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FINITE SIMPLICIAL MULTICOMPLEXES

Mircea Cimpoeaş

Abstract

Simplicial multicomplexes are a very natural generalization of sim-
plicial complexes. Indeed, instead to see a simplicial complex as a subset
∆ ⊂ P([n]) we can think ∆ as a subset of vectors in {0, 1}n, which sat-
isfy the property: (∗) For any F ∈ ∆ and any G ∈ {0, 1}n such that
G ≤ F it follows that G ∈ ∆. Nothing can stop us to consider subsets
Γ ⊂ Nn which have the property (∗). Such a set is called a simplicial
multicomplex.

In this paper we shall focus on the case of finite multicomplexes.
More precisely, we shall exploit the relation between a monomial ideal
(which will correspond to a finite multicomplex) and its polarized ideal
(which will correspond to a simplicial complex). Using this connexion,
we can extend many constructions and definitions in the category of
simplicial complexes to the category of finite simplicial multicomplexes,
as: homology, shellability, duality theories etc.

In the first section we introduce the main definitions and construc-
tions of multicomplexes. In the second section, we present what we
understand by a homology theory of multicomplexes. In the third sec-
tion we extend the notion of shellability for simplicial multicomplexes
and I prove a criterion of shellability (similar to the case of simplicial
complexes) which allows us to see the duality with the case of ideals
with linear quotients. This observation give us the idea to introduce the
notion of co-shellable (multi)complexes. In the fifth section we define
the base ring and the Erhart ring of a multicomplex. In the last section
we give some dual constructions in the category of multicomplexes and
some results which extend the case of simplicial complexes.
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couragement and valuables observations on the content of this paper.
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1 Finite simplicial multicomplexes

First of all, let us fix some notations:

• k is an arbitrary field and S = k[x1, . . . , xn] is the ring of polynomials
over k. For any monomial ideal I ⊂ S, we denote by G(I) the set of
minimal generators of I .

• A vector u ∈ Nn will be written as u = (u(1), . . . , u(n)). The module of
u is the number |u| := u(1) + · · ·+ u(n).

• If u, v ∈ Nn, we say that u ≤ v if u(i) ≤ v(i) for all i = 1, . . . , n.
Obviously, ” ≤ ” is a partial order on Nn.

• We denote by ei = (0, . . . , 1, 0, . . . , 0) the vectors of the canonical base
of Nn.

• If u ∈ Nn, xu is the monomial x
u(1)
1 x

u(2)
2 · · ·x

u(n)
n ∈ S.

Definition 1.1. A finite subset Γ ⊂ Nn is called a finite simplicial multicom-
plex if for all a ∈ Γ and all b ∈ Nn with b ≤ a, it follows that b ∈ Γ. The
elements of Γ are called faces.

An element m ∈ Γ is called a maximal facet if it does not exist a ∈ Γ with
a > m; in other words, if m is maximal with respect to ”≤”. We denote M(Γ)
the set of maximal facets of Γ.

If a ∈ Γ is a face, the dimension of a is the number dim(a) = |a| − 1. The
dimension of Γ is the number dim(Γ) = max{dim(u)|u ∈ Γ}. A multicomplex
Γ is called pure if all the maximal facets have the same dimension, equal to
dim(Γ).

Remark 1.2. An arbitrary intersection and a finite union of finite multicom-
plexes are again multicomplexes. Therefore, the set of all finite multicomplexes
in Nn is the family of closed sets in a topology on Nn, called the finite-simplicial
topology. The continuous functions in this topology are called finite-simplicial
morphisms of multicomplexes. This aspect will not be studied in this paper.

Remark 1.3. Any finite multicomplex is determined by its maximal facets
set, M(Γ) = {u1, . . . , ur}. In fact,

Γ = {b ∈ Nn| b ≤ ui, for some i ∈ {1, . . . , r} }.

We write Γ = 〈u1, . . . , ur〉 and we say that Γ is the multicomplex spanned
by the vectors u1, . . . , ur. Obviously, Γ is the smallest multicomplex which
contains u1, . . . , ur.
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Definition 1.4. Let k be an arbitrary field. If Γ ⊂ Nn is a finite multi-
complex, the ideal of non-faces of Γ is the monomial ideal, denoted by IΓ, in
k[x1, . . . , xn], spanned, as k-vector space, by all monomial xa with a ∈ Nn \Γ.
In particular, the monomials xa with a ∈ Γ forms a k-basis of S/IΓ.

Obviously, IΓ is an Artinian ideal (i.e. S/IΓ is an Artinian ring). Con-
versely, if I is an Artinian ideal, then ΓI = {a ∈ Nn| xa /∈ Γ} is a finite
multicomplex and moreover IΓI

= I .

Remark 1.5. The ideal of non-faces of a simplicial multicomplex and the
Stanley-Reisner ideal of a simplicial complex are different. More precisely, if
∆ is a simplicial complex and I its the Stanley-Reisner ideal of ∆ and if J
is the ideal of non-faces of ∆ regarded as a finite multicomplex, then I is the
ideal generated by the square-free minimal generators of J .

For example, if ∆ = 〈{1, 2}, {2, 3}〉, then the Stanley-Reisner ideal is I =
〈x1x3〉 and the non-faces ideal of ∆ (as a multicomplex) is J =

〈
x2

1, x
2
2, x

3
3, x1x3

〉
.

Proposition 1.6. 1. Γ has only one maximal facet a, if and only if IΓ is
an irreducible Artinian monomial ideal.

2. Let (Γj)j be a finite family of multicomplexes. Then:

I �
j
(Γj) =

∑

j

IΓj
, I �

j
(Γj) =

⋂

j

IΓj
.

3. Let Γ = 〈u1, . . . , ur〉 be a finite multicomplex. Then

IΓ = Pu1
∩ Pu2

∩ · · · ∩ Pur

is the unique irredundant irreducible decomposition of IΓ.

Proof. 1. Since Γ = 〈a〉, it follows that

IΓ = (xb|b ∈ Nn, b(i) > a(i) for some i) = (x
a(i)+1
i |i = 1, . . . n).

Conversely, if I is an irreducible monomial ideal, then I is generated by powers

of variables (i.e I =
〈
x

c(i)
i |c(i) ≥ 1

〉
) and, thus ΓI = 〈a〉, where a = c −

(1, . . . , 1).
2. It is as an easy exercise.
3. It is obvious from 1. and 2.

