Post algebras in 3-rings

Sergiu Rudeanu
To Professor, Dorin Popescu, at his 60th anniversary

Abstract

A unitary commutative ring of characteristic 3 and 3 -potent is called a 3 -ring. We prove that every polynomial of a 3 -ring is uniquely determined by its restriction on the subring $\{0,1,2\}$ (the Verification Theorem). Then we establish an isomorphism between the category of 3-rings and the category of Post algebras of order 3.

1 Introduction

The concept of a p-ring, where p is a prime, was defined by McCoy and Montgomery [3] as a commutative ring satisfying the identities $p x=0$ and $x^{p}=x$. They proved that every finite p-ring is a direct product of fields \mathbb{Z}_{p}, and every p-ring is isomorphic to a subring of a direct product of fields \mathbb{Z}_{p}. So p-rings generalize Boolean rings, for which $p=2$.

Moisil [4] proved that every unitary 3-ring can be made into a bounded distributive lattice which, in the case of the ring \mathbb{Z}_{3}, is a centred 3 -valued Lukasiewicz(-Moisil) algebra. Note that centred Lukasiewicz-Moisil algebras coincide with Post algebras.

In the paper [7] we determined all the rings that can be constructed on a Post algebra of arbitrary order r by Post functions. All these rings satisfy the identities $r x=0$ and $x^{r}=x$. In the case $r=3$ exactly one of them is term

[^0]equivalent to the Post algebra, just like a Boolean ring is equivalent to the Boolean algebra having the same support.

In the present paper we lift the above equivalence to an isomorphism between the category 3Post of Post algebras of order 3 and the category $\mathbf{3 R n g}$ of 3 -rings. The latter are understood as commutative unitary rings satisfying the identities

$$
\begin{gather*}
x+x+x=0, \tag{1}\\
x^{3}=x . \tag{2}
\end{gather*}
$$

Since it is proved in [3] that every p-ring can be embedded into a unitary p-ring, our definition is essentially the same as the one given in [3].

To obtain the desired isomorphism we need a preparation: every 3-ring R includes \mathbb{Z}_{3} as a subring and two polynomials of R coincide if and only if their restrictions to \mathbb{Z}_{3} coincide. We call this result the Verification Theorem for 3 -rings (corollary of Theorem 1) and it will be the crucial tool for our main results, just like the Verification Theorem for Post algebras was the crucial tool in [7].

It is easy to see (Proposition 2) that Theorem 3 in [7] yields in fact a functor $F:$ 3Post \longrightarrow 3Rng, while in this paper we construct a functor $G:$ 3Rng \longrightarrow 3Post (Proposition 3) and prove that F and G establish an isomorphism of categories (Theorem 2).

2 The Verification Theorem

Let $(R,+, \cdot, 0,1)$ be a 3 -ring.
Lemma 1 The element

$$
\begin{equation*}
2=1+1 \tag{3}
\end{equation*}
$$

satisfies

$$
\begin{gather*}
2+1=0 \tag{4}\\
2+2=1 \tag{5}\\
2^{2}=1 \tag{6}
\end{gather*}
$$

Proof: Properties (4) and (5) follow from $1+1+1=0$. Then (3) implies $2^{2}=2+2=1$.

Proposition 1 The set $E=\{0,2,1\}$ is a subring isomorphic to \mathbb{Z}_{3}.

Proof: Immediate by Lemma 1.
Lemma 2 Every polynomial $p: R \longrightarrow R$ can be written in the form $p(x)=$ $a x^{2}+b x+c$, the coefficients being uniquely determined by

$$
\begin{equation*}
a=2 p(1)+2 p(2)+2 p(0), b=2 p(1)+p(2), c=p(0) . \tag{7}
\end{equation*}
$$

Proof: The existence of the representation follows from (2). Taking in turn $x:=0,2,1$, we obtain

$$
\begin{gathered}
p(0)=c \\
p(2)=a+2 b+c, \\
p(1)=a+b+c
\end{gathered}
$$

hence $2 p(1)+p(2)=p(2)-p(1)=b$, therefore $a=p(1)+2 b+2 c$, which is the first equality (7).

