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Compactness and Radon-Nikodym properties
on the Banach space of convergent series

A. L. Barrenechea and C. C. Pena

Abstract

We characterize the bounded linear operators on the Banach space
~ of convergent complex sequences. The class of infinite matrices that
determine such operators is determined, as well as those that induce
conservative, regular or compact operators. It is seeing that v does
not have the Radon-Nikodym property and hence it is deduced its non
reflexivity and its non uniform convexity.

1 Preliminaries

In this article we investigate the structure of bounded operators on the se-
quence space y of convergent series, as well as some of their geometric prop-
erties. In 1949 R. G. Cooke characterized the class of bounded operators
between v and the Banach space ¢ of the convergent sequences (cf. [5]). For
a further study and a more complete list of references and reader can see [9].
The following facts are well-known:

Theorem 1 Let ¢ be the space of convergent complex sequences endowed with
the supremum norm, i.e. ||z[|, = sup,>q |za| for z € c.

(i) With the usual coordinate operations ¢ becomes a Banach space, as it is a
closed subspace of 1°° .

(ii) If e = (1,1,...) then ¢ = co ®C- e, where cg is the Banach subspace of ¢ of
sequences that converge to zero.
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(i) c ~ 1!, where &~ denotes an isometric isomorphism of Banach spaces and
1! is the usual Banach space of absolutely convergent series.

(iv) Every ¢ € c* can be written in a unique way as
o0
p(2) =G0 M)+ an- (2 —A(2) fzec, (1)
n=1

where A € ¢* is defined as A (z) = limy, 00 2n. Further, an, = ¢ (e,) if n > 1,
{an}22, €1 and @o = ¢ (e). By (1) we can write

p(z) = (50 - Z%) Az)+ Zan 2.

o0 o0
(v) Moreover, if ag = g — Zan then ||¢|| = Z lan] -
n=1 n=0

In order to be more clear and self-contained we prove the following:

Corollary 2 (cf. [12]) A linear operator A : ¢ — ¢ is bounded if and only if
there is a unique bi-index sequence {anm}, , _, so that

0o oo
Az) = {amo “A(2) + Z an,m * Zm} ifzec (2)
m=1 n=1
and
oo
1Al = sup D |an,ml - (3)
n€eN m=0
In particular, the following limits exist:
app = lim Z Qs (4)
n—oo "m0
ao,m £ lim An,m, M €N (5)

and {ag,m}>_, €1'.
Proof. If A € B(c), n € N and x,, € c¢* is the projection onto the n-th

coordinate, by (iv) there is a unique sequence {anm} . _, € 1' so that

(XnOA)(Z):an,O')\(Z)“‘Zan,m'zmifzec- (6)

m=1
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Indeed, ano = (xn o A)(€) = > | nm and ||xn 0 Al =3 0°_ |an,m| . Since
{(xnoA)(2)},2, € cif z € ¢ an application of the uniform boundedness
principle gives

U_SupZ|anm|<oo (7)

nENm 0

By (6) we see that ||A|| < o and we can assume that ¢ > 0. If 0 < e < o let
n € N so that Y~ |an,m| > 0 —&/2. Then choose mg € N so that

mo
Z lanm| >0 —€/2 and Z |an,m| < e/2.
m=0 m>mg

As in Theorem 1(v), let

z:Zu(amm) em +u(a -(e—Zem>.

Then ||z[|, = 1 and

|A[l = I(xn 0 A)(z)| =

E anm -

m>m0

2 Z |anm| - Z An,m
m>mg

>0—¢/2— Z |an,m| >

m>mo

>0 —€.

Since ¢ is arbitrary, (3) follows. As (x5, 0 A) (€) =Yo7 _ an,m, the limit in (4)
exists. The existence of the limits in (5) is immediate as ag m = A (A(em)) for
m € N and the conditions are necessary.

On the other hand, let {a,, m}n m—o De a given sequence of complex scalars
so that (7), (4) and (5) hold. We shall show that (2) defines an operator
A € B(c). For, by (7) giving z € ¢ and n € N the series > | anm * Zm
converges. Further,

an,0 * /\ +Zanm Zm—)\ Zanm+zanm' m_/\(z)) (8)
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By (5) and (7) we see that if M € N. Then

M M

E |ag,m| = lim E |an,m| < o,
n—oo

m=1 m=1

i.e. {aom}or_, €1'. Therefore, by (8), (4) and (7), we conclude that

n—oo

lim {amo . )\(Z) + Z An,m 'Zm} = a0,0'>\ (Z)+Z aO,m'(zm - )‘(Z))v (9)

m=1
i.e. A is well defined. That A is bounded is immediate by (7).