Definition 1.7. Let Γ ⊂ Nn be a finite multicomplex. The ideal of maximal
facets of Γ, denoted by I(Γ) ⊂ S = k[x1, . . . , xn] is:

I = I(Γ) = 〈xa|a is a maximal facet in Γ〉 .
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Conversely, to an arbitrary monomial ideal I ⊂ S we can associate the multi-
complex

Γ = Γ(I) = 〈a|xa is a minimal generator of I〉 .

Also, if I is a monomial ideal, we can associate the polarized ideal I0

which is a square-free monomial ideal. The simplicial complex of the facets of
I0 is called the polarized simplicial complex of Γ and it is denoted by ∆0(Γ).
Obviously, I is Cohen-Macaulay (Gorenstein etc.) if and only if the same
property holds for I0.

Remark 1.8. If Γ = 〈u1, . . . , ur〉 is a finite multicomplex and m = ∨r
j=1uj,

then ∆0(Γ) is a simplicial complex on a set of vertices labeled {v1
1 , . . . , v

1
m(1),

. . . , vn
1 , . . . , vn

m(n)}. There is a bijection between the faces of Γ and the faces of

∆ which have the property: vj
i ∈ F ⇒ vj

i−1 ∈ F, . . . , vj
1 ∈ F . More precisely,

if u ∈ Γ is a face, the corresponding face in ∆0(Γ) is

Fu = {v1
1 , . . . , v

1
u(1), . . . , v

n
1 , . . . , vn

u(n)}.

If we make any change on ∆0 (for example, if we take the complementary
complex of ∆0 or the Alexander dual complex etc.) using the above correspon-
dence and renumbering the vertices, we can write down a new multicomplex
which it will be called the complementary multicomplex of Γ (the Alexander
dual of Γ etc.). This idea will be explained later, in the section 3.

Definition 1.9. We say that the multicomplex Γ′ ⊂ Nm is a subcomplex of
Γ ⊂ Nn if there exists a canonical inclusion of Nm in Nn such that Γ′ ⊂ Γ∩Nm.
In particular, if n = m, we demand that Γ′ ⊂ Γ. Obviously, any subcomplex
of Γ′ in Nm for m < n corresponds to a subcomplex of Γ in Nn but many of
such subcomplexes could exist.

For example, if Γ = 〈(1, 2, 2), (2, 1, 2)〉 and Γ′ = 〈(1, 1), (0, 2)〉 then Γ′ is a
subcomplex of Γ via the inclusions (a, b) 7→ (a, 0, b) and (a, b) 7→ (b, a, 0) of N2

in N3 (There are still more 3 posibilities. Find them!)

Definition 1.10. Let Γ ⊂ Nn be a simplicial multicomplex and a ∈ Γ. The
link of a in Γ is the set

lkΓ(a) = {b ∈ Γ|a + b ∈ Γ}.

Obviously, lkΓ(a) is also a simplicial multicomplex and a subcomplex of Γ.
The star of Γ is the set

starΓ(a) = {b ∈ Γ|a ∨ b ∈ Γ},

which is also a subcomplex of Γ. Obviously, lkΓ(a) ⊂ starΓ(a).
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Let Γ ⊂ Nn and Γ′ ⊂ Nn be two finite multicomplexes. The join of Γ with
Γ′, denoted by Γ ∗ Γ′, is the multicomplex:

Γ ∗ Γ′ = {u + v| u ∈ Γ, v ∈ Γ′}.

Note that it is not necessary for Γ and Γ′ to be in the same Nn. In the
general case, if Γ ⊂ Nn and Γ ⊂ Nm, it is enough to choose two canonical
inclusions Nn ⊂ NN and Nm ⊂ NN and to consider Γ and Γ′ as multicomplexes
in NN . Obviously, in that case, Γ ∗ Γ′ depends on the chosen inclusions.
However, there is a canonical way to compute Γ ∗ Γ′: It is enough to take
N = n+m and Nn ⊂ Nn+m to be (a(1), . . . , a(n)) 7→ (a(1), . . . , a(n), 0, . . . , 0),
respectively Nm ⊂ Nn+m to be (b(1), . . . , b(m)) 7→ (0, . . . , 0, b(1), . . . , b(m)).

In particular, if Γ ⊂ Nn is a multicomplex and Γ′ = {0, 1} ⊂ N, then Γ∗Γ′

in the sense of the last construction, is called the cone over Γ.

Example 1.11. Let Γ = 〈(3, 1, 2), (2, 1, 3), (3, 2, 1)〉. Then

lkΓ(2, 0, 0) = 〈(1, 1, 2), (0, 1, 3), (1, 2, 1)〉 .

Also, lkΓ(3, 0, 0) = 〈(0, 1, 2), (0, 2, 1)〉 and starΓ(3, 0, 0) = 〈(3, 1, 2), (3, 2, 1)〉.

Proposition 1.12. Let Γ be a finite multicomplex, u ∈ Γ and v ∈ lkΓ(u).
Then:

1. dim(Γ) = dim(lkΓ(u)) + |u|. If Γ is pure, then lkΓ(u) is also pure.

2. u ∈ lkΓ(v) and lklkΓ(u)(v) = lklkΓ(v)(u) = lkΓ(u + v).

3. 〈v〉 ∗ lklkv(Γ)(u) ⊂ lkstarΓ(v)(u).

4. If Γ = 〈u1, . . . , ur〉 , u ∈ Γ, and a ∈ Nn, then:

starΓ(u) = 〈ui|u ≤ ui〉 , lkΓ(u) = 〈ui − u|u ≤ ui〉 ,

〈a〉 ∗ Γ = 〈u1 + a, . . . , ur + a〉 .

Proof. 1.This is obvious.
2. v ∈ lkΓ(u) implies v + u ∈ Γ, that is u ∈ lkΓ(v). Let w ∈ lklkΓ(u)(v).

Then w + v ∈ lkΓ(u), so w + v + u ∈ Γ, which is equivalent to the fact that
w ∈ lkΓ(u + v).

