FINITE SIMPLICIAL MULTICOMPLEXES

Mircea Cimpoeas

Abstract

Simplicial multicomplexes are a very natural generalization of simplicial complexes. Indeed, instead to see a simplicial complex as a subset $\Delta \subset \mathcal{P}([n])$ we can think Δ as a subset of vectors in $\{0,1\}^{n}$, which satisfy the property: $(*)$ For any $F \in \Delta$ and any $G \in\{0,1\}^{n}$ such that $G \leq F$ it follows that $G \in \Delta$. Nothing can stop us to consider subsets $\Gamma \subset \mathbb{N}^{n}$ which have the property $(*)$. Such a set is called a simplicial multicomplex.

In this paper we shall focus on the case of finite multicomplexes. More precisely, we shall exploit the relation between a monomial ideal (which will correspond to a finite multicomplex) and its polarized ideal (which will correspond to a simplicial complex). Using this connexion, we can extend many constructions and definitions in the category of simplicial complexes to the category of finite simplicial multicomplexes, as: homology, shellability, duality theories etc.

In the first section we introduce the main definitions and constructions of multicomplexes. In the second section, we present what we understand by a homology theory of multicomplexes. In the third section we extend the notion of shellability for simplicial multicomplexes and I prove a criterion of shellability (similar to the case of simplicial complexes) which allows us to see the duality with the case of ideals with linear quotients. This observation give us the idea to introduce the notion of co-shellable (multi)complexes. In the fifth section we define the base ring and the Erhart ring of a multicomplex. In the last section we give some dual constructions in the category of multicomplexes and some results which extend the case of simplicial complexes.

I wish to thank to my Professor Dorin Popescu for his support, encouragement and valuables observations on the content of this paper.

[^0]
1 Finite simplicial multicomplexes

First of all, let us fix some notations:

- k is an arbitrary field and $S=k\left[x_{1}, \ldots, x_{n}\right]$ is the ring of polynomials over k. For any monomial ideal $I \subset S$, we denote by $G(I)$ the set of minimal generators of I.
- A vector $u \in \mathbb{N}^{n}$ will be written as $u=(u(1), \ldots, u(n))$. The module of u is the number $|u|:=u(1)+\cdots+u(n)$.
- If $u, v \in \mathbb{N}^{n}$, we say that $u \leq v$ if $u(i) \leq v(i)$ for all $i=1, \ldots, n$. Obviously, $" \leq "$ is a partial order on \mathbb{N}^{n}.
- We denote by $e_{i}=(0, \ldots, 1,0, \ldots, 0)$ the vectors of the canonical base of \mathbb{N}^{n}.
- If $u \in \mathbb{N}^{n}, x^{u}$ is the monomial $x_{1}^{u(1)} x_{2}^{u(2)} \cdots x_{n}^{u(n)} \in S$.

Definition 1.1. A finite subset $\Gamma \subset \mathbb{N}^{n}$ is called a finite simplicial multicomplex if for all $a \in \Gamma$ and all $b \in \mathbb{N}^{n}$ with $b \leq a$, it follows that $b \in \Gamma$. The elements of Γ are called faces.

An element $m \in \Gamma$ is called a maximal facet if it does not exist $a \in \Gamma$ with $a>m$; in other words, if m is maximal with respect to " \leq ". We denote $\mathcal{M}(\Gamma)$ the set of maximal facets of Γ.

If $a \in \Gamma$ is a face, the dimension of a is the number $\operatorname{dim}(a)=|a|-1$. The dimension of Γ is the number $\operatorname{dim}(\Gamma)=\max \{\operatorname{dim}(u) \mid u \in \Gamma\}$. A multicomplex Γ is called pure if all the maximal facets have the same dimension, equal to $\operatorname{dim}(\Gamma)$.

Remark 1.2. An arbitrary intersection and a finite union of finite multicomplexes are again multicomplexes. Therefore, the set of all finite multicomplexes in \mathbb{N}^{n} is the family of closed sets in a topology on \mathbb{N}^{n}, called the finite-simplicial topology. The continuous functions in this topology are called finite-simplicial morphisms of multicomplexes. This aspect will not be studied in this paper.

Remark 1.3. Any finite multicomplex is determined by its maximal facets set, $\mathcal{M}(\Gamma)=\left\{u_{1}, \ldots, u_{r}\right\}$. In fact,

$$
\Gamma=\left\{b \in \mathbb{N}^{n} \mid b \leq u_{i}, \text { for some } i \in\{1, \ldots, r\}\right\}
$$

We write $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$ and we say that Γ is the multicomplex spanned by the vectors u_{1}, \ldots, u_{r}. Obviously, Γ is the smallest multicomplex which contains u_{1}, \ldots, u_{r}.

Definition 1.4. Let k be an arbitrary field. If $\Gamma \subset \mathbb{N}^{n}$ is a finite multicomplex, the ideal of non-faces of Γ is the monomial ideal, denoted by I_{Γ}, in $k\left[x_{1}, \ldots, x_{n}\right]$, spanned, as k-vector space, by all monomial x^{a} with $a \in \mathbb{N}^{n} \backslash \Gamma$. In particular, the monomials x^{a} with $a \in \Gamma$ forms a k-basis of S / I_{Γ}.

Obviously, I_{Γ} is an Artinian ideal (i.e. S / I_{Γ} is an Artinian ring). Conversely, if I is an Artinian ideal, then $\Gamma_{I}=\left\{a \in \mathbb{N}^{n} \mid x^{a} \notin \Gamma\right\}$ is a finite multicomplex and moreover $I_{\Gamma_{I}}=I$.

Remark 1.5. The ideal of non-faces of a simplicial multicomplex and the Stanley-Reisner ideal of a simplicial complex are different. More precisely, if Δ is a simplicial complex and I its the Stanley-Reisner ideal of Δ and if J is the ideal of non-faces of Δ regarded as a finite multicomplex, then I is the ideal generated by the square-free minimal generators of J.

For example, if $\Delta=\langle\{1,2\},\{2,3\}\rangle$, then the Stanley-Reisner ideal is $I=$ $\left\langle x_{1} x_{3}\right\rangle$ and the non-faces ideal of Δ (as a multicomplex) is $J=\left\langle x_{1}^{2}, x_{2}^{2}, x_{3}^{3}, x_{1} x_{3}\right\rangle$.

Proposition 1.6. 1. Γ has only one maximal facet a, if and only if I_{Γ} is an irreducible Artinian monomial ideal.
2. Let $\left(\Gamma_{j}\right)_{j}$ be a finite family of multicomplexes. Then:

$$
I_{\bigcap_{j}\left(\Gamma_{j}\right)}=\sum_{j} I_{\Gamma_{j}}, \quad I_{\cup_{j}\left(\Gamma_{j}\right)}=\bigcap_{j} I_{\Gamma_{j}}
$$

3. Let $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$ be a finite multicomplex. Then

$$
I_{\Gamma}=P_{u_{1}} \cap P_{u_{2}} \cap \cdots \cap P_{u_{r}}
$$

is the unique irredundant irreducible decomposition of I_{Γ}.
Proof. 1. Since $\Gamma=\langle a\rangle$, it follows that

$$
I_{\Gamma}=\left(x^{b} \mid b \in \mathbb{N}^{n}, b(i)>a(i) \text { for some } i\right)=\left(x_{i}^{a(i)+1} \mid i=1, \ldots n\right) .
$$

Conversely, if I is an irreducible monomial ideal, then I is generated by powers of variables (i.e $I=\left\langle x_{i}^{c(i)} \mid c(i) \geq 1\right\rangle$) and, thus $\Gamma_{I}=\langle a\rangle$, where $a=c-$ $(1, \ldots, 1)$.
2. It is as an easy exercise.
3. It is obvious from 1. and 2.

Definition 1.7. Let $\Gamma \subset \mathbb{N}^{n}$ be a finite multicomplex. The ideal of maximal facets of Γ, denoted by $I(\Gamma) \subset S=k\left[x_{1}, \ldots, x_{n}\right]$ is:

$$
\left.I=I(\Gamma)=\left\langle x^{a}\right| a \text { is a maximal facet in } \Gamma\right\rangle .
$$

Conversely, to an arbitrary monomial ideal $I \subset S$ we can associate the multicomplex

$$
\left.\Gamma=\Gamma(I)=\langle a| x^{a} \text { is a minimal generator of } I\right\rangle
$$

Also, if I is a monomial ideal, we can associate the polarized ideal I^{0} which is a square-free monomial ideal. The simplicial complex of the facets of I^{0} is called the polarized simplicial complex of Γ and it is denoted by $\Delta^{0}(\Gamma)$. Obviously, I is Cohen-Macaulay (Gorenstein etc.) if and only if the same property holds for I^{0}.

Remark 1.8. If $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$ is a finite multicomplex and $m=\vee_{j=1}^{r} u_{j}$, then $\Delta^{0}(\Gamma)$ is a simplicial complex on a set of vertices labeled $\left\{v_{1}^{1}, \ldots, v_{m(1)}^{1}\right.$, $\left.\ldots, v_{1}^{n}, \ldots, v_{m(n)}^{n}\right\}$. There is a bijection between the faces of Γ and the faces of Δ which have the property: $v_{i}^{j} \in F \Rightarrow v_{i-1}^{j} \in F, \ldots, v_{1}^{j} \in F$. More precisely, if $u \in \Gamma$ is a face, the corresponding face in $\Delta^{0}(\Gamma)$ is

$$
F_{u}=\left\{v_{1}^{1}, \ldots, v_{u(1)}^{1}, \ldots, v_{1}^{n}, \ldots, v_{u(n)}^{n}\right\} .
$$

If we make any change on Δ^{0} (for example, if we take the complementary complex of Δ^{0} or the Alexander dual complex etc.) using the above correspondence and renumbering the vertices, we can write down a new multicomplex which it will be called the complementary multicomplex of Γ (the Alexander dual of Γ etc.). This idea will be explained later, in the section 3.