Theorem 1 Every polynomial $p: R^{n} \longrightarrow R$ is uniquely determined by its restriction to E^{n}.

Proof: For $n=1$ this follows from Lemma 2. At the inductive step $n-1 \mapsto n$ we fix momentarily x_{2}, \ldots, x_{n}, apply again Lemma 2 and obtain

$$
\begin{gather*}
p\left(x_{1}, \ldots, x_{n}\right)=\left(2 p\left(1, x_{2}, \ldots, x_{n}\right)+2 p\left(2, x_{2}, \ldots, x_{n}\right)+2 p\left(0, x_{2}, \ldots, x_{n}\right)\right) x_{1}^{2}+ \\
+\left(2 p\left(1, x_{2}, \ldots, x_{n}\right)+p\left(2, x_{2}, \ldots, x_{n}\right)\right) x_{1}+p\left(0, x_{2}, \ldots, x_{n}\right) \tag{8}
\end{gather*}
$$

then let x_{2}, \ldots, x_{n} vary arbitrarily, so that (8) holds for all $x_{1}, x_{2}, \ldots, x_{n}$. Now if p^{\prime} is a polynomial which coincides with p on E^{n}, then for each $a \in E$,

$$
\begin{equation*}
p\left(a, x_{2}, \ldots, x_{n}\right)=p^{\prime}\left(a, x_{2}, \ldots, x_{n}\right) \tag{9}
\end{equation*}
$$

by the inductive hypothesis. Finally we apply (8) to p and p^{\prime}, taking into account (9); this yields $p=p^{\prime}$.

Corollary 1 (Verification Theorem) A polynomial identity $p\left(x_{1}, \ldots, x_{n}\right)=$ $q\left(x_{1}\right.$,
$\left.\ldots, x_{n}\right)$ holds in R if and only if it is verified on E.

3 The categories 3Post and 3Rng are isomorphic

We recall that a Post algebra of order 3 is an algebra $\left(P, \vee, \wedge,{ }^{(0)},{ }^{(1)},{ }^{(2)}, 0, e, 1\right)$ of type $(2,2,1,1,1,0,0,0)$ such that $(P, \vee, \wedge, 0,1)$ is a bounded distributive lattice and the following identities hold:

$$
\begin{gather*}
x^{(0)} \wedge x^{(1)}=x^{(0)} \wedge x^{(2)}=x^{(1)} \wedge x^{(2)}=0 \tag{10}\\
x^{(0)} \vee x^{(1)} \vee x^{(2)}=1, \tag{11}\\
x=\left(e \wedge x^{(1)}\right) \vee x^{(2)} . \tag{12}
\end{gather*}
$$

For the general concept of Post algebra of order r the reader is referred to [2], [8], [1], [6] or [7]. Our presentation of Post algebras in the monograph [6] and the paper $[7]^{*}$ is strongly influenced by the book [8].

Let 3Post and 3Rng denote the category of Post algebras of order 3 and the category of 3 -rings, respectively. The morphisms are defined as prescribed by universal algebra.

Proposition $2 A$ functor $F:$ 3Post \longrightarrow 3Rng is defined by

$$
\begin{equation*}
F\left(P, \vee, \wedge,{ }^{(0)},{ }^{(1)},{ }^{(2)}, 0, e, 1\right)=(P, \oplus, \odot, 0,1), \quad F u=u \tag{13}
\end{equation*}
$$

where

$$
\begin{gather*}
x \oplus y=\left(e \wedge\left(\left(x^{(2)} \wedge y^{(2)}\right) \vee\left(x^{(0)} \wedge y^{(1)}\right) \vee\left(x^{(1)} \wedge y^{(0)}\right)\right)\right) \vee \\
\vee\left(x^{(1)} \wedge y^{(1)}\right) \vee\left(x^{(0)} \wedge y^{(2)}\right) \vee\left(x^{(2)} \wedge y^{(0)}\right) \tag{14}\\
x \odot y=\left(e \wedge\left(\left(x^{(1)} \wedge y^{(2)}\right) \vee\left(x^{(2)} \wedge y^{(1)}\right)\right)\right) \vee\left(x^{(1)} \wedge y^{(1)}\right) \vee\left(x^{(2)} \wedge y^{(2)}\right) \tag{15}
\end{gather*}
$$