We can rewrite this proof, easier, as follows: lklkΓ(u)(v) = {w ∈ Nn|v+w ∈
lkΓ(u)} = {w ∈ Nn|v + w + u ∈ Γ} = lkΓ(u + v). Analogously, lklkΓ(v)(u) =
lkΓ(u + v).

3. Let us suppose that w ∈ 〈v〉 ∗ lklkΓ(v)(u). Then w = w′ + w′′ with
w′ ≤ v and η = w′′ + u + v ∈ Γ. We have to prove that (w + u) ∨ v ∈ Γ.
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Since w′ ≤ w ∧ v ≤ v and w − w ∧ v ≤ w′′, we can assume that w′ = w ∧ v
and w′′ = w − w′. Let η := w − w ∧ v + u ∈ Γ. It is enough to show that
(w + u) ∨ v ∈ Γ. We have

η(i) =

{
v(i) + u(i), v(i) > w(i),

w(i) + u(i), v(i) ≤ w(i).

Let ξ := (w + u) ∨ v. If v(i) ≤ w(i), then v(i) ≤ w(i) + u(i), thus ξ(i) =
w(i) + u(i). When v(i) > w(i), we cannot say that v(i) ≥ w(i) + u(i) but,
anyway, ξ(i) ≤ v(i) + u(i). The conclusion is that ξ ≤ η ∈ Γ, therefore ξ ∈ Γ
as required.

4.The proof is an easy exercise.

Example 1.13. Let Γ = 〈(3, 4, 4), (4, 2, 5)〉, u = (3, 2, 1) and v = (0, 1, 2). Ob-
viously, starΓ(v) = Γ. Then lkstarΓ(v)(u) = lkΓ(u) = 〈(0, 2, 3), (1, 0, 4)〉. Since
lklkΓ(v)(u) = lkΓ(u + v) = lkΓ(3, 3, 3) = 〈(0, 1, 1)〉 , we have 〈v〉 ∗ lklkΓ(v)(u) =
〈(0, 2, 3)〉. This example shows that the inclusion 〈v〉∗lklkv(Γ)(u) ⊂ lkstarΓ(v)(u)
can be strict (in the case of simplicial complexes, always, we have the equality).

2 Geometrical description and homology of multicom-

plexes.

Definition 2.1. Let Γ = 〈u1, . . . , ur〉 be a finite simplicial multicomplex. Let
∆0 = ∆0(Γ) be the polarized complex associated to Γ. Let |∆0| be the un-
derlying topological space of ∆0. As we already have seen, ∆0 is a simplicial
complex on a set of vertices labeled by {v1

1 , . . . , v
1
m(1), . . . , v

n
1 , . . . , v1

m(n)}.

The topological space associated to Γ, denoted by |Γ| is the quotient topo-
logical space of |∆0| obtained by gluing the vertices {v1

1 , . . . , v
1
m(1)}, . . . , re-

spectively {vn
1 , . . . , v1

m(n)}.

Example 2.2. If Γ = 〈a〉 with a ≥ (1, . . . , 1), then |Γ| ∼ ∨s
i=1S

1 where
s = |a| − n. This follows easily be induction on |a|.

Example 2.3. Let Γ = 〈(2, 1), (1, 2)〉 ⊂ N2. The polarized simplicial com-
plex of ∆ is ∆0 =

〈
{v1

1 , v
1
2 , v

2
1}, {v

1
1, v

2
1 , v

2
2}

〉
. (In other language, I = IΓ =〈

x2y, xy2
〉

and the polarized ideal of I is I0 = 〈x1x2y1, x1y1y2〉.) For reasons
of comprehensibility, we rewrite as ∆0 = 〈{1, 2, 3}, {2, 3, 4}〉.

Note that |∆0| consists in two triangles with the common edge {2, 3}.
Therefore, |Γ| is the topological space obtained from |∆0| by gluing the ver-
tices 1 with 2 and 3 with 4 respectively. The obtained topological space |Γ| is
homotopically equivalent with S1 ∨ S1.
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In algebraic language, the gluing ”corresponds” to the factorization with
x1 − x2 and y1 − y2 that gives the isomorphism:

K[x1, x2, y1, y2]

(x1x2y1, x1y1y2, x1 − x2, y1 − y2)
∼=

k[x, y]

(x2y, xy2)
.

Definition 2.4. Let Γ ⊂ Nn be a finite simplicial multicomplex with ei ∈ Γ,
i = 1, . . . , n. Let A be an arbitrary commutative ring with unity. Let ∆0 be
the polarized simplicial complexul associate to Γ, and let

{v1
1 , . . . , v

1
m(1), . . . , v

n
1 , . . . , vn

m(n)}

be its vertices. Let Ci(∆
0, A) be the free A-module spanned by the set of i-

faces of ∆. (This is the complex of A-modules which is used to compute the
simplicial homology of ∆0.)

Let Ci(Γ, A) := Ci(∆
0, A) for i ≥ 1 and let C0(Γ, A) := C0(∆

0, A)/(ei
j −

ei
k), where ei

j is the base of C0(Γ, A) (more precisely, ei
j corresponds to the

vertex vi
j). It is obvious that C0(Γ, A) ∼= An.

Let ∂i : Ci(Γ, A) → Ci−1(Γ, A), for i ≥ 2 be the usual differentials and let
∂1 : C1(Γ, A) → C0(Γ, A) be the composed map

C1(Γ, A) = C1(∆
0, A) → C0(∆

0, A) → C0(Γ, A).

Let ∂0 := 0. Obviously, ∂i−1 ◦ ∂i = 0 for all i ≥ 1.
The homology of C∗(Γ, A) is the simplicial homology of the simplicial mul-

ticomplex Γ and we denote it by H∗(Γ, A). This means that

Hi(Γ, A) = Ker(∂i)/Im(∂i+1).

Remark 2.5. (Connection with algebraic topology) Let Γ be a finite simplicial
multicomplex. The i-skeleton of Γ is the subcomplex Γ(i) = {a ∈ Γ| |a| ≤ i}.

Let Γ be a simplicial multicomplex. Then |Γ(i+1)| is obtained, topologically,
by attaching some i + 1-cells over |Γ(i)|. Moreover, this gluing is compatible
with the differentials ∂i. In conclusion, |Γ| has a structure of cellular complex
which is identically with its simplicial structure. I.e. the complex C∗(Γ, A)
is exactly the cell complex of A-modules which computes the homology for a
cellular complex. See Example 2.7 for further explanations.