Corollary 3 Let A € B(c). The unique bi-index sequence {anm}, , _, that
determinates A is defined as follows:

(xnoA)(em) if n,m e N,
w ) Omed)(e) =3 (noA)(em) if neN, m=0,
o A(Alem)) if n=0meN,
A(A(e)) if nm=m=0.

Remark 4 A bi-index sequence {anm}, ., _, is called c-conservative if it sa-
tisfies the conditions of Corollary 2. Further, {an,m}zomzo 1s said c-regular if
it is conservative and its induced bounded operator A on ¢ preserves limits, i.e.
AA(2)) = A(2) for all z € c. From (9) it is easily seeing that {amm}:mzo
is c-reqular if and only if apo =1 and agm = 0 for all m € N.

The study of the properties of -y listed in this paper are motivated on recent
works about the structure and behauviour of derivations on certain Banach
algebras (cf [1], [2]). In particular, intrinsic connections between derivations on
non-amenable nuclear Banach algebras whose underlying space has a shrinking
basis and the corresponding multiplier Banach sequence space were recently
established (cf. [3]). There is a huge literature on the structure of operators
on classic Banach sequence spaces, but we believe that a careful look of v will
allow a more deeper understand of its Banach algebra of bounded operators.
With this aim we shall try to write this article in order that it be self-contained
as well as possible.

In Section 2 we introduce the Banach space of complex convergent series
and we characterize in Theorem 7 its bounded operators. The so called -
regular and y-conservative operators are determined. In Section 3 we analyze
the Radon-Nikodym property on v and then we deduce that it is not reflexive
and not uniformly convex Banach space. Finally, in Section 4 it is character-
ized the class of compact operators on .
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2 Concerning to the space 7 of convergent series

Let v be the set of complex convergent series endowed with its natural vector
space structure. If z € 7 set

I2]l, = sup

m
E Znl .
n=1

We shall write Sy, (z) = > | 2z, and S(z) = Y7, 2z, for m € N and z € 7.

n=1

Clearly ('y, HO||7) is a complex normed space and {S}U{S,},—; C B, (0,1).

Proposition 5 ('y, ||OH’Y) 18 a compler Banach space.

Proof. Let {zk}oo_ be a Cauchy sequence in 7, with z¥ = (sz)oo if

n=1

k € N. Since |z1 — z1+h‘ < Hz ’H‘hH7 if k,h € N then (zf)zozl becomes a

Cauchy sequence in C. Thus it has a limit, say limj_ .., 2¥ £ z;. Further, let

assume that the limits limg_, o zjk £ zj exist if 1 < j < J. Since

J J-1
P G = e i Rl DO G )
n=1 n=1
we see that ‘zf} +h| <2||z —zk+hH 1fk heN,ie. (z"})k , is a Cauchy

sequence. Hence we can write limy_, o0 2° 5 = z; and inductively we constructed
a sequence z = (z,)7 . If e > 0 let k () € N be so that ||zk - z’”th <e/4d
if k> k(¢) and h € N. Whence, if m € N then

m
Z k+h

and letting h — oo we deduce that ‘Z ( zn)‘ < e. Since 2¥(E) € 5

there exists kg € N so that ‘Zﬁiﬁ 5(6 <e/2if k > kg and h € N. Finally,

if k> ko and h € N then

< sz _Zlc+h||7 <e/4

k+h k+h k—1 k+h
3] = 3o = ) = Yol )+ Yok <5
n=1 n=1 n=~k

and so z € . By the previous reasoning we get ||z — z’“HV <eif k> k(e).
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Theorem 6 A linear form t on v is bounded if and only if there is a unique
sequence a = (ap)ro, so that

oo

t(z):/\(a)-S(z)+2(an—an+1)-5n(z) if z €7 (10)

n=1

and (@ — ang1)peq € 1. Indeed,

1l = A (@) + D lan = ans] - (11)
n=1

Proof. The map Sp : v — ¢ so that Sp(z) = {S, (2)},—, ifz € visa
well defined linear isomorphism of v onto ¢ whose inverse for w € c is given
by SJI (w) = (w1, we — w1, ws — wa,...). Thus, if ¢t € v and t2¢to SJI then
t € ¢*. By Th.1(iv) we know that {f(en)}zozl € 1'. Hence {t(e,)}>, € ¢
and if z = S5 (w) for w € ¢ and z € 7 then

t(z) =t (w) = lim t(en) A(w)+ Y t(en —ent1)  wn
= nlln;ot(en) -S(z) + Zt (en — €nt1) - Sn(2),
n=1

ie. a = {t(e, —ent1)}r,. The uniqueness of this sequence follows from

Theorem 1. On the other hand, clearly (10) defines a linear form ¢ € v* if the

sequence a = (a,)o>, is choosen so that (a, — ant1)ie, € 1'. Further, since

So is a linear isometric isomorphism of v onto ¢ then (11) holds.