Proof: The fact that F is correctly defined on objects is part of Theorem 3 in [7]. It follows from (14) and (15) that if $u: P \longrightarrow P^{\prime}$ is a morphism in 3Post, then $u: F P \longrightarrow F P^{\prime}$ is a morphism in 3Rng.

Proposition 3 A functor $G: \mathbf{3 R n g} \longrightarrow$ 3Post is defined by

$$
\begin{equation*}
G(R,+, \cdot, 0,1)=\left(R, \vee, \wedge,^{(0)},{ }^{(1)},{ }^{(2)}, 0,2,1\right), \quad G v=v \tag{16}
\end{equation*}
$$

where

$$
\begin{gather*}
x \vee y=2 x^{2} y^{2}+x^{2} y+x y^{2}+x y+x+y, \tag{17}\\
x \wedge y=x^{2} y^{2}+2 x^{2} y+2 x y^{2}+2 x y, \\
x^{(0)}=2 x^{2}+1, \\
x^{(1)}=2 x^{2}+x, \\
x^{(2)}=2 x^{2}+2 x .
\end{gather*}
$$

[^1]Comment Moisil [4] proved that formulas (17), (18) make a 3-ring into a distributive lattice which, for the ring \mathbb{Z}_{3}, is a centred 3-valued Lukasiewicz(Moisil) algebra. Centred Lukasiewicz-Moisil algebras coincide with Post algebras; cf. [1], Corollary 4.1.9.
Proof: We have to prove that the algebra in (16) is a bounded distributive lattice which satisfies (17)-(21). A well-known theorem due to Sholander [9] shows that the former property is equivalent to the axioms

$$
\begin{gather*}
x \wedge(x \vee y)=x \tag{22}\\
x \wedge(y \vee z)=(z \wedge x) \vee(y \wedge x) . \tag{23}
\end{gather*}
$$

In view of the Verification Theorem it suffices to check properties (10),(11),(12), (22),(23) on the subset $E=\{0,2,1\}$.

Note first that (17) and (18) imply the identities

$$
\begin{gathered}
x \vee 0=x, \quad x \wedge 0=0, \\
x \vee 1=2 x^{2}+x^{2}+x+x+x+1=1, \\
x \wedge 1=x^{2}+2 x^{2}+2 x+2 x=x, \\
2 \vee 2=2+2+2+1+2+2=2, \\
2 \wedge 2=1+1+1+2=2,
\end{gathered}
$$

therefore

$$
\begin{equation*}
a \vee b=\max (a, b), a \wedge b=\min (a, b) \quad(\forall a, b \in E) \tag{24}
\end{equation*}
$$

In other words, $(E, \vee, \wedge, 0,1)$ is the chain $0<2<1$. Since every chain is a distributive lattice, properties (22), (23) are verified on E.

Furthermore, it follows easily from (19)-(21) that

$$
\begin{align*}
& 0^{(0)}=1, a^{(0)}=0 \text { for } a \in\{1,2\}, \tag{25.1}\\
& 2^{(1)}=1, a^{(1)}=0 \text { for } a \in\{0,1\}, \tag{25.2}\\
& 1^{(2)}=1, a^{(2)}=0 \text { for } a \in\{0,2\} \tag{25.3}
\end{align*}
$$

Clearly (24) and (25) prove (11), while suitable combinations prove (10), for instance

$$
0^{(0)} \wedge 0^{(1)}=2^{(0)} \wedge 2^{(1)}=1^{(0)} \wedge 1^{(1)}=0
$$

etc. From

$$
\left(2 \wedge 0^{(1)}\right) \vee 0^{(2)}=0
$$

$$
\begin{aligned}
& \left(2 \wedge 2^{(1)}\right) \vee 2^{(2)}=2 \vee 0=2, \\
& \left(2 \wedge 1^{(1)}\right) \vee 1^{(2)}=0 \vee 1=1,
\end{aligned}
$$

we see that property (12) with $e=2$ holds on E.
We have thus proved that the algebra in (16) is a Post algebra of order 3 . Finally it follows from (17), (18) that if $v: R \longrightarrow R^{\prime}$ is a morphism in 3Rng, then $v: G R \longrightarrow G R^{\prime}$ is a morphism in 3Post.