Definition 1.9. We say that the multicomplex $\Gamma^{\prime} \subset \mathbb{N}^{m}$ is a subcomplex of $\Gamma \subset \mathbb{N}^{n}$ if there exists a canonical inclusion of \mathbb{N}^{m} in \mathbb{N}^{n} such that $\Gamma^{\prime} \subset \Gamma \cap \mathbb{N}^{m}$. In particular, if $n=m$, we demand that $\Gamma^{\prime} \subset \Gamma$. Obviously, any subcomplex of Γ^{\prime} in \mathbb{N}^{m} for $m<n$ corresponds to a subcomplex of Γ in \mathbb{N}^{n} but many of such subcomplexes could exist.

For example, if $\Gamma=\langle(1,2,2),(2,1,2)\rangle$ and $\Gamma^{\prime}=\langle(1,1),(0,2)\rangle$ then Γ^{\prime} is a subcomplex of Γ via the inclusions $(a, b) \mapsto(a, 0, b)$ and $(a, b) \mapsto(b, a, 0)$ of \mathbb{N}^{2} in \mathbb{N}^{3} (There are still more 3 posibilities. Find them!)

Definition 1.10. Let $\Gamma \subset \mathbb{N}^{n}$ be a simplicial multicomplex and $a \in \Gamma$. The link of a in Γ is the set

$$
l k_{\Gamma}(a)=\{b \in \Gamma \mid a+b \in \Gamma\} .
$$

Obviously, $l k_{\Gamma}(a)$ is also a simplicial multicomplex and a subcomplex of Γ.
The star of Γ is the set

$$
\operatorname{star}_{\Gamma}(a)=\{b \in \Gamma \mid a \vee b \in \Gamma\}
$$

which is also a subcomplex of Γ. Obviously, $l k_{\Gamma}(a) \subset \operatorname{star}_{\Gamma}(a)$.

Let $\Gamma \subset \mathbb{N}^{n}$ and $\Gamma^{\prime} \subset \mathbb{N}^{n}$ be two finite multicomplexes. The join of Γ with Γ^{\prime}, denoted by $\Gamma * \Gamma^{\prime}$, is the multicomplex:

$$
\Gamma * \Gamma^{\prime}=\left\{u+v \mid u \in \Gamma, v \in \Gamma^{\prime}\right\} .
$$

Note that it is not necessary for Γ and Γ^{\prime} to be in the same \mathbb{N}^{n}. In the general case, if $\Gamma \subset \mathbb{N}^{n}$ and $\Gamma \subset \mathbb{N}^{m}$, it is enough to choose two canonical inclusions $\mathbb{N}^{n} \subset \mathbb{N}^{N}$ and $\mathbb{N}^{m} \subset \mathbb{N}^{N}$ and to consider Γ and Γ^{\prime} as multicomplexes in \mathbb{N}^{N}. Obviously, in that case, $\Gamma * \Gamma^{\prime}$ depends on the chosen inclusions. However, there is a canonical way to compute $\Gamma * \Gamma^{\prime}$: It is enough to take $N=n+m$ and $N^{n} \subset N^{n+m}$ to be $(a(1), \ldots, a(n)) \mapsto(a(1), \ldots, a(n), 0, \ldots, 0)$, respectively $N^{m} \subset N^{n+m}$ to be $(b(1), \ldots, b(m)) \mapsto(0, \ldots, 0, b(1), \ldots, b(m))$.

In particular, if $\Gamma \subset \mathbb{N}^{n}$ is a multicomplex and $\Gamma^{\prime}=\{0,1\} \subset \mathbb{N}$, then $\Gamma * \Gamma^{\prime}$ in the sense of the last construction, is called the cone over Γ.

Example 1.11. Let $\Gamma=\langle(3,1,2),(2,1,3),(3,2,1)\rangle$. Then

$$
l k_{\Gamma}(2,0,0)=\langle(1,1,2),(0,1,3),(1,2,1)\rangle .
$$

Also, $l k_{\Gamma}(3,0,0)=\langle(0,1,2),(0,2,1)\rangle$ and $\operatorname{star}_{\Gamma}(3,0,0)=\langle(3,1,2),(3,2,1)\rangle$.
Proposition 1.12. Let Γ be a finite multicomplex, $u \in \Gamma$ and $v \in l k_{\Gamma}(u)$. Then:

1. $\operatorname{dim}(\Gamma)=\operatorname{dim}\left(l k_{\Gamma}(u)\right)+|u|$. If Γ is pure, then $l k_{\Gamma}(u)$ is also pure.
2. $u \in l k_{\Gamma}(v)$ and $l k_{l k_{\Gamma}(u)}(v)=l k_{l k_{\Gamma}(v)}(u)=l k_{\Gamma}(u+v)$.
3. $\langle v\rangle * l k_{l k_{v}(\Gamma)}(u) \subset l k_{s t a r_{\Gamma}(v)}(u)$.
4. If $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle, u \in \Gamma$, and $a \in \mathbb{N}^{n}$, then:

$$
\begin{gathered}
\operatorname{star}_{\Gamma}(u)=\left\langle u_{i} \mid u \leq u_{i}\right\rangle, \quad l k_{\Gamma}(u)=\left\langle u_{i}-u \mid u \leq u_{i}\right\rangle, \\
\langle a\rangle * \Gamma=\left\langle u_{1}+a, \ldots, u_{r}+a\right\rangle .
\end{gathered}
$$

Proof. 1.This is obvious.
2. $v \in l k_{\Gamma}(u)$ implies $v+u \in \Gamma$, that is $u \in l k_{\Gamma}(v)$. Let $w \in l k_{l k_{\Gamma}(u)}(v)$. Then $w+v \in l k_{\Gamma}(u)$, so $w+v+u \in \Gamma$, which is equivalent to the fact that $w \in l k_{\Gamma}(u+v)$.

We can rewrite this proof, easier, as follows: $l k_{l k_{\Gamma}(u)}(v)=\left\{w \in \mathbb{N}^{n} \mid v+w \in\right.$ $\left.l k_{\Gamma}(u)\right\}=\left\{w \in \mathbb{N}^{n} \mid v+w+u \in \Gamma\right\}=l k_{\Gamma}(u+v)$. Analogously, $l k_{l k_{\Gamma}(v)}(u)=$ $l k_{\Gamma}(u+v)$.
3. Let us suppose that $w \in\langle v\rangle * l k_{l k_{\Gamma}(v)}(u)$. Then $w=w^{\prime}+w^{\prime \prime}$ with $w^{\prime} \leq v$ and $\eta=w^{\prime \prime}+u+v \in \Gamma$. We have to prove that $(w+u) \vee v \in \Gamma$.

Since $w^{\prime} \leq w \wedge v \leq v$ and $w-w \wedge v \leq w^{\prime \prime}$, we can assume that $w^{\prime}=w \wedge v$ and $w^{\prime \prime}=w-w^{\prime}$. Let $\eta:=w-w \wedge v+u \in \Gamma$. It is enough to show that $(w+u) \vee v \in \Gamma$. We have

$$
\eta(i)= \begin{cases}v(i)+u(i), & v(i)>w(i) \\ w(i)+u(i), & v(i) \leq w(i)\end{cases}
$$

Let $\xi:=(w+u) \vee v$. If $v(i) \leq w(i)$, then $v(i) \leq w(i)+u(i)$, thus $\xi(i)=$ $w(i)+u(i)$. When $v(i)>w(i)$, we cannot say that $v(i) \geq w(i)+u(i)$ but, anyway, $\xi(i) \leq v(i)+u(i)$. The conclusion is that $\xi \leq \eta \in \Gamma$, therefore $\xi \in \Gamma$ as required.
4.The proof is an easy exercise.

Example 1.13. Let $\Gamma=\langle(3,4,4),(4,2,5)\rangle, u=(3,2,1)$ and $v=(0,1,2)$. Obviously, $\operatorname{star}_{\Gamma}(v)=\Gamma$. Then $l k_{\text {star }_{\Gamma}(v)}(u)=l k_{\Gamma}(u)=\langle(0,2,3),(1,0,4)\rangle$. Since $l k_{l k_{\Gamma}(v)}(u)=l k_{\Gamma}(u+v)=l k_{\Gamma}(3,3,3)=\langle(0,1,1)\rangle$, we have $\langle v\rangle * l k_{l k_{\Gamma}(v)}(u)=$ $\langle(0,2,3)\rangle$. This example shows that the inclusion $\langle v\rangle * l k_{l k_{v}(\Gamma)}(u) \subset l k_{s t a r_{\Gamma}(v)}(u)$ can be strict (in the case of simplicial complexes, always, we have the equality).

2 Geometrical description and homology of multicomplexes.

Definition 2.1. Let $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$ be a finite simplicial multicomplex. Let $\Delta^{0}=\Delta^{0}(\Gamma)$ be the polarized complex associated to Γ. Let $\left|\Delta^{0}\right|$ be the underlying topological space of Δ^{0}. As we already have seen, Δ^{0} is a simplicial complex on a set of vertices labeled by $\left\{v_{1}^{1}, \ldots, v_{m(1)}^{1}, \ldots, v_{1}^{n}, \ldots, v_{m(n)}^{1}\right\}$.

The topological space associated to Γ, denoted by $|\Gamma|$ is the quotient topological space of $\left|\Delta^{0}\right|$ obtained by gluing the vertices $\left\{v_{1}^{1}, \ldots, v_{m(1)}^{1}\right\}, \ldots$, respectively $\left\{v_{1}^{n}, \ldots, v_{m(n)}^{1}\right\}$.

Example 2.2. If $\Gamma=\langle a\rangle$ with $a \geq(1, \ldots, 1)$, then $|\Gamma| \sim \vee_{i=1}^{s} S^{1}$ where $s=|a|-n$. This follows easily be induction on $|a|$.
Example 2.3. Let $\Gamma=\langle(2,1),(1,2)\rangle \subset \mathbb{N}^{2}$. The polarized simplicial complex of Δ is $\Delta^{0}=\left\langle\left\{v_{1}^{1}, v_{2}^{1}, v_{1}^{2}\right\}\right.$, $\left.\left\{v_{1}^{1}, v_{1}^{2}, v_{2}^{2}\right\}\right\rangle$. (In other language, $I=I_{\Gamma}=$ $\left\langle x^{2} y, x y^{2}\right\rangle$ and the polarized ideal of I is $I^{0}=\left\langle x_{1} x_{2} y_{1}, x_{1} y_{1} y_{2}\right\rangle$.) For reasons of comprehensibility, we rewrite as $\Delta^{0}=\langle\{1,2,3\},\{2,3,4\}\rangle$.