Corollary 2.6. For any multicomplex Γ, H∗(Γ, A) = H∗(|Γ|, A).

Proof. One way to prove is simply using the above remark. Another way to
prove this corollary is the following: Obviously, one has H∗(∆, A) = H∗(|∆|, A)
for any simplicial complex ∆. In particular this holds for ∆ = ∆0(Γ). If X is
a ”nice” connected topological space (a topological variety for example) and
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x, y ∈ X and x ∼ y then X/ ∼ is homotopically equivalent with X ∨ S1.
Therefore, |Γ| ≈ |∆0| ∨ S1 ∨ · · · ∨ S1, where S1 appears exactly s − n times
and s = rang(C0(∆

0)). But,

H∗(|Γ|, A) ∼=

{
Hi(∆

0, A), for i 6= 1,

Hi(∆
0, A)⊕As−n, for i = 1.

Now it is obvious that H∗(Γ, A) = H∗(|Γ|, A).

Example 2.7. • Let Γ = 〈(3)〉 ⊂ N. ∆0(Γ) is the 2-simplex, thus |∆0|
is a triangle. Therefore, |Γ| is obtained from the triangle by gluing its
vertices. (|Γ| looks as a ”parachute”!) Obviously, |Γ| ∼ S1 ∨ S1. Let
us explain the structure of cell complex of |Γ|. The 0-skeleton consists
in a point. The 1-skeleton consists in three circles glued in that point
(that means that we have attached three 1-cells over the 0-skeleton). At
last, we attached one 2-cell over those three circles to obtain |Γ|. Let
us write down the simplicial homology (which is identically with the cell
homology) of Γ:

0 −→ A
∂2−→ A3 ∂2−→ A

∂0−→ 0.

Let us denote C2(Γ, A) = e123A, C1(Γ, A) = e12A+e13A+e23A, C0(∆
0, A) =

e1A+e2A+e3A and C0(Γ, A) = C0(∆
0, A)/(e1−e2, e1−e3) = eA, where

e123 corresponds to the face {1, 2, 3} of ∆0 etc.

We have ∂2(e123) = e23 − e13 + e12. Also, ∂1(eij) = êj − êi = e− e = 0.
Thus ∂1 = 0. Since ∂2 is injective, H2(Γ, A) = 0. Also, H1(Γ, A) =
Ker(∂1)/Im(∂2) = A3/A = A2 and H0(Γ, A) = Ker(∂0)/Im(∂1) =
A3/A2 = A. This is the well known homology of S1 ∨ S1!

• Let Γ = 〈(2, 1), (1, 2)〉 be the multicomplex from the Example 1.17. We
have already seen that ∆0 = 〈{1, 2, 3}, {2, 3, 4}〉 and that |Γ| ∼ S1 ∨ S1.
Write down the homology of Γ. We have C2(Γ, A) = A2, C1(Γ, A) = A5,
C0(Γ, A) = A2, so:

0 −→ A2 ∂2−→ A5 ∂2−→ A2 ∂1−→ 0.

The matrix of ∂2 is 


1 0
−1 0

1 1
0 −1
0 1
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and the matrix of ∂1 is

(
−1 0 1 0 1

1 0 −1 0 −1

)
.

Obviously, rank(∂2) = 2 and rank(∂0) = 0. Then H2(Γ, A) = 0, because
∂2 is injective. H1(Γ, A) = Ker(∂1)/Im(∂2) = A4/A2 = A2 and, of
course H1(Γ, A) = A.

The structure of cell complex for Γ is the following: Since Γ0 = {(1, 0), (0, 1)},
then |Γ0| consist in two points. Since Γ1 = Γ0 ∪ {(2, 0), (1, 1), (0, 2)},
|Γ1| is obtained from |Γ0| by attaching three 1-cells. The first cell (cor-
responding to (2, 0)) is glued as a loop over the first point, the second
cell (corresponding to (1, 1)) is glued as a line between the points of
|Γ0| and the third cell is glued as a bucle over the second point. Since
Γ2 = Γ1 ∪ {(2, 1), (1, 2)}, |Γ1| is obtained by gluind two discs, both of
them with the border equal with |Γ1|. The geometrical image of |Γ| is a
”parachute” (as in example above), and therefore |Γ2| is homotopically
equivalent with S1 ∨ S1.

Remark 2.8. (The reduced homology of a simplicial multicomplex) As in the
case of the simplicial complexes, we can define the reduced homology for a
multicomplex to be the homology of the following complex of A-modules:

· · · → Ci(Γ, A) → Ci−1(Γ, A) → · · · → C0(Γ, A) → C−1(Γ, A) = A → 0,

where the last map ∂0 is given by the matrix (1, . . . , 1). Obviously, we think
C−1(Γ, A) as the free A-module generated by the −1-faces of Γ, (i.e. by

(0,. . . ,0)). We denote by H̃∗(Γ, A) the reduced homology of Γ. Of course,

H̃(Γ, A) = H̃(|Γ|, A).

Remark 2.9. For any multicomplex Γ, the cone over Γ is acyclic, i.e. H̃∗(Γ, A) =
0. Indeed, as a topological space, the cone over Γ is obviously contractible, and
therefore it has no reduced homology.

Definition 2.10. Let Γ ∈ Nn be a finite simplicial multicomplex and let A be
an arbitrary commutative ring with unity. We consider the chain complex:

· · · → Ci(Γ, A) → Ci−1(Γ, A) → · · · → C0(Γ, A) → 0.

Applying the functor Hom(−, A) to this complex, we obtained a cochain com-
plex:

0 → Hom(C0(Γ, A), A) → Hom(C0(Γ, A), A) → · · ·

. . . → Hom(Ci−1(Γ, A), A) → Hom(Ci(Γ, A), A) → · · · .
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Let Ci(Γ, A) := Hom(Ci(Γ, A), A). We define the differentials

δi : Ci(Γ, A) → Ci+1(Γ, A)

by

δi(f)(x) := (−1)if(∂i+1(x)),

for any x ∈ Ci+1(Γ, A).
The simplicial cohomology of Γ is, by definition, the cohomology of the

cochain complex above, i.e. H i(Γ, A) := Ker(δi)/Im(δi−1). Moreover, H∗(Γ, A)
has a structure of a graded A-algebra with the cup-product.