Theorem 2 The functors F and G establish an isomorphism.
Proof: The relation $G F=1_{\mathbf{3 P o s t}}$ is a paraphrase of Theorem 4 in [7]. It remains to prove $F G=1_{3 \mathrm{Rng}}$. This is clear on morphisms.

Let $(R,+, \cdot, 0,1)$ be a 3 -ring. The algebra $G R$ is given by formulas (16)(21), hence the ring $F G R$ is constructed by formulas (13)-(15) with $P=R$ and $e=2$. We must prove that $F G R=R$, which amounts to $x \oplus y=x+y$ and $x \odot y=x \cdot y$.

Since 0 and 1 are the zero and unit of the ring $F G R$, we have

$$
\begin{equation*}
x \oplus 0=x, x \odot 1=x, x \odot 0=0 \tag{26}
\end{equation*}
$$

Then for every $a, b \in E$ we use (14), (15), (24), (25) and obtain

$$
\begin{aligned}
& a \oplus 1=\left(2 \wedge a^{(2)}\right) \vee a^{(0)}, \\
& a \oplus 2=\left(2 \wedge a^{(0)}\right) \vee a^{(1)}, \\
& a \odot 2=\left(2 \wedge a^{(2)}\right) \vee a^{(1)},
\end{aligned}
$$

which implies further

$$
\begin{equation*}
2 \oplus 1=0,1 \oplus 1=2 \vee 0=2,2 \oplus 2=1,2 \odot 2=1 \tag{27}
\end{equation*}
$$

Relations (26), (27) show that $a \oplus b=a+b$ and $a \odot b=a \cdot b$ for every $a, b \in E$. In view of the Verification Theorem, this implies $x \oplus y=x+y$ and $x \odot y=x \cdot y$ for all $x, y \in R$.

References

[1] V.Boicescu, A. Filipoiu, G. Georgescu, S. Rudeanu, Lukasiewicz-Moisil, Algebras, North-Holland, Amsterdam 1991.
[2] G. Epstein, The lattice theory of Post algebras, Trans. Amer. Math. Soc., 95(1960), 300-317.
[3] H.N. McCoy, D. Montgomery, A representation of generalized Boolean rings, Duke Math. J., 3(1937), 455-459.
[4] Gr.C. Moisil, Sur les anneaux de caractéristique 2 ou 3 et leurs applications, Bull. Ecole Polyt. Bucarest, 12 (1941), 66-99. = [5], 259-282.
[5] Gr.C. Moisil, Recherches sur les Logiques Non-Chrysippiennes, Ed. Academiei, Bucarest 1972.
[6] S. Rudeanu, Lattice Functions and Equations, Springer-Verlag, London 2001.
[7] S. Rudeanu, Rings in Post algebras, Acta Math. Univ. Carolinae (in press).
[8] M. Serfati, Introduction aux Algèbres de Post et à Leurs Applications, Cahiers Bureau Univ. Rech. Opérationnelle. Paris 1973.
[9] M. Sholander, Postulates for distributive lattices, Canad. J. Math. 3(1951), 28-30.

Faculty of Mathematics-Informatics, University of Bucharest
Str. Academiei 14, 010014 Bucharest,
Romania
email: srudeanu@yahoo.com

[^0]: Key Words: Post algebra; 3-ring
 Mathematics Subject Classification: 06D25, 16B99.
 Received: March, 2007
 Accepted: May, 2007

[^1]: *In [7] we have denoted meet by or concatenation and the disjunctive components by x^{0}, x^{1}, x^{2}.