Note that $\left|\Delta^{0}\right|$ consists in two triangles with the common edge $\{2,3\}$. Therefore, $|\Gamma|$ is the topological space obtained from $\left|\Delta^{0}\right|$ by gluing the vertices 1 with 2 and 3 with 4 respectively. The obtained topological space $|\Gamma|$ is homotopically equivalent with $S^{1} \vee S^{1}$.

In algebraic language, the gluing "corresponds" to the factorization with $x_{1}-x_{2}$ and $y_{1}-y_{2}$ that gives the isomorphism:

$$
\frac{K\left[x_{1}, x_{2}, y_{1}, y_{2}\right]}{\left(x_{1} x_{2} y_{1}, x_{1} y_{1} y_{2}, x_{1}-x_{2}, y_{1}-y_{2}\right)} \cong \frac{k[x, y]}{\left(x^{2} y, x y^{2}\right)} .
$$

Definition 2.4. Let $\Gamma \subset \mathbb{N}^{n}$ be a finite simplicial multicomplex with $e_{i} \in \Gamma$, $i=1, \ldots, n$. Let A be an arbitrary commutative ring with unity. Let Δ^{0} be the polarized simplicial complexul associate to Γ, and let

$$
\left\{v_{1}^{1}, \ldots, v_{m(1)}^{1}, \ldots, v_{1}^{n}, \ldots, v_{m(n)}^{n}\right\}
$$

be its vertices. Let $C_{i}\left(\Delta^{0}, A\right)$ be the free A-module spanned by the set of i faces of Δ. (This is the complex of A-modules which is used to compute the simplicial homology of Δ^{0}.)

Let $C_{i}(\Gamma, A):=C_{i}\left(\Delta^{0}, A\right)$ for $i \geq 1$ and let $C_{0}(\Gamma, A):=C_{0}\left(\Delta^{0}, A\right) /\left(e_{j}^{i}-\right.$ e_{k}^{i}), where e_{j}^{i} is the base of $C_{0}(\Gamma, A)$ (more precisely, e_{j}^{i} corresponds to the vertex $\left.v_{j}^{i}\right)$. It is obvious that $C_{0}(\Gamma, A) \cong A^{n}$.

Let $\partial_{i}: C_{i}(\Gamma, A) \rightarrow C_{i-1}(\Gamma, A)$, for $i \geq 2$ be the usual differentials and let $\partial_{1}: C_{1}(\Gamma, A) \rightarrow C_{0}(\Gamma, A)$ be the composed map

$$
C_{1}(\Gamma, A)=C_{1}\left(\Delta^{0}, A\right) \rightarrow C_{0}\left(\Delta^{0}, A\right) \rightarrow C_{0}(\Gamma, A)
$$

Let $\partial_{0}:=0$. Obviously, $\partial_{i-1} \circ \partial_{i}=0$ for all $i \geq 1$.
The homology of $C_{*}(\Gamma, A)$ is the simplicial homology of the simplicial multicomplex Γ and we denote it by $H_{*}(\Gamma, A)$. This means that

$$
H_{i}(\Gamma, A)=\operatorname{Ker}\left(\partial_{i}\right) / \operatorname{Im}\left(\partial_{i+1}\right) .
$$

Remark 2.5. (Connection with algebraic topology) Let Γ be a finite simplicial multicomplex. The i-skeleton of Γ is the subcomplex $\Gamma^{(i)}=\{a \in \Gamma| | a \mid \leq i\}$.

Let Γ be a simplicial multicomplex. Then $\left|\Gamma^{(i+1)}\right|$ is obtained, topologically, by attaching some $i+1$-cells over $\left|\Gamma^{(i)}\right|$. Moreover, this gluing is compatible with the differentials ∂_{i}. In conclusion, $|\Gamma|$ has a structure of cellular complex which is identically with its simplicial structure. I.e. the complex $C_{*}(\Gamma, A)$ is exactly the cell complex of A-modules which computes the homology for a cellular complex. See Example 2.7 for further explanations.

Corollary 2.6. For any multicomplex $\Gamma, H_{*}(\Gamma, A)=H_{*}(|\Gamma|, A)$.
Proof. One way to prove is simply using the above remark. Another way to prove this corollary is the following: Obviously, one has $H_{*}(\Delta, A)=H_{*}(|\Delta|, A)$ for any simplicial complex Δ. In particular this holds for $\Delta=\Delta^{0}(\Gamma)$. If X is a "nice" connected topological space (a topological variety for example) and
$x, y \in X$ and $x \sim y$ then X / \sim is homotopically equivalent with $X \vee S^{1}$. Therefore, $|\Gamma| \approx\left|\Delta^{0}\right| \vee S^{1} \vee \cdots \vee S^{1}$, where S^{1} appears exactly $s-n$ times and $s=\operatorname{rang}\left(C_{0}\left(\Delta^{0}\right)\right)$. But,

$$
H_{*}(|\Gamma|, A) \cong \begin{cases}H_{i}\left(\Delta^{0}, A\right), & \text { for } i \neq 1 \\ H_{i}\left(\Delta^{0}, A\right) \oplus A^{s-n}, & \text { for } i=1\end{cases}
$$

Now it is obvious that $H_{*}(\Gamma, A)=H_{*}(|\Gamma|, A)$.
Example 2.7. - Let $\Gamma=\langle(3)\rangle \subset \mathbb{N}$. $\Delta^{0}(\Gamma)$ is the 2-simplex, thus $\left|\Delta^{0}\right|$ is a triangle. Therefore, $|\Gamma|$ is obtained from the triangle by gluing its vertices. ($|\Gamma|$ looks as a "parachute"!) Obviously, $|\Gamma| \sim S^{1} \vee S^{1}$. Let us explain the structure of cell complex of $|\Gamma|$. The 0 -skeleton consists in a point. The 1-skeleton consists in three circles glued in that point (that means that we have attached three 1-cells over the 0-skeleton). At last, we attached one 2 -cell over those three circles to obtain $|\Gamma|$. Let us write down the simplicial homology (which is identically with the cell homology) of Γ :

$$
0 \longrightarrow A \xrightarrow{\partial_{2}} A^{3} \xrightarrow{\partial_{2}} A \xrightarrow{\partial_{0}} 0
$$

Let us denote $C_{2}(\Gamma, A)=e_{123} A, C_{1}(\Gamma, A)=e_{12} A+e_{13} A+e_{23} A, C_{0}\left(\Delta^{0}, A\right)=$ $e_{1} A+e_{2} A+e_{3} A$ and $C_{0}(\Gamma, A)=C_{0}\left(\Delta^{0}, A\right) /\left(e_{1}-e_{2}, e_{1}-e_{3}\right)=e A$, where e_{123} corresponds to the face $\{1,2,3\}$ of Δ^{0} etc.
We have $\partial_{2}\left(e_{123}\right)=e_{23}-e_{13}+e_{12}$. Also, $\partial_{1}\left(e_{i j}\right)=\widehat{e_{j}}-\widehat{e_{i}}=e-e=0$. Thus $\partial_{1}=0$. Since ∂_{2} is injective, $H_{2}(\Gamma, A)=0$. Also, $H_{1}(\Gamma, A)=$ $\operatorname{Ker}\left(\partial_{1}\right) / \operatorname{Im}\left(\partial_{2}\right)=A^{3} / A=A^{2}$ and $H_{0}(\Gamma, A)=\operatorname{Ker}\left(\partial_{0}\right) / \operatorname{Im}\left(\partial_{1}\right)=$ $A^{3} / A^{2}=A$. This is the well known homology of $S^{1} \vee S^{1}$!

- Let $\Gamma=\langle(2,1),(1,2)\rangle$ be the multicomplex from the Example 1.17. We have already seen that $\Delta^{0}=\langle\{1,2,3\},\{2,3,4\}\rangle$ and that $|\Gamma| \sim S^{1} \vee S^{1}$. Write down the homology of Γ. We have $C_{2}(\Gamma, A)=A^{2}, C_{1}(\Gamma, A)=A^{5}$, $C_{0}(\Gamma, A)=A^{2}$, so:

$$
0 \longrightarrow A^{2} \xrightarrow{\partial_{2}} A^{5} \xrightarrow{\partial_{2}} A^{2} \xrightarrow{\partial_{1}} 0 .
$$

The matrix of ∂_{2} is

$$
\left(\begin{array}{rr}
1 & 0 \\
-1 & 0 \\
1 & 1 \\
0 & -1 \\
0 & 1
\end{array}\right)
$$

and the matrix of ∂_{1} is

$$
\left(\begin{array}{rrrrr}
-1 & 0 & 1 & 0 & 1 \\
1 & 0 & -1 & 0 & -1
\end{array}\right) .
$$

Obviously, $\operatorname{rank}\left(\partial_{2}\right)=2$ and $\operatorname{rank}\left(\partial_{0}\right)=0$. Then $H^{2}(\Gamma, A)=0$, because ∂_{2} is injective. $H^{1}(\Gamma, A)=\operatorname{Ker}\left(\partial_{1}\right) / \operatorname{Im}\left(\partial_{2}\right)=A^{4} / A^{2}=A^{2}$ and, of course $H^{1}(\Gamma, A)=A$.
The structure of cell complex for Γ is the following: Since $\Gamma^{0}=\{(1,0),(0,1)\}$, then $\left|\Gamma^{0}\right|$ consist in two points. Since $\Gamma^{1}=\Gamma_{0} \cup\{(2,0),(1,1),(0,2)\}$, $\left|\Gamma^{1}\right|$ is obtained from $\left|\Gamma^{0}\right|$ by attaching three 1-cells. The first cell (corresponding to $(2,0))$ is glued as a loop over the first point, the second cell (corresponding to $(1,1)$) is glued as a line between the points of $\left|\Gamma^{0}\right|$ and the third cell is glued as a bucle over the second point. Since $\Gamma^{2}=\Gamma_{1} \cup\{(2,1),(1,2)\},\left|\Gamma^{1}\right|$ is obtained by gluind two discs, both of them with the border equal with $\left|\Gamma_{1}\right|$. The geometrical image of $|\Gamma|$ is a "parachute" (as in example above), and therefore $\left|\Gamma^{2}\right|$ is homotopically equivalent with $S^{1} \vee S^{1}$.

