then supn∈N ‖πn‖γ∗ ≤
2. So, given B ∈ B (γ) and m ∈ N by Theorem 6 there is a uniquely determined
sequence am � {am,n}∞n=1 so that {am,n − am,n+1}∞n=1 ∈ l1,

(πm ◦ B) (z) = λ (am) · S(z) +
∞∑

n=1

(am,n − am,n+1) · Sn (z) if z ∈ γ

and

‖πm ◦ B‖γ∗ = |λ (am)| +
∞∑

p=1

|am,p − am,p+1| .

Now (i) follows by the uniform boundedness principle. If A � S0 ◦ B ◦ S−1
0

then A ∈ B (c) and

(χn ◦ A) (w) = λ (w) ·
n∑

m=1

λ (am) +
∞∑

p=1

wp

n∑
m=1

(am,p − am,p+1)

if w ∈ c and n ∈ N. We shall write

θn,p =
{ ∑n

m=1 λ (am) if p = 0,∑n
m=1 (am,p − am,p+1) if p ∈ N. (13)

If n ∈ N, by Theorem 1(v), we know that ‖χn ◦ A‖c∗ =
∑∞

p=0 |θn,p| and, by
the uniform boundedness principle, we get (12). Moreover, by Corollary 2 the
following limits exist

θ0,0 � lim
n→∞

∞∑
p=0

θn,p (14)

= lim
n→∞

n∑
m=1

[
λ (am) +

∞∑
p=1

(am,p − am,p+1)

]
=

∞∑
m=1

am,1,

θ0,p � lim
n→∞ θn,p = lim

n→∞

n∑
m=1

(am,p − am,p+1) , with p ∈ N, (15)

i.e. (iii) and (iv) hold.
Let {am,p}∞m,p=1 be a given sequence so that (i), (ii), (iii) and (iv) hold.

If m ∈ N set

Bm(z) = λ (am) · S(z) +
∞∑

p=1

(am,p − am,p+1) · Sp (z) for z ∈ γ. (16)
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By (i) and Theorem 6 we know that Bm ∈ γ∗. Using the above notation, if
z ∈ γ and n ∈ N by (16) we have

n∑
m=1

Bm(z) = S(z)
n∑

m=1

λ (am) +
∞∑

p=1

n∑
m=1

(am,p − am,p+1) · Sp (z)

= θn,0 · λ (S0 (z)) +
∞∑

p=1

θn,p · χp (S0 (z))

= λ (S0 (z)) ·
∞∑

p=0

θn,p +
∞∑

p=1

θn,p · (χp (S0 (z)) − λ (S0 (z))) .

By (i), (iii) and (iv) the limits in (14) and (15) exist. Further, by (ii) we see
that supn∈N

∑∞
p=0 |θn,p| < ∞. Hence {θ0,p}∞p=1 ∈ l1 and then

∞∑
m=1

Bm(z) = λ (S0 (z)) ·
∞∑

m=1

am,1 +
∞∑

p=1

θ0,p (χp (S0 (z)) − λ (S0 (z))) .

Whence B (z) � {Bm (z)}∞m=1 if z ∈ γ defines a linear mapping on γ that is
now clearly bounded.

Remark 8 {am,p}∞m,p=1 is γ-conservative if it verifies the conditions of
Theorem 7. Further, it called γ-regular if it is γ-conservative and its in-
duced bounded operator B on γ preserves sums, i.e. λ (S0 (B (z))) = λ (S0 (z))
for all z ∈ γ. It is now readily seeing that {am,p}∞m,p=1 is γ-regular if and only
if
∑∞

m=1 am,p = 1 for all p ∈ N.

Example 9 If {am}∞m=1 ∈ γ set am,p = am, m, p ∈ N. Then

B(z) � {am · S(z)}∞m=1 , z ∈ γ,

defines a bounded linear functional on γ.