Of course, H∗(Γ, A) = H∗(|Γ|, A) and, as in the homological case, we can
define, similarly, the reduced cohomology of |Γ|.

Remark 2.11. It would be interesting to compute the Euler characteristic
χ(|Γ|) using only the combinatorial structure of Γ = 〈u1, . . . , ur〉. Of course,
it is obvious that χ(|Γ|) = χ(∆0(Γ)) + n − |sup(Γ)|, where sup(Γ) = ∨r

i=1ui.
So, the problem is to compute fi(∆

0) using the combinatorial structure of Γ.

3 Shellable finite multicomplexes

Let us recall that a simplicial complex ∆ is said to be connected if there exists
an ordering on the facet set of ∆, {F1, . . . , Fr}, such that Fi ∩ Fi+1 6= ∅.
Obviously, ∆ is connected if and only if |∆| is a connected space. In the case
of multicomplexes, we have the following generalization:

Definition 3.1. A finite simplicial multicomplex Γ is said to be connected,
if there exists an ordering on M(Γ) = {u1, . . . , ur} such that ui ∧ ui+1 >
(0, . . . , 0), for i = 1, . . . , r − 1. Obviously, Γ is connected if and only if its
underlying topological space is connected.

We have the following well known characterisation of shellable simplicial
complexes, see for example [2, Chapter 4].

Proposition 3.2. Let ∆ be a connected pure simplicial complex. Let F1, . . . , Fr

be a fixed ordering of the set of facets of ∆. Then, the following assertions are
equivalent:

1. ∆ is shellable whit the ordering F1, . . . , Fr: i.e 〈F1, . . . , Fi−1〉 ∩ 〈Fi〉 is
generated by a set o proper maximal faces of 〈Fi〉.

2. The set Si = {F |F ∈ 〈F1, . . . , Fi〉 , F /∈ 〈F1, . . . , Fi−1〉} has only one
minimal element, for any i = 2, . . . , r.
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3. For any j < i, there exists a vertex v ∈ Fi \ Fj and there exists k < i
such that Fi \ Fk = {v}.

Definition 3.3. Let Γ ⊂ Nn be a finite multicomplex. Let b, a ∈ Γ. We call
a a lower neighbour of b if there exists an integer k such that a(k) + 1 = b(k)
and a(i) = b(i) for any i 6= k. Equivalently, a is a lower neighbour of b if
a < b and |a| = |b| − 1.

For example, (4, 3, 0, 2) is a lower neighbor of (4, 3, 1, 2).

Definition 3.4. Let Γ be a finite connected pure multicomplex. We say that Γ
is shellable as a finite multicomplex, if there is an order on the set of maximal
facets of Γ, u1, . . . , ur, such that 〈u1, . . . , ui−1〉 ∩ 〈ui〉 is generated by a set of
lower neighbours of ui.

Our first aim is to give a characterization of shellability for a multicomplex
similar to the above proposition.

Proposition 3.5. Let Γ be a finite connected pure multicomplex. The follow-
ings are equivalent:

1. Γ is shellable with the order u1, . . . , ur on M(Γ).

2. The set Si = {v ∈ Nn|v ≤ ui, v � uj for j < i} has only one minimal
element v, which, moreover, has the property v(j) = ui(j) or v(j) = 0,
(∀)j ∈ [n].

3. For any j < i, there exists m ∈ [n] with ui(m) > uj(m) and k < i such
that ui(m) = uk(m) + 1, and ui(s) ≤ uk(s) for s 6= m, s ∈ [n].

Proof. (1 ⇒ 2). Let us suppose that 〈u1, . . . , ui−1〉 ∩ 〈ui〉 is generated by the
following lower neighbors of ui, ui − ei1 , . . . , ui − eik

. Let

v :=

{
ui(j), j ∈ {i1, . . . , ik},

0, j /∈ {i1, . . . , ik}.

It is enough to prove that v is a minimal element of Si = {a ∈ Nn|a ≤ ui, a �
uj for j < i}. Obviously, v ≤ ui. Also, from its definition, v � uj for j < i,
because each uj for j ∈ {i1, . . . , ik} has at least one of its components strictly
less than ui(j).

Let us suppose now that there exists v′ with v′ ≤ ui and v′ � uj for j < i.
We have to show that v ≤ v′.

Let us notice that the maximal facets of 〈u1, . . . , ui−1〉 ∩ 〈ui〉 are among
ui ∩ u1, . . . , ui ∩ ui−1. Also, since Γ is shellable, it follows that the maximal
facets have the dimension dim(ui)− 1.
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For any j /∈ {i1, . . . , ik}, we have 0 = v(j) ≤ v′(j). Let us suppose that
v′(i1) < v(i1) = ui(i1). We choose j such that uj ∧ ui = ui − ei1 . We have
uj(i1) = ui(i1) − 1 and uj(t) ≥ ui(t), for any t 6= i1. But then v′ ≤ uj which
is a contradiction.

(2 ⇒ 3). Before giving the proof in the general case, let us study some
particular cases. If i = 1 there is nothing to prove. If i = 2, we claim that
there is only one nonzero component of f . Indeed, let suppose v(1) = u2(1) >
0,. . . ,v(e) = u2(e) > 0. Obviously, there is an index k such that v(k) > u1(k),
since otherwise v ≤ u1, which is absurd. Let us suppose v(1) > u1(1). But
then it is obvious that v′ = (v(1), 0, . . . , 0) ∈ S2! This forces e = 1. From
the uniqueness of v it follows that u1(k) ≥ u2(k), for any k > 1. Indeed, if
u1(2) < u2(2) for example, then v′ = (0, u2(2), 0, . . . , 0) ∈ S2 and this in a
contradiction! We claim that u1(1) = u2(1)− 1. Indeed, if u1(1) ≤ u2(1)− 1,
then v′ = (u2(1) − 1, 0, . . . , 0) ∈ S2 and v′ < v, which is again absurd. Since
|u1| = |u2|, u1(1) = u2(1)− 1 and u1(k) ≥ u2(k) for any k > 1, it follows that
there exists m > 1 such that u1(m) = u2(m) − 1 and u1(k) = u2(k) for any
k 6= 1, m. Thus, the assertion 3 holds.