Theorem 7 There is an 1-1 correspondence between B (7y) and the set of in-
finite complex matrices {am,p}zpzl so that

(i) 5B ers {11 —oc @l + 3251 lmp = G|} < 0.

(ii) Letting am = {amn}or, then

s

neN p—1

n

Z (Amp = Am,p+1)

m=1

n

Z A(am)

m=1

+

} < 00. (12)

(i) {ama}_ €.
(iv) {{am,p — am,p+1};o=1 :p € N} C .
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Proof. Take m, : v — Csothat m, (2) = 2, if 2 € 7. Then sup, ey [|7n [, <

2. So, given B € B (v) and m € N by Theorem 6 there is a uniquely determined
A [e%} %] 1
sequence @y, = {am,n},_; 80 that {amn — ammi1},_; €1,

('/Tm o B) (z) =A (am) : S(Z) + Z (am,n - am,nJrl) - Sn (Z) if z € Y

n=1
and

(o]
= A (am)] + Z |am,p = am,pt1|-

p=1

[7m o Bl

Now (i) follows by the uniform boundedness principle. If A = Sy 0 Bo Sy !
then A € B(c) and

n

(xn 0 A) (W) = A(w) - D~ Aam) + D wp Y (@mp — amp+1)

m=1
if w € ¢ and n € N. We shall write

_ EZL: A (am) if p=0,
Onp = { D 1 (13)

:anl (@mp = @mpr1) if peN.

If n € N, by Theorem 1(v), we know that [[x, o Al .. = >°7°10n,,| and, by
the uniform boundedness principle, we get (12). Moreover, by Corollary 2 the
following limits exist

oo
A .
fo,0 = lim > nyp (14)
p=0
n o0 o0
= 1L,m Z A(am) + (am’p - a’m;erl) = Z am,1,
" Oomzl p=1 m=1
n
fop 2 lim 0 = lim Zl (@m,p — Amp+1), With p € N, (15)
m=

i.e. (4i) and (iv) hold.
Let {a,w,}fnopz1 be a given sequence so that (i), (i), (iii) and (iv) hold.
If m € N set

Bn(2) = XMam) - S(2) + > (amp — @mps1) - Sp (2) for z € 4. (16)

p=1
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By (i) and Theorem 6 we know that B,, € v*. Using the above notation, if
z €y and n € N by (16) we have

ZBm(z) Z)‘ Gm +ZZ Um,p = Gm.pt1) - Sp (2)
m=1 p=1m=1
=0n,0-A(So(2)) + On.p - Xp (S0 (2))
p=1

) - Z Onp + Z On.p - (Xp (S0 (2)) = A (S0 (2))) -

By (i), (#4) and (iv) the limits in (14) and (15) exist. Further, by (%) we see
that sup, ey 22 |0n,p| < 00. Hence {00} ", € 1' and then

Y Bu(2) = A(S0(2)) D ami+ Y o, (xp (S0 (2)) = A (S0 (2))).
m=1 p=1

m=1

Whence B (z) £ {By, (2)}oo_, if z € v defines a linear mapping on v that is
now clearly bounded.

Remark 8 <[am7p}~;°p:1 is y-conservative if it verifies the conditions of
Theorem 7. Further, it called vy-regular if it is y-conservative and its in-
duced bounded operator B on vy preserves sums, i.e. A(So (B (z))) = A (So(2))
for all z € . It is now readily seeing that {am,p}ﬁp:1 is y-regular if and only

if > Gmp =1 for all p € N.

Example 9 If {ap} ._, €7 set amp = Ay, m,p € N. Then
B(2) 2 {am - SV, 2 €7,

defines a bounded linear functional on .

Example 10 Let a,p, = m ™ -p~t, where m,p € N, s > 1,t > 0. Then we

get
B(z) = {m <S(z) +y ((p +1)7" - p*t) Sp(z)> } , 2 €7,

m=1

Example 11 Let ap,p = p/ (1 4+ pm?), where m,p € N, s > 1. In this case

L (2) -
B(z) { Z 1+ pm®) ( 1+(p+1)mg)} , ZEN.

p=1 =1
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3 Radon-Nikodym type properties of

Proposition 12 The Banach space v does not have the Radon-Nikodym pro-
perty.