Remark 2.8. (The reduced homology of a simplicial multicomplex) As in the case of the simplicial complexes, we can define the reduced homology for a multicomplex to be the homology of the following complex of A-modules:

$$
\cdots \rightarrow C_{i}(\Gamma, A) \rightarrow C_{i-1}(\Gamma, A) \rightarrow \cdots \rightarrow C_{0}(\Gamma, A) \rightarrow C_{-1}(\Gamma, A)=A \rightarrow 0
$$

where the last map ∂_{0} is given by the matrix $(1, \ldots, 1)$. Obviously, we think $C_{-1}(\Gamma, A)$ as the free A-module generated by the -1 -faces of Γ, (i.e. by $(0, \ldots, 0))$. We denote by $\widetilde{H}_{*}(\Gamma, A)$ the reduced homology of Γ. Of course, $\widetilde{H}(\Gamma, A)=\widetilde{H}(|\Gamma|, A)$.

Remark 2.9. For any multicomplex Γ, the cone over Γ is acyclic, i.e. $\widetilde{H}_{*}(\Gamma, A)=$ 0 . Indeed, as a topological space, the cone over Γ is obviously contractible, and therefore it has no reduced homology.

Definition 2.10. Let $\Gamma \in \mathbb{N}^{n}$ be a finite simplicial multicomplex and let A be an arbitrary commutative ring with unity. We consider the chain complex:

$$
\cdots \rightarrow C_{i}(\Gamma, A) \rightarrow C_{i-1}(\Gamma, A) \rightarrow \cdots \rightarrow C_{0}(\Gamma, A) \rightarrow 0
$$

Applying the functor $\operatorname{Hom}(-, A)$ to this complex, we obtained a cochain complex:

$$
\begin{gathered}
0 \rightarrow \operatorname{Hom}\left(C_{0}(\Gamma, A), A\right) \rightarrow \operatorname{Hom}\left(C_{0}(\Gamma, A), A\right) \rightarrow \cdots \\
\cdots \rightarrow \operatorname{Hom}\left(C_{i-1}(\Gamma, A), A\right) \rightarrow \operatorname{Hom}\left(C_{i}(\Gamma, A), A\right) \rightarrow \cdots .
\end{gathered}
$$

Let $C^{i}(\Gamma, A):=\operatorname{Hom}\left(C_{i}(\Gamma, A), A\right)$. We define the differentials

$$
\delta_{i}: C^{i}(\Gamma, A) \rightarrow C^{i+1}(\Gamma, A)
$$

by

$$
\delta_{i}(f)(x):=(-1)^{i} f\left(\partial_{i+1}(x)\right),
$$

for any $x \in C^{i+1}(\Gamma, A)$.
The simplicial cohomology of Γ is, by definition, the cohomology of the cochain complex above, i.e. $H^{i}(\Gamma, A):=\operatorname{Ker}\left(\delta_{i}\right) / \operatorname{Im}\left(\delta_{i-1}\right)$. Moreover, $H^{*}(\Gamma, A)$ has a structure of a graded A-algebra with the cup-product.

Of course, $H^{*}(\Gamma, A)=H^{*}(|\Gamma|, A)$ and, as in the homological case, we can define, similarly, the reduced cohomology of $|\Gamma|$.

Remark 2.11. It would be interesting to compute the Euler characteristic $\chi(|\Gamma|)$ using only the combinatorial structure of $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$. Of course, it is obvious that $\chi(|\Gamma|)=\chi\left(\Delta^{0}(\Gamma)\right)+n-|\sup (\Gamma)|$, where $\sup (\Gamma)=\vee_{i=1}^{r} u_{i}$. So, the problem is to compute $f_{i}\left(\Delta^{0}\right)$ using the combinatorial structure of Γ.

3 Shellable finite multicomplexes

Let us recall that a simplicial complex Δ is said to be connected if there exists an ordering on the facet set of $\Delta,\left\{F_{1}, \ldots, F_{r}\right\}$, such that $F_{i} \cap F_{i+1} \neq \emptyset$. Obviously, Δ is connected if and only if $|\Delta|$ is a connected space. In the case of multicomplexes, we have the following generalization:

Definition 3.1. A finite simplicial multicomplex Γ is said to be connected, if there exists an ordering on $\mathcal{M}(\Gamma)=\left\{u_{1}, \ldots, u_{r}\right\}$ such that $u_{i} \wedge u_{i+1}>$ $(0, \ldots, 0)$, for $i=1, \ldots, r-1$. Obviously, Γ is connected if and only if its underlying topological space is connected.

We have the following well known characterisation of shellable simplicial complexes, see for example [2, Chapter 4].

Proposition 3.2. Let Δ be a connected pure simplicial complex. Let F_{1}, \ldots, F_{r} be a fixed ordering of the set of facets of Δ. Then, the following assertions are equivalent:

1. Δ is shellable whit the ordering F_{1}, \ldots, F_{r} : i.e $\left\langle F_{1}, \ldots, F_{i-1}\right\rangle \cap\left\langle F_{i}\right\rangle$ is generated by a set o proper maximal faces of $\left\langle F_{i}\right\rangle$.
2. The set $S_{i}=\left\{F \mid F \in\left\langle F_{1}, \ldots, F_{i}\right\rangle, F \notin\left\langle F_{1}, \ldots, F_{i-1}\right\rangle\right\}$ has only one minimal element, for any $i=2, \ldots, r$.
3. For any $j<i$, there exists a vertex $v \in F_{i} \backslash F_{j}$ and there exists $k<i$ such that $F_{i} \backslash F_{k}=\{v\}$.

Definition 3.3. Let $\Gamma \subset \mathbb{N}^{n}$ be a finite multicomplex. Let $b, a \in \Gamma$. We call $a \operatorname{lower}$ neighbour of b if there exists an integer k such that $a(k)+1=b(k)$ and $a(i)=b(i)$ for any $i \neq k$. Equivalently, a is a lower neighbour of b if $a<b$ and $|a|=|b|-1$.

For example, $(4,3,0,2)$ is a lower neighbor of $(4,3,1,2)$.
Definition 3.4. Let Γ be a finite connected pure multicomplex. We say that Γ is shellable as a finite multicomplex, if there is an order on the set of maximal facets of $\Gamma, u_{1}, \ldots, u_{r}$, such that $\left\langle u_{1}, \ldots, u_{i-1}\right\rangle \cap\left\langle u_{i}\right\rangle$ is generated by a set of lower neighbours of u_{i}.

Our first aim is to give a characterization of shellability for a multicomplex similar to the above proposition.

Proposition 3.5. Let Γ be a finite connected pure multicomplex. The followings are equivalent:

1. Γ is shellable with the order u_{1}, \ldots, u_{r} on $\mathcal{M}(\Gamma)$.
2. The set $S_{i}=\left\{v \in \mathbb{N}^{n} \mid v \leq u_{i}, v \not \leq u_{j}\right.$ for $\left.j<i\right\}$ has only one minimal element v, which, moreover, has the property $v(j)=u_{i}(j)$ or $v(j)=0$, $(\forall) j \in[n]$.
3. For any $j<i$, there exists $m \in[n]$ with $u_{i}(m)>u_{j}(m)$ and $k<i$ such that $u_{i}(m)=u_{k}(m)+1$, and $u_{i}(s) \leq u_{k}(s)$ for $s \neq m, s \in[n]$.

Proof. $(1 \Rightarrow 2)$. Let us suppose that $\left\langle u_{1}, \ldots, u_{i-1}\right\rangle \cap\left\langle u_{i}\right\rangle$ is generated by the following lower neighbors of $u_{i}, u_{i}-e_{i_{1}}, \ldots, u_{i}-e_{i_{k}}$. Let

$$
v:= \begin{cases}u_{i}(j), & j \in\left\{i_{1}, \ldots, i_{k}\right\} \\ 0, & j \notin\left\{i_{1}, \ldots, i_{k}\right\}\end{cases}
$$

It is enough to prove that v is a minimal element of $S_{i}=\left\{a \in \mathbb{N}^{n} \mid a \leq u_{i}, a \not 又\right.$ u_{j} for $\left.j<i\right\}$. Obviously, $v \leq u_{i}$. Also, from its definition, $v \not \leq u_{j}$ for $j<i$, because each u_{j} for $j \in\left\{i_{1}, \ldots, i_{k}\right\}$ has at least one of its components strictly less than $u_{i}(j)$.

Let us suppose now that there exists v^{\prime} with $v^{\prime} \leq u_{i}$ and $v^{\prime} \neq u_{j}$ for $j<i$. We have to show that $v \leq v^{\prime}$.

Let us notice that the maximal facets of $\left\langle u_{1}, \ldots, u_{i-1}\right\rangle \cap\left\langle u_{i}\right\rangle$ are among $u_{i} \cap u_{1}, \ldots, u_{i} \cap u_{i-1}$. Also, since Γ is shellable, it follows that the maximal facets have the dimension $\operatorname{dim}\left(u_{i}\right)-1$.