Example 10 Let am,p = m−s · p−t, where m, p ∈ N, s > 1, t > 0. Then we
get

B(z) =

{
m−s

(
S(z) +

∞∑
p=1

(
(p + 1)−t − p−t

)
Sp(z)

)}∞

m=1

, z ∈ γ.

Example 11 Let am,p = p/ (1 + pms) , where m, p ∈ N, s > 1. In this case

B(z) =

{
S(z)
ms

−
∞∑

p=1

Sp(z)
(1 + pms) (1 + (p + 1)ms)

}∞

m=1

, z ∈ γ.
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3 Radon-Nikodym type properties of γ

Proposition 12 The Banach space γ does not have the Radon-Nikodym pro-
perty.

Proof. We shall use a modified crude argument of J. Diestel & J. J. Uhl
(cf. [6], p. 60). Let Λ be the σ-field of Lebesgue measurable subsets of [0, 1].
If n ∈ N and E ∈ Λ we set

Hn (E) =
{ ∫

E
sin (2πt)dm(t) if n = 1,

−2
∫

E sin
(
2n−2πt

)
cos
(
3 · 2n−2πt

)
dm(t) if n ≥ 2,

where m denotes the Lebesgue measure on [0, 1] . Thus H is a well γ-valued
function of Λ. For, if E ∈ Λ and m ∈ N we have

m∑
n=1

Hn(E) =
∫

E

sin (2mπt) dm(t). (17)

According to the Riemann-Lebesgue lemma, we conclude that
∑∞

n=1 Hn(E) =
0. Indeed, by (17) we have that ‖H(E)‖γ ≤ m(E) for all E ∈ Λ. Now, it is clear
that H is countable additive, m-continuous and of bounded variation. Suppose
there exist a Bochner integrable h : [0, 1] → γ so that H(E) =

∫
E h(t)dm(t)

for all E ∈ Λ. Then, if hn = πn ◦ h for n ∈ N and E ∈ Λ we obtain

πn (H(E)) =
∫

E

πn (h(t)) dm(t) =
∫

E

hn(t)dm(t).

Hence it can be easily deduced that for almost all t ∈ [0, 1] we have

hn(t) =
{

sin (2πt) if n = 1,
−2 sin

(
2n−2πt

)
cos
(
3 · 2n−2πt

)
if n ≥ 2.

Then if m ∈ N is
m∑

n=1

hn(t) = sin (2mπt) a.e.. (18)

We already know that Im (H) ⊆ ker (S) . Since S ∈ γ∗ and h is Bochner
integrable then S ◦ h ∈ L1 [0, 1] and

∫
E

S(h(t))dm(t) = 0 for all E ∈ Λ (cf.
[8]). So by (18) we have S(h(t)) = limm→∞ sin (2mπt) = 0 almost everywhere
on [0, 1] . However, given n ∈ N we set

En �
{
t ∈ [0, 1] : |sin (2nπt)| ≥ 1/

√
2
}

.
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If t ∈ En there is an integer 1 ≤ k ≤ 2n−1 so that

2 (k − 1) + 1/4
2n

≤ t ≤ 2 (k − 1) + 3/4
2n

or
2 (k − 1) + 5/4

2n
≤ t ≤ 2 (k − 1) + 7/4

2n
.

Consequently m(En) = 1/2 for all n ∈ N and

m
(
limn→∞En

)
= lim

n→∞m (∪∞
l=nEl) ≥ 1/2.

But certainly S(h(t)) 
= 0 on limn→∞En. Therefore h is not almost everywhere
γ-valued and thus G has no Radon-Nikodym derivative with respect to m.

Corollary 13 γ is not reflexive nor uniformly convex.

Proof. Since the Radon-Nikodym property does not hold on γ this claim
follows from R. S. Phillips theorem (cf. [11]). On the other hand, it is well
known that any uniformly convex Banach space is reflexive (cf. [4]).