Proof. We shall use a modified crude argument of J. Diestel & J. J. Uhl
(cf. [6], p. 60). Let A be the o-field of Lebesgue measurable subsets of [0, 1].
Ifne Nand E € A we set

H, (E) = [ sin (27t) dm(t) if n=1,

" =2 [ sin (2" 27t) cos (3 - 2" 2wt) dm(t) if n>2,
where m denotes the Lebesgue measure on [0,1]. Thus H is a well y-valued
function of A. For, if E € A and m € N we have

> H,(E)= /E sin (2™ nt) dm(t). (17)

According to the Riemann-Lebesgue lemma, we conclude that 37 | H,(E) =
0. Indeed, by (17) we have that | H(E)||, < m(E) for all E € A. Now, it is clear
that H is countable additive, m-continuous and of bounded variation. Suppose
there exist a Bochner integrable h : [0,1] — « so that H(E) = [, h(t)dm(t
for all E € A. Then, if h, =7, oh for n € N and E € A we obtain

T (H(E)) = /E T ((2)) din(t) = [E o (£)dim(t)

Hence it can be easily deduced that for almost all ¢ € [0, 1] we have

o (£) = sin (27t) if n=1,
"] —2sin (2”*27rt) cos (3 . 2"’27rt) if n>2.

Then if m € N is

m

Z hn(t) = sin (2™nt) a.e.. (18)

n=1

We already know that Im (H) C ker (S ) Since S € v* and h is Bochner
integrable then Soh € L'[0,1] and [, S(h(t))dm(t) = 0 for all E € A (cf.
[8]). So by (18) we have S(h(t )) hrnwHoo sin (2™nt) = 0 almost everywhere
on [0, 1]. However, given n € N we set

B, 2 {te0,1]: sin(2"7t)] > 1/V2}.



28 A. L. BARRENECHEA AND C. C. PENA

If t € E, there is an integer 1 < k < 2"~! so that

2k-1)+1/4 _, 201434 (k- D45/ _ 2k D 4T/
2n 2n 2n - 2n

Consequently m(E,) = 1/2 for all n € N and

)
(hmn_,Oo n) = lim m (U2, E) > 1/2.
n—oo
But certainly S(h(t)) # 0 on lim,,_.o E,,. Therefore h is not almost everywhere
~-valued and thus G has no Radon-Nikodym derivative with respect to m.
Corollary 13 « is not reflexive nor uniformly convez.

Proof. Since the Radon-Nikodym property does not hold on ~ this claim
follows from R. S. Phillips theorem (cf. [11]). On the other hand, it is well
known that any uniformly convex Banach space is reflexive (cf. [4]).

4 Compact operators on v

The notion of Hausdorff measure of non compactness provides a way to cha-
racterize compact operators acting on certain Banach spaces. Precisely, given
a bounded subset Q) of a normed space X set

q(Q) =inf {e > 0 : Q has a finite e-net in X }.

The function ¢ is called the Hausdorff measure of non compactness (cf. [7]).
If X, Y are Banach spaces and T € B(X,Y) we write ||T||q £ ¢(TBx [0,1]),
where Bx [0, 1] is the closed unit ball of X centered at zero. Consequently, T'
becomes compact if and only if [|T'[|, = 0. With the notation of Corollary 2
the following result of B. de Malafosse, E. Malkowsky & V. Rakocevié¢ holds:

Theorem 14 (cf. [10]) If A € B(c) then

1 0o
§hmn_,oo ( + mz::l |an,m - aO,m|>

L o0 o0
S ||AHq é hmnﬂoo < Gn,0 — A0,0 + Z ao,m + Z |an,m - aO,m|> .
m=1

Theorem 15 Let B € B () be the unique bounded operator induced by a bi-
index sequence {amm}:p:1 that verifies the conditions of Theorem 7. Then
B is compact if and only if

o0
Qn,0 — Qp,0 + E ag,m

oo oo oo
lim,,— o0 { plLrI;o Z Amp| + Z Z (@m.p — Qmpt1) } =0.
m=n p=1|m=n
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Proof.We use the notation of Theorem 7. By Theorem 14 we see that
B € C () if and only if

E714>oo 0n,0 - 90,0 + Z HO,m + Z |0n,m - 00,m| =0.
m=1 m=1
By (13), (14) and (15) if n € N we obtain
0n,0_00,0+ Z 90,m = Z A (am)_ Z am,l"‘z Z (am,p - am7p+1) . (19)
m=1 m=1 m=1 p=1m=1

Using (7ii) and (iv) of Theorem 7, it is seeing recursively that > °_ | am.p
converge for all p € N. Therefore in (19) we have

e}

On,0— 00,0+ Z Bo,m = Z Aam) — phj{.lo Z Qm,p (20)
m=1 m=1

m=1
0o
= — lim E A -
p—00 moPp

m=n-+1

Analogously,

oo oo (oo}
Z |0n,p — bo,p| = Z Z (@m.p — Qmp+1) (21)
p=1 =n+

p=1|m 1

and the claim follows from (20) and (21).
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