For any $j \notin\left\{i_{1}, \ldots, i_{k}\right\}$, we have $0=v(j) \leq v^{\prime}(j)$. Let us suppose that $v^{\prime}\left(i_{1}\right)<v\left(i_{1}\right)=u_{i}\left(i_{1}\right)$. We choose j such that $u_{j} \wedge u_{i}=u_{i}-e_{i_{1}}$. We have $u_{j}\left(i_{1}\right)=u_{i}\left(i_{1}\right)-1$ and $u_{j}(t) \geq u_{i}(t)$, for any $t \neq i_{1}$. But then $v^{\prime} \leq u_{j}$ which is a contradiction.
$(2 \Rightarrow 3)$. Before giving the proof in the general case, let us study some particular cases. If $i=1$ there is nothing to prove. If $i=2$, we claim that there is only one nonzero component of f. Indeed, let suppose $v(1)=u_{2}(1)>$ $0, \ldots, v(e)=u_{2}(e)>0$. Obviously, there is an index k such that $v(k)>u_{1}(k)$, since otherwise $v \leq u_{1}$, which is absurd. Let us suppose $v(1)>u_{1}(1)$. But then it is obvious that $v^{\prime}=(v(1), 0, \ldots, 0) \in S_{2}$! This forces $e=1$. From the uniqueness of v it follows that $u_{1}(k) \geq u_{2}(k)$, for any $k>1$. Indeed, if $u_{1}(2)<u_{2}(2)$ for example, then $v^{\prime}=\left(0, u_{2}(2), 0, \ldots, 0\right) \in S_{2}$ and this in a contradiction! We claim that $u_{1}(1)=u_{2}(1)-1$. Indeed, if $u_{1}(1) \leq u_{2}(1)-1$, then $v^{\prime}=\left(u_{2}(1)-1,0, \ldots, 0\right) \in S_{2}$ and $v^{\prime}<v$, which is again absurd. Since $\left|u_{1}\right|=\left|u_{2}\right|, u_{1}(1)=u_{2}(1)-1$ and $u_{1}(k) \geq u_{2}(k)$ for any $k>1$, it follows that there exists $m>1$ such that $u_{1}(m)=u_{2}(m)-1$ and $u_{1}(k)=u_{2}(k)$ for any $k \neq 1, m$. Thus, the assertion 3 holds.

Before to proceed to the general case, we make first some remarks:

- The condition 3 in the previous proposition can be replaced as follows: for any $j<i$ there exists $k<i$ such that $u_{j} \wedge u_{i} \leq u_{k} \wedge u_{i}$ a̧nd $d\left(u_{i}, u_{k}\right)=$ 1.
- If $v \in S_{i}$ is the unique minimal element of S_{i} by reordering of the vertices, we can assume that

$$
v(1)=u_{1}(1)>0, \ldots, v(e)=u_{i}(e)>0, v(e+1)=\cdots=v(n)=0 .
$$

- For any $m>e$, there exists $j<i$ such that $u_{i}(m) \leq u_{j}(m)$. Indeed, otherwise, the vector $\left(0, \ldots, u_{i}(m), \ldots, 0\right)$ will be in S_{i} which is a contradiction whit the uniqueness of v.
- Also, we cannot have simultaneously $v(1)>\max \left\{u_{1}(1), \ldots, u_{i-1}(1)\right\}$ and $v(2)>\max \left\{u_{1}(2), \ldots, u_{i-1}(2)\right\}$ because, in this case, there are two minimal vectors in S_{i}.
- Last but not least, let us notice that the vectors u_{j}, for $j<i$, are obtained from a previous one be adding +1 to a component and subtracting +1 from another. A posteriori, this is clear from the definition of shellability. Anyway, this fact it is not used in the proof below.

Suppose $v=\left(u_{i}(1), \ldots, u_{i}(e), 0, \ldots, 0\right)$ is the unique minimal element of S_{i}. First of all, we want to prove that for any $j<i$, we have:

$$
u_{j} \wedge u_{i} \leq\left(u_{i}(1)-1, u_{i}(2), \ldots, u_{i}(n)\right)
$$

or

$$
u_{j} \wedge u_{i} \leq\left(u_{i}(1), u_{i}(2)-1, u_{i}(2), \ldots, u_{i}(n)\right)
$$

or \cdots
or

$$
u_{j} \wedge u_{i} \leq\left(u_{i}(1), \ldots, u_{i}(e-1), u_{i}(e)-1, u_{i}(e+1), \ldots, u_{i}(n)\right)
$$

But this is almost obvious! Indeed, if the above condition fails for some j, it follows that $v \leq u_{j}$.

Moreover, each inequality holds for some j. If, for example,

$$
u_{j} \wedge u_{i} \not \leq\left(u_{i}(1)-1, u_{i}(2), \ldots, u_{i}(n)\right),
$$

for any $j<i$, it follows that

$$
\left(0, u_{i}(2), \ldots, u_{i}(e), 0, \ldots, 0\right) \in S_{i}
$$

which is a contradiction with the minimality of v.
Let $j<i$ with $u_{j} \wedge u_{i} \leq\left(u_{i}(1)-1, u_{i}(2), \ldots, u_{i}(n)\right)$. We shall prove that there is $k<i$ such that $u_{k} \wedge u_{i}=\left(u_{i}(1)-1, u_{i}(2), \ldots, u_{i}(n)\right)$ and this, obviously, completes the proof. Let us suppose that $u_{j} \wedge u_{i} \neq\left(u_{i}(1)-\right.$ $\left.1, u_{i}(2), \ldots, u_{i}(n)\right)$, for any $j<i$. Let $v^{\prime}=\left(u_{i}(1)-1, u_{i}(2), \ldots, u_{i}(n)\right)$. Obviously, $v^{\prime} \leq u_{i}$. If there exists $k<i$ such that $v^{\prime} \leq u_{k}$, it follows that $u_{k} \wedge u_{i}=\left(u_{i}(1)-1, u_{i}(2), \ldots, u_{i}(n)\right)$, a contradiction. On the other hand, if $v^{\prime} \notin u_{j}$, for any $j<i$, it follows that $v^{\prime} \in S_{i}$, and this is again a contradiction, because $v \not \leq v^{\prime}$!
$(3 \Rightarrow 1)$. Let $v \in\left\langle u_{1}, \ldots, u_{i-1}\right\rangle \cap\left\langle u_{i}\right\rangle$. Then $v \leq u_{i} \wedge u_{j}$ for some $j<i$. Let m be as in assertion 3. Then, there exists k such that $u_{i}(m)=u_{k}(m)+1$ and $u_{i}(s) \leq u_{k}(s)$ for $s \neq m$. Obviously, $v \leq u_{k}$, because $v \leq u_{i}$ (and then $v(s) \leq u_{i}(s) \leq u_{k}(s)$ for $\left.s \neq m\right)$ and $v(m) \leq u_{j}(m) \leq u_{k}(m)$. Thus $v \leq u_{i} \wedge u_{k}$. It is also clear that $\left|u_{i} \wedge u_{k}\right|=\left|u_{i}\right|-1$. Then $u_{i}-e_{m}$ is a lower neighbor for u_{i} in $\left\langle u_{1}, \ldots, u_{i-1}\right\rangle \cap\left\langle u_{i}\right\rangle$ cu $v \leq u_{i}-e_{m}$. But that means Γ is shellable.

Example 3.6. Let $\Gamma=(2,1,0),(1,2,0),(0,2,1)$. Then Γ is shellable. Indeed, $\langle(1,2,0)\rangle \cap\langle(2,1,0)\rangle=(1,1,0)$ and $\langle(0,2,1)\rangle \cap\langle(2,1,0),(1,2,0)\rangle=(0,2,0)$.

The minimal element of $S_{2}=\left\{v \mid v \leq u_{1}, v \not \leq u_{2}\right.$ is $v=(0,2,0)$ and the minimal element of S_{3} is $w=(0,0,1)$. Obviously, v and w satisfy the condition 2 of the proposition.

Remark 3.7. Let Γ be a simplicial multicomplex and let $I(\Gamma)$ be the ideal of maximal facets of Γ. Suppose that Γ is shellable. From the assertion 3 of the proposition, we have: for any $j<i$ there exists $k<i$ such that $u_{j} \wedge u_{i} \leq u_{k} \wedge u_{i}$ şi $d\left(u_{i}, u_{k}\right)=1$. The translation of this assertion in algebraic language is:

For any $j<i$, there exists $k<i$ such that $\operatorname{gcd}\left(m_{i}, m_{j}\right) \mid \operatorname{gcd}\left(m_{i}, m_{k}\right)$ and $m_{i} / \operatorname{gcd}\left(m_{i}, m_{k}\right)=x_{t}$ for some t. Note the similarity, but not coincidence, with the case of ideals with linear quotients!

Proposition 3.8. Let Γ be a finite connected pure multicomplex. Then Γ is shellable if and only if $\Delta^{0}=\Delta^{0}(\Gamma)$ is shellable.

Proof. Suppose $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$. Then $\Delta^{0}=\left\langle F_{1}, \ldots, F_{r}\right\rangle$, unde

$$
F_{i}=\left\{v_{1}^{1}, \ldots, v_{u_{i}(1)}^{1}, v_{1}^{2}, \ldots, x_{u_{i}(2)}^{2}, \ldots, x_{1}^{n}, \ldots, x_{u_{i}(n)}^{n}\right\} .
$$

Obviously Γ is pure, if and only if Δ^{0} is pure. Assume that Γ is shellable. Using the above proposition, if follows that for any $j<i$, there exists m with $u_{i}(m)>u_{j}(m)$ and $k<i$ such that $u_{i}(m)=u_{k}(m)+1$ and $u_{i}(s) \leq u_{k}(s)$ for $s \neq m$.

In terms of facets of Δ^{0}, the above fact is equivalent with the following one: For any $j<i$ there exists m with $x_{u_{i}(m)}^{m} \in F_{i} \backslash F_{j}$ and $k<i$ such that $F_{i} \backslash F_{k}=\left\{x_{u_{i}(m)}^{m}\right\}$. But this means that Δ^{0} is shellable, as required.

A well known property, see [2, Chapter 4], of shellable pure simplicial complexes is the following one:

Proposition 3.9. If Δ is a pure shellable simplicial complex, then $|\Delta|$ has the homotopy type of a wedge of spheres of dimension d.

Therefore, we have the following:
Corollary 3.10. If Γ is a pure shellable multicomplex, then $|\Gamma|$ has the homotopy type of a topological space obtained by a wedge of spheres of dimension d by gluing some points and therefore, it is a wedge of spheres of dimension d and 1.

We can extend the notion of shellability for the simplicial complexes which are not pure, as follows:

Definition 3.11. Let Δ be a simplicial complex. Δ is called shellable if there exists an ordering of the facets of $\Delta, F_{1}, \ldots, F_{r}$, such that $\left\langle F_{1}, \ldots, F_{i-1}\right\rangle \cap\left\langle F_{i}\right\rangle$ is pure of dimension $\operatorname{dim}(\Delta)-1$.