Before to proceed to the general case, we make first some remarks:

• The condition 3 in the previous proposition can be replaced as follows:
for any j < i there exists k < i such that uj∧ui ≤ uk∧ui a̧nd d(ui, uk) =
1.

• If v ∈ Si is the unique minimal element of Si by reordering of the vertices,
we can assume that

v(1) = u1(1) > 0, . . . , v(e) = ui(e) > 0, v(e + 1) = · · · = v(n) = 0.

• For any m > e, there exists j < i such that ui(m) ≤ uj(m). Indeed,
otherwise, the vector (0, . . . , ui(m), . . . , 0) will be in Si which is a con-
tradiction whit the uniqueness of v.

• Also, we cannot have simultaneously v(1) > max{u1(1), . . . , ui−1(1)}
and v(2) > max{u1(2), . . . , ui−1(2)} because, in this case, there are two
minimal vectors in Si.

• Last but not least, let us notice that the vectors uj , for j < i, are obtained
from a previous one be adding +1 to a component and subtracting +1
from another. A posteriori, this is clear from the definition of shellability.
Anyway, this fact it is not used in the proof below.
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Suppose v = (ui(1), . . . , ui(e), 0, . . . , 0) is the unique minimal element of
Si. First of all, we want to prove that for any j < i, we have:

uj ∧ ui ≤ (ui(1)− 1, ui(2), . . . , ui(n)),

or
uj ∧ ui ≤ (ui(1), ui(2)− 1, ui(2), . . . , ui(n))

or · · ·
or

uj ∧ ui ≤ (ui(1), . . . , ui(e− 1), ui(e)− 1, ui(e + 1), . . . , ui(n)).

But this is almost obvious! Indeed, if the above condition fails for some j, it
follows that v ≤ uj .

Moreover, each inequality holds for some j. If, for example,

uj ∧ ui � (ui(1)− 1, ui(2), . . . , ui(n)),

for any j < i, it follows that

(0, ui(2), . . . , ui(e), 0, . . . , 0) ∈ Si,

which is a contradiction with the minimality of v.
Let j < i with uj ∧ ui ≤ (ui(1) − 1, ui(2), . . . , ui(n)). We shall prove

that there is k < i such that uk ∧ ui = (ui(1) − 1, ui(2), . . . , ui(n)) and
this, obviously, completes the proof. Let us suppose that uj ∧ ui 6= (ui(1) −
1, ui(2), . . . , ui(n)), for any j < i. Let v′ = (ui(1) − 1, ui(2), . . . , ui(n)). Ob-
viously, v′ ≤ ui. If there exists k < i such that v′ ≤ uk, it follows that
uk ∧ ui = (ui(1) − 1, ui(2), . . . , ui(n)), a contradiction. On the other hand, if
v′ � uj , for any j < i, it follows that v′ ∈ Si, and this is again a contradiction,
because v � v′!

(3 ⇒ 1). Let v ∈ 〈u1, . . . , ui−1〉 ∩ 〈ui〉. Then v ≤ ui ∧ uj for some j < i.
Let m be as in assertion 3. Then, there exists k such that ui(m) = uk(m) + 1
and ui(s) ≤ uk(s) for s 6= m. Obviously, v ≤ uk, because v ≤ ui (and
then v(s) ≤ ui(s) ≤ uk(s) for s 6= m) and v(m) ≤ uj(m) ≤ uk(m). Thus
v ≤ ui ∧ uk. It is also clear that |ui ∧ uk| = |ui| − 1. Then ui − em is a lower
neighbor for ui in 〈u1, . . . , ui−1〉 ∩ 〈ui〉 cu v ≤ ui − em. But that means Γ is
shellable.

Example 3.6. Let Γ = (2, 1, 0), (1, 2, 0), (0, 2, 1). Then Γ is shellable. Indeed,
〈(1, 2, 0)〉 ∩ 〈(2, 1, 0)〉 = (1, 1, 0) and 〈(0, 2, 1)〉 ∩ 〈(2, 1, 0), (1, 2, 0)〉 = (0, 2, 0).

The minimal element of S2 = {v|v ≤ u1, v � u2 is v = (0, 2, 0) and
the minimal element of S3 is w = (0, 0, 1). Obviously, v and w satisfy the
condition 2 of the proposition.
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Remark 3.7. Let Γ be a simplicial multicomplex and let I(Γ) be the ideal of
maximal facets of Γ. Suppose that Γ is shellable. From the assertion 3 of the
proposition, we have: for any j < i there exists k < i such that uj∧ui ≤ uk∧ui

şi d(ui, uk) = 1. The translation of this assertion in algebraic language is:
For any j < i, there exists k < i such that gcd(mi, mj)|gcd(mi, mk) and

mi/gcd(mi, mk) = xt for some t. Note the similarity, but not coincidence,
with the case of ideals with linear quotients!

Proposition 3.8. Let Γ be a finite connected pure multicomplex. Then Γ is
shellable if and only if ∆0 = ∆0(Γ) is shellable.

Proof. Suppose Γ = 〈u1, . . . , ur〉. Then ∆0 = 〈F1, . . . , Fr〉, unde

Fi = {v1
1 , . . . , v

1
ui(1)

, v2
1 , . . . , x

2
ui(2)

, . . . , xn
1 , . . . , xn

ui(n)}.

Obviously Γ is pure, if and only if ∆0 is pure. Assume that Γ is shellable.
Using the above proposition, if follows that for any j < i, there exists m with
ui(m) > uj(m) and k < i such that ui(m) = uk(m) + 1 and ui(s) ≤ uk(s) for
s 6= m.

In terms of facets of ∆0, the above fact is equivalent with the following
one: For any j < i there exists m with xm

ui(m) ∈ Fi \ Fj and k < i such that

Fi \ Fk = {xm
ui(m)}. But this means that ∆0 is shellable, as required.

A well known property, see [2, Chapter 4], of shellable pure simplicial
complexes is the following one:

Proposition 3.9. If ∆ is a pure shellable simplicial complex, then |∆| has
the homotopy type of a wedge of spheres of dimension d.