4 Compact operators on γ

The notion of Hausdorff measure of non compactness provides a way to cha-
racterize compact operators acting on certain Banach spaces. Precisely, given
a bounded subset Q of a normed space X set

q(Q) = inf {ε > 0 : Q has a finite ε-net in X } .

The function q is called the Hausdorff measure of non compactness (cf. [7]).
If X, Y are Banach spaces and T ∈ B (X, Y ) we write ‖T ‖q � q(TBX [0, 1]),
where BX [0, 1] is the closed unit ball of X centered at zero. Consequently, T
becomes compact if and only if ‖T ‖q = 0. With the notation of Corollary 2
the following result of B. de Malafosse, E. Malkowsky & V. Rakočević holds:

Theorem 14 (cf. [10]) If A ∈ B (c) then

1
2
limn→∞

(∣∣∣∣∣an,0 − a0,0 +
∞∑

m=1

a0,m

∣∣∣∣∣+
∞∑

m=1

|an,m − a0,m|
)

≤ ‖A‖q ≤ limn→∞

(∣∣∣∣∣an,0 − a0,0 +
∞∑

m=1

a0,m

∣∣∣∣∣+
∞∑

m=1

|an,m − a0,m|
)

.

Theorem 15 Let B ∈ B (γ) be the unique bounded operator induced by a bi-
index sequence {am,p}∞m,p=1 that verifies the conditions of Theorem 7. Then
B is compact if and only if

limn→∞

{∣∣∣∣∣ lim
p→∞

∞∑
m=n

am,p

∣∣∣∣∣+
∞∑

p=1

∣∣∣∣∣
∞∑

m=n

(am,p − am,p+1)

∣∣∣∣∣
}

= 0.
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Proof.We use the notation of Theorem 7. By Theorem 14 we see that
B ∈ C (γ) if and only if

limn→∞

(∣∣∣∣∣θn,0 − θ0,0 +
∞∑

m=1

θ0,m

∣∣∣∣∣+
∞∑

m=1

|θn,m − θ0,m|
)

= 0.

By (13), (14) and (15) if n ∈ N we obtain

θn,0−θ0,0+
∞∑

m=1

θ0,m =
n∑

m=1

λ (am)−
∞∑

m=1

am,1+
∞∑

p=1

∞∑
m=1

(am,p − am,p+1) . (19)

Using (iii) and (iv) of Theorem 7, it is seeing recursively that
∑∞

m=1 am,p

converge for all p ∈ N. Therefore in (19) we have

θn,0 − θ0,0 +
∞∑

m=1

θ0,m =
n∑

m=1

λ (am) − lim
p→∞

∞∑
m=1

am,p (20)

= − lim
p→∞

∞∑
m=n+1

am,p.

Analogously,

∞∑
p=1

|θn,p − θ0,p| =
∞∑

p=1

∣∣∣∣∣
∞∑

m=n+1

(am,p − am,p+1)

∣∣∣∣∣ (21)

and the claim follows from (20) and (21).

References

[1] A. L. Barrenechea , C. C. Peña, Some remarks about bounded derivations on the Hilbert
algebra of square summable matrices, Matematicki Vesnik, 57(4)(2005), 78-95.

[2] A. L. Barrenechea, C. C. Peña, On innerness of derivations on S(H), Lobachevskii J.
of. Maths., 1(2005), 21-32.

[3] A. L. Barrenechea, C. C. Peña, On the structure of derivations on certain non-
amenable nuclear Banach algebras, Preprint, 2007.

[4] J. A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc., 40(1936), 396-414,
.

[5] R. G. Cooke Infinite matrices and sequence spaces, Macmillan and Co., London, 1949.

[6] J. Diestel, J. J. Uhl, Vector measures, Math. Surveys and Monographs, No. 5. AMS,
Providence, R.I, 1977.



30 A. L. Barrenechea and C. C. Peña

[7] I. T. Gohberg, L. S. Goldenstein, A. S. Markus Investigations of some properties of
bounded linear operators with their q-norms, Učenie Zapiski, Kishinevskii Gosuniver-
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