This definition can be extended for multicomplexes:

Definition 3.12. Let Γ be a finite multicomplex. Γ is called shellable if there exists an ordering of the maximal facets of $\Gamma, u_{1}, \ldots, u_{r}$, such that $\left\langle u_{1}, \ldots, u_{i-1}\right\rangle \cap\left\langle u_{i}\right\rangle$ is generated by a set of lower neighbors of u_{i}.

Lemma 3.13. If Δ is shellable with the order F_{1}, \ldots, F_{r}, then: $\left|F_{1}\right| \geq$ $\left|F_{2}\right|, \cdots,\left|F_{1}\right| \geq\left|F_{r}\right|$. In particular, $\operatorname{dim}(\Delta)=\operatorname{dim}\left(F_{1}\right)$.

Proof. We argue by induction on i. For $i=2$, since $\left\langle F_{1}\right\rangle \cap\left\langle F_{2}\right\rangle$ has dimension $\operatorname{dim}\left(F_{2}\right)-1$, it follows that $\left|F_{1}\right|>\left|F_{2}\right|-1$ and, therefore, $\left|F_{1}\right| \geq\left|F_{2}\right|$. Suppose $i>2$. Then, by the induction hypothesis, we have: $\left|F_{1}\right| \geq\left|F_{2}\right|, \cdots\left|F_{1}\right| \geq$ $\left|F_{r-1}\right|$. Since $\left\langle F_{1}, \ldots, F_{i-1}\right\rangle \cap\left\langle F_{i}\right\rangle$ has the $\operatorname{dimension} \operatorname{dim}\left(F_{i}\right)-1$, it follows that there exists $k<i$, such that $\left|F_{k} \cap F_{i}\right|=\left|F_{i}\right|-1$. But then $\left|F_{k}\right|>\left|F_{i}\right|-1$ which implies $\left|F_{k}\right| \geq\left|F_{i}\right|$, and $\left|F_{1}\right| \geq\left|F_{i}\right|$.

This lemma can be written in language of multicomplexes:
Lemma 3.14. If Γ is shellable with the order u_{1}, \ldots, u_{r}, then:

$$
\left|u_{1}\right| \geq\left|u_{2}\right|, \cdots,\left|u_{1}\right| \geq\left|u_{r}\right| .
$$

Proof. We argue by induction on i. For $i=2$, since $\left\langle u_{1}\right\rangle \cap\left\langle u_{2}\right\rangle$ has dimension $\operatorname{dim}\left(u_{2}\right)-1$, it follows that $\left|u_{1}\right|>\left|u_{2}\right|-1$ and therefore $\left|u_{1}\right| \geq\left|u_{2}\right|$. Suppose $i>2$. Then, by induction hypothesis, we have: $\left|u_{1}\right| \geq\left|u_{2}\right|, \cdots\left|u_{1}\right| \geq\left|u_{r-1}\right|$. Since $\left\langle u_{1}, \ldots, u_{i-1}\right\rangle \cap\left\langle u_{i}\right\rangle$ has the dimension $\operatorname{dim}\left(u_{i}\right)-1$, it follows that there exists a $k<i$, such that $\left|u_{k} \wedge u_{i}\right|=\left|u_{i}\right|-1$. But then $\left|u_{k}\right|>\left|u_{i}\right|-1$ which implies $\left|u_{k}\right| \geq\left|u_{i}\right|$, and $\left|u_{1}\right| \geq\left|u_{i}\right|$.

Proposition 3.15. Let Δ be a shellable simplicial complex. Then there exists a shelling order F_{1}, \ldots, F_{r} such that $\left|F_{1}\right| \geq\left|F_{2}\right| \geq \cdots \geq\left|F_{r}\right|$. Such a shelling is called a "good shelling".

Proof. We use induction on r. For $r=1,2$ the assertion is obvious. Let us first prove the case $r=3$. Suppose F_{1}, F_{2}, F_{3} is a shelling with $\left|F_{1}\right|>\left|F_{2}\right|$ and $\left|F_{3}\right|>\left|F_{2}\right|$. From the definition of shellability, it follows that $F_{3} \cap F_{2} \subsetneq F_{1} \cap F_{3}$ and $\left|F_{1} \cap F_{3}\right|=\left|F_{3}\right|-1$. We claim that F_{1}, F_{3}, F_{2} is a good shelling.

Indeed, F_{1}, F_{3} satisfy the definition of shellability. But we have $F_{2} \cap F_{3} \subset$ $F_{1} \cap F_{3}$. Taking the intersection with F_{2}, we get: $F_{2} \cap F_{3} \subset F_{1} \cap F_{3} \cap F_{2}$, and therefore $F_{2} \cap F_{3} \subset F_{1} \cap F_{2}$.

In the general case, let us suppose that we have a shelling such that $\left|F_{1}\right| \geq$ $\left|F_{2}\right| \geq \cdots \geq\left|F_{r-1}\right|$ and $\left|F_{r}\right|>\left|F_{r-1}\right|$. We choose the greatest j such that $\left|F_{j}\right| \geq\left|F_{r}\right|$ (i.e. $\left|F_{j+1}\right|<\left|F_{r}\right|$). We claim that $F_{1}, \ldots, F_{j}, F_{r}, F_{j+1}, \ldots, F_{r-1}$ is a good shelling Δ. Of course, the condition of shellability is satisfied from 1 to j. Let us show that $\left\langle F_{1}, \ldots, F_{j}\right\rangle \cap\left\langle F_{r}\right\rangle$ is generated by $\operatorname{dim}\left(F_{r}\right)-1$-facets. But this is almost obvious: from hypothesis, we know that $\left\langle F_{1}, \ldots, F_{r-1}\right\rangle \cap\left\langle F_{r}\right\rangle$
is generated by $\operatorname{dim}\left(F_{r}\right)-1$-facets. Those facets are between $F_{1} \cap F_{r}, \ldots$, $F_{r-1} \cap F_{r}$. But $F_{j+1} \cap F_{r}, \ldots, F_{r-1} \cap F_{r}$ have at most dimension $\left|F_{r}\right|-2$.

Let us show that $\left\langle F_{1}, \ldots, F_{j}, F_{r}\right\rangle \cap\left\langle F_{j+1}\right\rangle$ is generated by $\operatorname{dim}\left(F_{j+1}\right)-1$ facets. It is sufficient to prove that $F_{j+1} \cap F_{r}$ is a subface of $F_{j+1} \cap F_{t}$ for some $t \leq j$. From the initial hypothesis (F_{1}, \ldots, F_{r} is a shelling), this is obvious, because $F_{r} \cap F_{j+1}$ cannot be a subface of $F_{r} \cap F_{j+s}, s>1$ because it has to be included in a $\operatorname{dim}\left(F_{r}\right)$ - 1-face.

Similarly, we prove the remained conditions.

This lemma can be written in language of multicomplexes:
Proposition 3.16. Let Γ be a shellable multicomplex. Then there exists a "good" shelling (i.e. a shelling with $\left|u_{1}\right| \geq\left|u_{2}\right| \geq \cdots \geq\left|u_{r}\right|$).

Proof. As is the case of simplicial complexeles, we argue by induction on r, the cases $r=1,2$ being trivial. Let us suppose $r=3$. We suppose $\left|u_{1}\right|>\left|u_{2}\right|$ and $\left|u_{2}\right|<\left|u_{3}\right|$. We claim that u_{1}, u_{3}, u_{2} is a good shelling.

From definition of shellability, it follows that $F_{3} \cap F_{2} \subsetneq F_{1} \cap F_{3}$ and $\mid F_{1} \cap$ $F_{3}\left|=\left|F_{3}\right|-1\right.$. We claim that F_{1}, F_{3}, F_{2} is a good shelling.
Indeed, u_{1}, u_{3} satisfy the definition of shellability. But we have $u_{2} \wedge u_{3} \leq u_{1} \cap$ u_{3}. Taking $\wedge u_{2}$, we get: $u_{2} \wedge u_{3} \subset u_{1} \cap u_{3} \cap u_{2}$, and therefore $u_{2} \cap u_{3} \subset u_{1} \cap u_{2}$.

In the general case, let us suppose that we have a shelling such that $\left|u_{1}\right| \geq$ $\left|u_{2}\right| \geq \cdots \geq\left|u_{r-1}\right|$ and $\left|u_{r}\right|>\left|u_{r-1}\right|$. We choose the greatest j such that $\left|u_{j}\right| \geq\left|u_{r}\right|$ (i.e. $\left.\left|u_{j+1}\right|<\left|u_{r}\right|\right)$. We claim that $u_{1}, \ldots, u_{j}, u_{r}, u_{j+1}, \ldots, u_{r-1}$ is a good shelling on Γ. Of course, the condition of shellability is satisfied from 1 to j. Let us show that $\left\langle u_{1}, \ldots, u_{j}\right\rangle \cap\left\langle u_{r}\right\rangle$ is generated by $\operatorname{dim}\left(u_{r}\right)-1$ maximal facets. But this is almost obvious: From hypothesis, we know that $\left\langle u_{1}, \ldots, u_{r-1}\right\rangle \cap\left\langle u_{r}\right\rangle$ is generated by $\operatorname{dim}\left(u_{r}\right)-1$-facets. Those facets are between $u_{1} \cap u_{r}, \ldots, u_{r-1} \cap u_{r}$. But $u_{j+1} \cap u_{r}, \ldots, u_{r-1} \cap u_{r}$ have at most dimension $\left|u_{r}\right|-2$.

Let us show that $\left\langle u_{1}, \ldots, u_{j}, u_{r}\right\rangle \cap\left\langle u_{j+1}\right\rangle$ is generated by $\operatorname{dim}\left(u_{j+1}\right)-1$ facets. It is sufficient to prove that $u_{j+1} \cap u_{r}$ is a subface of $u_{j+1} \cap u_{t}$ for some $t \leq j$. From the initial hypothesis $\left(u_{1}, \ldots, u_{r}\right.$ is a shelling), this is obvious, because $u_{r} \cap u_{j+1}$ cannot be a subface of $u_{r} \cap u_{j+s}, s>1$ because it has to be included in a $\operatorname{dim}\left(u_{r}\right)-1$-face.

Similarly, we prove the remained conditions.

4 Co-shellable multicomplexes

In this section, all the complexes and multicomplexes are supposed pure.