Therefore, we have the following:

Corollary 3.10. If Γ is a pure shellable multicomplex, then |Γ| has the ho-
motopy type of a topological space obtained by a wedge of spheres of dimension
d by gluing some points and therefore, it is a wedge of spheres of dimension d
and 1.

We can extend the notion of shellability for the simplicial complexes which
are not pure, as follows:

Definition 3.11. Let ∆ be a simplicial complex. ∆ is called shellable if there
exists an ordering of the facets of ∆, F1, . . . , Fr, such that 〈F1, . . . , Fi−1〉∩〈Fi〉
is pure of dimension dim(∆) − 1.

This definition can be extended for multicomplexes:
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Definition 3.12. Let Γ be a finite multicomplex. Γ is called shellable if
there exists an ordering of the maximal facets of Γ, u1, . . . , ur, such that
〈u1, . . . , ui−1〉 ∩ 〈ui〉 is generated by a set of lower neighbors of ui.

Lemma 3.13. If ∆ is shellable with the order F1, . . . , Fr, then: |F1| ≥
|F2|, · · · , |F1| ≥ |Fr|. In particular, dim(∆) = dim(F1).

Proof. We argue by induction on i. For i = 2, since 〈F1〉∩ 〈F2〉 has dimension
dim(F2)−1, it follows that |F1| > |F2|−1 and, therefore, |F1| ≥ |F2|. Suppose
i > 2. Then, by the induction hypothesis, we have: |F1| ≥ |F2|, · · · |F1| ≥
|Fr−1|. Since 〈F1, . . . , Fi−1〉 ∩ 〈Fi〉 has the dimension dim(Fi) − 1, it follows
that there exists k < i, such that |Fk ∩Fi| = |Fi| − 1. But then |Fk| > |Fi| − 1
which implies |Fk| ≥ |Fi|, and |F1| ≥ |Fi|.

This lemma can be written in language of multicomplexes:

Lemma 3.14. If Γ is shellable with the order u1, . . . , ur, then:

|u1| ≥ |u2|, · · · , |u1| ≥ |ur|.

Proof. We argue by induction on i. For i = 2, since 〈u1〉 ∩ 〈u2〉 has dimension
dim(u2)− 1, it follows that |u1| > |u2| − 1 and therefore |u1| ≥ |u2|. Suppose
i > 2. Then, by induction hypothesis, we have: |u1| ≥ |u2|, · · · |u1| ≥ |ur−1|.
Since 〈u1, . . . , ui−1〉∩ 〈ui〉 has the dimension dim(ui)− 1, it follows that there
exists a k < i, such that |uk ∧ ui| = |ui| − 1. But then |uk| > |ui| − 1 which
implies |uk| ≥ |ui|, and |u1| ≥ |ui|.

Proposition 3.15. Let ∆ be a shellable simplicial complex. Then there exists
a shelling order F1, . . . , Fr such that |F1| ≥ |F2| ≥ · · · ≥ |Fr|. Such a shelling
is called a ”good shelling”.

Proof. We use induction on r. For r = 1, 2 the assertion is obvious. Let us
first prove the case r = 3. Suppose F1, F2, F3 is a shelling with |F1| > |F2| and
|F3| > |F2|. From the definition of shellability, it follows that F3∩F2 ( F1∩F3

and |F1 ∩ F3| = |F3| − 1. We claim that F1, F3, F2 is a good shelling.
Indeed, F1, F3 satisfy the definition of shellability. But we have F2 ∩ F3 ⊂

F1 ∩F3. Taking the intersection with F2, we get: F2 ∩F3 ⊂ F1 ∩F3 ∩F2, and
therefore F2 ∩ F3 ⊂ F1 ∩ F2.

In the general case, let us suppose that we have a shelling such that |F1| ≥
|F2| ≥ · · · ≥ |Fr−1| and |Fr | > |Fr−1|. We choose the greatest j such that
|Fj | ≥ |Fr| (i.e. |Fj+1| < |Fr |). We claim that F1, . . . , Fj , Fr, Fj+1, . . . , Fr−1 is
a good shelling ∆. Of course, the condition of shellability is satisfied from 1 to
j. Let us show that 〈F1, . . . , Fj〉∩〈Fr〉 is generated by dim(Fr)−1-facets. But
this is almost obvious: from hypothesis, we know that 〈F1, . . . , Fr−1〉 ∩ 〈Fr〉
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is generated by dim(Fr) − 1-facets. Those facets are between F1 ∩ Fr, . . . ,
Fr−1 ∩ Fr. But Fj+1 ∩ Fr,. . . ,Fr−1 ∩ Fr have at most dimension |Fr| − 2.

Let us show that 〈F1, . . . , Fj , Fr〉 ∩ 〈Fj+1〉 is generated by dim(Fj+1)− 1-
facets. It is sufficient to prove that Fj+1∩Fr is a subface of Fj+1∩Ft for some
t ≤ j. From the initial hypothesis (F1, . . . , Fr i̧s a shelling), this is obvious,
because Fr ∩ Fj+1 cannot be a subface of Fr ∩ Fj+s, s > 1 because it has to
be included in a dim(Fr)− 1-face.

Similarly, we prove the remained conditions.

This lemma can be written in language of multicomplexes:

Proposition 3.16. Let Γ be a shellable multicomplex. Then there exists a
”good” shelling (i.e. a shelling with |u1| ≥ |u2| ≥ · · · ≥ |ur|).

Proof. As is the case of simplicial complexeles, we argue by induction on r,
the cases r = 1, 2 being trivial. Let us suppose r = 3. We suppose |u1| > |u2|
and |u2| < |u3|. We claim that u1, u3, u2 is a good shelling.

From definition of shellability, it follows that F3 ∩ F2 ( F1 ∩ F3 and |F1 ∩
F3| = |F3| − 1. We claim that F1, F3, F2 is a good shelling.
Indeed, u1, u3 satisfy the definition of shellability. But we have u2∧u3 ≤ u1 ∩
u3. Taking ∧u2, we get: u2∧u3 ⊂ u1∩u3∩u2, and therefore u2∩u3 ⊂ u1∩u2.