Definition 4.1. A simplicial complex Δ is called co-shellable, if there exists an order of the facets of $\Delta, F_{1}, \ldots, F_{r}$, such that:

$$
(*) \forall j<i, \exists v \in F_{j} \backslash F_{i}, \text { si } k<i c u F_{k} \backslash F_{i}=\{v\} .
$$

Proposition 4.2. Let Δ be a simplicial complex on the vertex set $[n]$ and let $I=I(\Delta)$ be the facet ideal of Δ. Then I has linear quotients if and only if Δ is co-shellable.

Since the ideal of the basis of a matroid has linear quotients, it follows that any matroid is a pure co-shellable simplicial complex.

Proof. Let $I=\left(m_{1}, \ldots, m_{r}\right)$ be a square-free monomial ideal. Let $\Delta=$ $\left\langle F_{1}, \ldots, F_{r}\right\rangle$ be the corresponding simplicial complex (i.e. $F_{i}=\operatorname{supp}\left(m_{i}\right) \subset$ $[n])$. We want to prove that Δ is co-shellable with that given ordering. Let $j<i$ and let $v=m_{j} / \operatorname{gcd}\left(m_{i}, m_{j}\right)$. Obviously, v is a square-free monomial. Since $v \cdot m_{i}=l c m\left(m_{i}, m_{j}\right)$, which is a multiple of m_{j}, it follows that $v \in\left(m_{1}, \ldots, m_{i-1}\right): m_{i}$. But I has linear quotients, and therefore there exists a variable $x_{t} \mid v$ such that $x_{t} \in\left(m_{1}, \ldots, m_{i-1}\right): m_{i}$. Then there exists a monomial m_{k} with $m_{k} \mid x_{t} m_{i}$. Thus $F_{k} \backslash F_{i}=\{t\}$, and $t \in F_{j} \backslash F_{i}$. This completes the proof. The converse has a similar proof.

Example 4.3. - There exists shellable complexes which are not co-shellable. This is the case, for example, when we give a shelling F_{1}, \ldots, F_{r} such that $F_{i} \cap F_{j}=\emptyset$ for some $j<i$. For instance, let Δ be the complex of facets of the ideal $I=(a b c, b c d$, def, efg $)$. Obviously, Δ is shellable, but I does not have linear quotients: $(a b c, b c d, \operatorname{def}):$ efg $=(d, a b c)$.

- Even if we demand that Δ is strong connected (i.e. for any two facets F_{i} and F_{j} we have $F_{i} \cap F_{j} \neq \emptyset$) which is a very restrictive condition, there are shellable complexes which are not co-shellable. For example, if Δ is the facet complex of the ideal $I=(a b c, b c d, c d e, c e f)$, then Δ is shellable but I does not have linear quotients: $(a b c, b c d, c d e): c e f=(d, a b)$.
- Also, there are co-shellable complexes which are not shellable. For instance, if $\Delta=\langle a b c, b c d, a c d, a d e, b c e\rangle$. It is easy to see that $I(\Delta)$ has linear quotients, but, also, Δ is not shellable since $\langle b c e\rangle \cap\langle a b c, b c d, a c d$, ade \rangle is not pure.

The above definition can be extended for simplicial multicomplexes.
Definition 4.4. A finite multicomplex Γ is called co-shellable if there exists an order of the maximal facets of Γ such that for any $j<i$ there is m and $k<i$ such that $u_{j}(m)>u_{i}(m), u_{k}(m)=u_{i}(m)+1$, and $u_{k}(s) \leq u_{i}(s)$ for $s \neq m$.

Proposition 4.5. Any monomial ideal I, generated by monomials of the same degree, has linear quotients if and only if the simplicial multicomplex of maximal facets of I is co-shellable.

In particular, any discrete polymatroid is a co-shellable finite multicomplex.
Proof. The proof is the same as in the square-free case. Let $I=\left(m_{1}, \ldots, m_{r}\right)$ be a monomial ideal and let $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$ be the corresponding simplicial complex (i.e. $m_{i}=x^{u_{i}}$). We want to prove that Γ is co-shellable with that given order. Let $j<i$ and let $v=m_{j} / \operatorname{gcd}\left(m_{i}, m_{j}\right)$. Since $v \cdot m_{i}=$ $\operatorname{lcm}\left(m_{i}, m_{j}\right)$, which is a multiple of m_{j}, it follows that $v \in\left(m_{1}, \ldots, m_{i-1}\right): m_{i}$. But I has linear quotients, and therefore, there exists a variable $x_{t} \mid v$ such that $x_{t} \in\left(m_{1}, \ldots, m_{i-1}\right): m_{i}$. But that means that there exists a monomial m_{k} with $m_{k} \mid x_{t} m_{i}$. Thus $u_{k}(t)=u_{i}(t)+1$ and $u_{k}(s) \leq u_{i}(s)$, for $s \neq t$. Also, since $x_{t} \mid v=m_{j} / \operatorname{gcd}\left(m_{i}, m_{j}\right)$ it results $u_{j}(t)>u_{i}(t)$. But this proves that Γ is $\mathrm{co}=$ shellable.

The converse implication has a similar proof.
Proposition 4.6. Let Δ be a simplicial complex. Then Δ is shellable if and only if Δ^{c} is co-shellable (where Δ^{c} is the complementary simplicial complex of Δ).

Proof. Suppose Δ is shellable, i.e. there exists an order F_{1}, \ldots, F_{r} on the set of facets of Δ such that: for each $j<i$, there exists $v \in F_{i} \backslash F_{j}$ and there exists $k<i$ such that $F_{i} \backslash F_{k}=\{v\}$. We claim that $F_{1}^{c}, \ldots, F_{1}^{c}$ is a co-shelling on Δ^{c}. But this is obvious, for the same choice of $k<i$ and v, since $F_{j}^{c} \backslash F_{i}^{c}=F_{i} \backslash F_{j}$ and $F_{k}^{c} \backslash F_{i}^{c}=F_{i} \backslash F_{k}$!

Later, we will extend this property to multicomplexes.

5 The base ring and the Erhart ring of a multicomplex

Let Γ be a finite multicomplex with the set of maximal facets $\mathcal{M}_{\Gamma}=\left\{u_{1}, \ldots, u_{r}\right\}$. The base ring of Γ is the monomial subalgebra

$$
K[\mathcal{M}(\Gamma)]:=k\left[x^{u_{1}}, \ldots, x^{u_{r}}\right] \subset k\left[x_{1}, \ldots, x_{n}\right]
$$

The Erhart ring of Γ is the monomial subalgebra:

$$
K[\Gamma]:=k\left[x^{u} t \mid u \in \Gamma\right] \subset k\left[x_{1}, \ldots, x_{n}, t\right] .
$$

Obviously, $K[\Gamma]$ is the semigroup ring of the cone over Γ,

$$
C(\Gamma)=\left\langle\left(u_{1}, 1\right), \ldots,\left(u_{r}, 1\right)\right\rangle
$$

We have a natural epimorphism $\varphi: B=k\left[t_{1}, \ldots, t_{r}\right] \rightarrow K[\mathcal{M}(\Gamma)]$, defined by $\varphi\left(t_{i}\right):=x^{u_{i}}$. If we take on B the grading, $\operatorname{deg}\left(t_{i}\right):=\operatorname{deg}\left(m_{i}\right)$, where $m_{i}=x^{u_{i}}$, then φ becomes a graded morphism. The kernel $\operatorname{Ker}(\varphi):=P_{\mathcal{M}(\Gamma)}$ is called the toric ideal of $K[\mathcal{M}(\Gamma)]$. It is well known that $P_{\mathcal{M}(\Gamma)}$ is a graded prime ideal generated by a finite set of binomials. Of course, the same construction can be made for the Erhart ring.

It would be of great interest to find combinatorial conditions on Γ such that the base ring or the Erhart ring are normal, Cohen-Macaulay, Gorenstein etc. For example, if Γ is shellable, what can we say about $k[\mathcal{M}(\Gamma)]$ or $k[\Gamma]$?

6 Dual multicomplexes

Definition 6.1. Let Δ be a simplicial complex. We called the complementary complex of Δ, and we denoted it by Δ^{c}, the complex

$$
\left.\Delta^{c}=\langle[n] \backslash F| F \text { is a facet of } \Delta\right\rangle
$$

Obviously, if we think Δ as a subset of $\{0,1\}^{n}$, then

$$
\left.\Delta^{c}=\langle(1,1, \ldots, 1)-F| F \in \Delta \text { facet }\right\rangle
$$

We can, therefore, give the following generalization.
Definition 6.2. Let $\Gamma \subset \mathbb{N}^{n}$ be a finite simplicial multicomplex with the set of maximal facets $\mathcal{M}(\Gamma)=\left\{u_{1}, \ldots, u_{r}\right\}$. If $u \in \mathbb{N}^{n}$ is an upper bound of Γ (i.e. $u \geq a$, for any $a \in \Gamma$; or equivalent: $\Gamma \subset\langle u\rangle$), then the complementary multicomplex of Γ with respect to u, denoted by Γ_{u}^{c} is the following one:

$$
\Gamma_{u}^{c}=\left\langle u-u_{i} \mid u_{i} \in \mathcal{M}(\Gamma)\right\rangle .
$$

Γ_{u}^{c} depends on the choice of $u \in \mathbb{N}^{n}$. Of course, the least upper bound of Γ, which will be denoted by $\sup (\Gamma)$, is $\sup (\Gamma)=\vee_{i=1}^{r} u_{i}$, where $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$. We denote $\Gamma_{\sup (\Gamma)}^{c}$ by Γ^{c}.

Remark 6.3. Let Γ be a simplicial multicomplex and let $\Delta=\Delta^{0}(\Gamma)$ be the polarized simplicial complex of Γ. Let us consider Δ^{c} the complementary complex of Δ. Then, the multicomplex of ordered faces (see section 1) of Δ^{c} is Γ^{c} itself. The proof is obvious.

Proposition 6.4. If $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$ is a simplicial multicomplex, and $u \in \mathbb{N}^{n}$ is an upper bound of Γ, then u is an upper bound of Γ_{u}^{c} too, and:

$$
\left(\Gamma_{u}^{c}\right)_{u}^{c}=\Gamma .
$$

Proof. If $\Gamma=\left\langle u_{1}\right\rangle$ and $u \geq u_{1}$, the assertion is obvious, even in the case $u=u_{1}$. Let suppose $\Gamma=\left\langle u_{1}, \ldots, u_{r}\right\rangle$ with $r \geq 2$. We claim that the only thing we have to prove is: if $a, b \in \mathbb{N}^{n}$ are two incomparable vectors, and $u \in \mathbb{N}^{n} u>a, u>b$ then $u-a, u-b$ are incomparable. If the claim is true, then it follows that Γ_{u}^{c} has exactly r maximal facets $u-u_{1}, \ldots u-u_{r}$, (and it is obvious that each of them is $\leq u)$ and, therefore, $\left(\Gamma_{u}^{c}\right)_{u}^{c}$ has the maximal facets u_{1}, \ldots, u_{r}. Thus $\left(\Gamma_{u}^{c}\right)_{u}^{c}=\Gamma$, as required.

The claim is almost clear. Indeed, if $u-a \geq u-b$, it follows $u(i)-a(i) \geq$ $u(i)-b(i)$, for any $i=1, \ldots, n$, so $a(i) \leq b(i)$ for any i so $a \leq b$, which is a contradiction.

In monomial language, we can write down the following definition:
Definition 6.5. Let $I=\left(m_{1}, \ldots, m_{r}\right)$ be a monomial ideal and let $\Gamma=\Gamma(I)=$ $\left\langle u_{1}, \ldots, u_{r}\right\rangle$ be the multicomplex of maximal facets of I. Let $u \in \mathbb{N}^{n}$ be an upper bound of Γ. (i.e. $\left.\operatorname{lcm}\left(m_{1}, \ldots, m_{r}\right) \mid x^{u}\right)$. The complementary ideal of I, with respect to x^{u} is the ideal $I_{u}^{c}:=\left\langle x^{u} / m_{i} \mid i=1, \ldots, n\right\rangle . I_{u}^{c}$ is the ideal of maximal facets of Γ_{u}^{c}.

Example 6.6. If $\Gamma=\langle(2,1,3),(1,2,3),(3,2,2)\rangle$ and $u=(4,4,3)$, then

$$
\Gamma_{u}^{c}=\langle(2,3,0),(3,2,0),(1,2,1)\rangle .
$$

In algebraic language, if $I=\left(x^{2} y z, x y^{2} z^{3}, x^{3} y^{2} z^{2}\right)$ and $m=x^{4} y^{4} z^{3}$, then

$$
I_{m}^{c}=\left(x^{2} y^{3}, x^{3} y^{2}, x y^{2} z\right) .
$$

Example 6.7. If Γ is a multicomplex and $v \geq u \geq \sup (\Gamma)$ are two vectors in \mathbb{N}^{n}, then one easily sees that $\Gamma_{v}^{c}=\langle v-u\rangle * \Gamma_{u}^{c}$.

Proposition 6.8. Let Γ be a pure multicomplex and $u \geq \sup (\Gamma)$. Then Γ is shellable if and only if Γ_{u}^{c} is co-shellable.

Proof. The case $\Gamma=\langle u\rangle$ is trivial. Since Γ is shellable, there exists an ordering of the maximal facets of $\Gamma, u_{1}, \ldots, u_{r}$ such that: for any $j<i$, there exists m and $k<i$ such that: $u_{i}(m)>u_{j}(m), u_{i}(m)=u_{k}(m)+1$, and $u_{i}(s) \leq u_{k}(s)$, for $s \neq m$. We claim that Γ_{u}^{c} is co-shellable with the ordering of the maximal facets: $u-u_{1}, \ldots, u-u_{r}$. Indeed, if we take m and $k<i$ as above, it is obvious that $\left(u-u_{i}\right)(m)=u(m)-u_{i}(m)<\left(u-u_{j}\right)(m)=u(m)-u_{j}(m)$ and $\left(u-u_{i}\right)(m)=\left(u-u_{k}\right)(m)-1$ and $\left(u-u_{i}\right)(s) \geq\left(u-u_{k}\right)(s)$ for any $s \neq m$, as required.

We will focuse now on the very important notion of Alexander duality. First of all, let us see what is the Alexander dual for a simplicial complex and how we can extend this concept in the case of multicomplexes.

Definition 6.9. Let Δ be a simplicial complex. The Alexander dual of Δ, is the complex

$$
\Delta^{\vee}=\{[n] \backslash F \mid F \notin \Delta\}
$$

Thinking Δ as a subset of $\{0,1\}^{n}$, we note that $\Delta^{\vee}=\{(1, \ldots, 1)-F \mid F \in$ $\left.\{0,1\}^{n} \backslash \Delta\right\}$. This gives us the idea of the following generalization:

Definition 6.10. Let Γ be a simplicial multicomplex and let $u \in \mathbb{N}^{n}$ be an upper bound of Γ. The Alexander dual of Γ w.r.t. u is the following multicomplex:

$$
\Gamma_{u}^{\vee}=\{u-v \mid v \leq u \text { si } v \notin \Gamma\} .
$$

If $u=\sup (\Gamma)$, we denote $\Gamma_{u}^{\vee}=: \Gamma^{\vee}$.
Let us recall some results on the Alexander dual (in the case of simplicial complexes) which will be generalized in the case of multicomplexes. See [6] for details.

Proposition 6.11. Let Δ be a simplicial complex on the set of vertices $[n]$. Let I_{Δ} be the Stanley-Reisner ideal of Δ and $I(\Delta)$ be the ideal of facets of Δ. Then:

1. $\left(\Delta^{\vee}\right)^{\vee}=\Delta$.
2. $I_{\Delta \vee}=I\left(\Delta^{c}\right)$.
3. Δ is shellable if and only if $I_{\Delta \vee}$ has linear quotients.

In the case of multicomplexes we have the following:
Proposition 6.12. If Γ is a multicomplex and $u \in \mathbb{N}^{n}$ is an upper bound for Γ, then $\left(\Gamma_{u}^{\vee}\right)_{u}^{\vee}=\Gamma$.

Proof. Let us first note that we have an anti-monotone bijection between Γ_{u}^{\vee} and the set $\left\{v \in \mathbb{N}^{n} \mid v \leq u\right.$ and $\left.v \notin \Gamma\right\}$. That means that we have a bijection between $\left(\Gamma_{u}^{\vee}\right)_{u}^{\vee}$ and $\left\{v \in \mathbb{N}^{n} \mid v \leq u\right.$ and $\left.v \notin \Gamma_{u}^{\vee}\right\}$. But this last set is obvious in bijection with Γ. Thus $\left(\Gamma_{u}^{\vee}\right)_{u}^{\vee}=\Gamma$, as required.

Proposition 6.13. If Γ is a multicomplex and $u \in \mathbb{N}^{n}$ is un upper bound for Γ then $I_{\Gamma}=I\left(\Gamma_{u}^{\vee}\right)_{u}^{c}$, where $u=\sup (\Gamma)+(1, \ldots, 1)$. In particular, $I_{\Gamma_{u}^{\vee}}=I\left(\Gamma_{u}^{c}\right)$.

Proof. Let us notice that Γ_{u}^{\vee} is generated by $u-v$, where v is a minimal nonface of Γ. But the minimal non-faces of Γ are exactly the minimal generators of the ideal I_{Γ}. Writing this facts in algebraic language, we get:

$$
\left.I_{\Gamma}=\left\langle x^{v}\right| v \text { is a minimal non-face of } \Gamma\right\rangle .
$$

Also,

$$
\left.I\left(\Gamma_{u}^{\vee}\right)=\left\langle x^{u-v}\right| v \text { is a minimal non-face of } \Gamma\right\rangle,
$$

and, therefore, $I_{\Gamma}=I\left(\Gamma_{u}^{\vee}\right)_{u}^{c}$, as required.
The last identity is clear when we replace Γ by Γ_{u}^{\vee}.
Example 6.14. If $\Gamma=\langle(1,3),(4,2)\rangle$ and $u=(5,4)=\sup (\Gamma)+(1,1)$, then

$$
\Gamma_{(5,4)}^{\vee}=\langle(5,0),(0,4),(3,1)\rangle
$$

(This is easy to compute if we figure Γ and $\Gamma_{(5,4)}^{\vee}$ on the same picture.) Also,

$$
\left(\Gamma_{(5,4)}^{\vee}\right)_{(5,4)}^{c}=\langle(5,0),(0,4),(2,3)\rangle .
$$

$I_{\Gamma}=\left(x^{5}, y^{4}, x^{2} y^{3}\right)$. Obvious, $\left.I\left(\Gamma_{(5,4)}^{\vee}\right)_{(5,4)}^{c}\right)=I_{\Gamma}$.
Corollary 6.15. Let Γ be a multicomplex. Then Γ is shellable if and only if $I_{\Gamma_{u}^{\vee}}$ has linear quotients, where $u=\sup (\Gamma)+(1, \ldots, 1)$.

Proof. If is obvious from Proposition 6.8 and Proposition 6.13.

References

[1] J. Herzog, D. Popescu, Finite filtrations of modules and shellable multicomplexes, Preprint 2005.
[2] W. Bruns, J. Herzog, Cohen-Macaulay Rings, Cambridge University Press, Cambridge, 1993.
[3] E. Miller, B. Sturmfels, Combinatorial commutative algebra, Springer-Verlag, 2004.
[4] A. Björner, M. L. Wachs, Shellable non pure complexes and posets, Trans. Amer. Math. Soc. 348(1996), 1299-1327.
[5] R. Villareal, Monomial Algebras, Marcel Decker, New York, 2001.
[6] J. Herzog, T. Hibi, X. Zheng, Dirac's theorem on chordal graphs and Alexander duality, European J. Combin. 25(2004), 949-960.

Institute of Mathematics of the Romanian Academy
P.O.Box 1-764, Bucharest 014700, Romania

E-mail: mircea.cimpoeas@imar.ro

[^0]: Key Words: simplicial complexes, simplicial multicomplexes homology, shellability, duality theories

 Mathematical Reviews subject classification: 13F55, 55U10
 Received: November, 2005