In the general case, let us suppose that we have a shelling such that |u1| ≥
|u2| ≥ · · · ≥ |ur−1| and |ur| > |ur−1|. We choose the greatest j such that
|uj | ≥ |ur| (i.e. |uj+1| < |ur|). We claim that u1, . . . , uj , ur, uj+1, . . . , ur−1

is a good shelling on Γ. Of course, the condition of shellability is satisfied
from 1 to j. Let us show that 〈u1, . . . , uj〉 ∩ 〈ur〉 is generated by dim(ur)− 1-
maximal facets. But this is almost obvious: From hypothesis, we know that
〈u1, . . . , ur−1〉 ∩ 〈ur〉 is generated by dim(ur) − 1-facets. Those facets are
between u1 ∩ ur, . . . , ur−1 ∩ ur. But uj+1 ∩ ur,. . . ,ur−1 ∩ ur have at most
dimension |ur| − 2.

Let us show that 〈u1, . . . , uj , ur〉 ∩ 〈uj+1〉 is generated by dim(uj+1) − 1-
facets. It is sufficient to prove that uj+1 ∩ur is a subface of uj+1∩ut for some
t ≤ j. From the initial hypothesis (u1, . . . , ur i̧s a shelling), this is obvious,
because ur ∩ uj+1 cannot be a subface of ur ∩ uj+s, s > 1 because it has to
be included in a dim(ur)− 1-face.

Similarly, we prove the remained conditions.

4 Co-shellable multicomplexes

In this section, all the complexes and multicomplexes are supposed pure.
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Definition 4.1. A simplicial complex ∆ is called co-shellable, if there exists
an order of the facets of ∆, F1, . . . , Fr, such that:

(∗) ∀ j < i, ∃ v ∈ Fj \ Fi, si k < i cu Fk \ Fi = {v}.

Proposition 4.2. Let ∆ be a simplicial complex on the vertex set [n] and let
I = I(∆) be the facet ideal of ∆. Then I has linear quotients if and only if ∆
is co-shellable.

Since the ideal of the basis of a matroid has linear quotients, it follows that
any matroid is a pure co-shellable simplicial complex.

Proof. Let I = (m1, . . . , mr) be a square-free monomial ideal. Let ∆ =
〈F1, . . . , Fr〉 be the corresponding simplicial complex (i.e. Fi = supp(mi) ⊂
[n]). We want to prove that ∆ is co-shellable with that given ordering. Let
j < i and let v = mj/ gcd(mi, mj). Obviously, v is a square-free mono-
mial. Since v · mi = lcm(mi, mj), which is a multiple of mj , it follows that
v ∈ (m1, . . . , mi−1) : mi. But I has linear quotients, and therefore there exists
a variable xt|v such that xt ∈ (m1, . . . , mi−1) : mi. Then there exists a mono-
mial mk with mk|xtmi. Thus Fk \ Fi = {t}, and t ∈ Fj \ Fi. This completes
the proof. The converse has a similar proof.

Example 4.3. • There exists shellable complexes which are not co-shellable.
This is the case, for example, when we give a shelling F1, . . . , Fr such
that Fi ∩ Fj = ∅ for some j < i. For instance, let ∆ be the complex of
facets of the ideal I = (abc, bcd, def, efg). Obviously, ∆ is shellable, but
I does not have linear quotients: (abc, bcd, def) : efg = (d, abc).

• Even if we demand that ∆ is strong connected (i.e. for any two facets Fi

and Fj we have Fi ∩ Fj 6= ∅) which is a very restrictive condition, there
are shellable complexes which are not co-shellable. For example, if ∆ is
the facet complex of the ideal I = (abc, bcd, cde, cef), then ∆ is shellable
but I does not have linear quotients: (abc, bcd, cde) : cef = (d, ab).

• Also, there are co-shellable complexes which are not shellable. For in-
stance, if ∆ = 〈abc, bcd, acd, ade, bce〉. It is easy to see that I(∆) has lin-
ear quotients, but, also, ∆ is not shellable since 〈bce〉∩〈abc, bcd, acd, ade〉
is not pure.

The above definition can be extended for simplicial multicomplexes.

Definition 4.4. A finite multicomplex Γ is called co-shellable if there exists
an order of the maximal facets of Γ such that for any j < i there is m and
k < i such that uj(m) > ui(m), uk(m) = ui(m) + 1, and uk(s) ≤ ui(s) for
s 6= m.
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Proposition 4.5. Any monomial ideal I, generated by monomials of the same
degree, has linear quotients if and only if the simplicial multicomplex of max-
imal facets of I is co-shellable.

In particular, any discrete polymatroid is a co-shellable finite multicomplex.

Proof. The proof is the same as in the square-free case. Let I = (m1, . . . , mr)
be a monomial ideal and let Γ = 〈u1, . . . , ur〉 be the corresponding simpli-
cial complex (i.e. mi = xui ). We want to prove that Γ is co-shellable with
that given order. Let j < i and let v = mj/ gcd(mi, mj). Since v · mi =
lcm(mi, mj), which is a multiple of mj , it follows that v ∈ (m1, . . . , mi−1) : mi.
But I has linear quotients, and therefore, there exists a variable xt|v such that
xt ∈ (m1, . . . , mi−1) : mi. But that means that there exists a monomial mk

with mk|xtmi. Thus uk(t) = ui(t) + 1 and uk(s) ≤ ui(s), for s 6= t. Also,
since xt|v = mj/ gcd(mi, mj) it results uj(t) > ui(t). But this proves that Γ
is co=shellable.

The converse implication has a similar proof.

Proposition 4.6. Let ∆ be a simplicial complex. Then ∆ is shellable if and
only if ∆c is co-shellable (where ∆c is the complementary simplicial complex
of ∆).

Proof. Suppose ∆ is shellable, i.e. there exists an order F1, . . . , Fr on the set
of facets of ∆ such that: for each j < i, there exists v ∈ Fi \Fj and there exists
k < i such that Fi \Fk = {v}. We claim that F c

1 , . . . , F c
1 is a co-shelling on ∆c.

But this is obvious, for the same choice of k < i and v, since F c
j \F c

i = Fi \Fj

and F c
k \ F c

i = Fi \ Fk !

Later, we will extend this property to multicomplexes.

5 The base ring and the Erhart ring of a multicomplex

Let Γ be a finite multicomplex with the set of maximal facetsMΓ = {u1, . . . , ur}.
The base ring of Γ is the monomial subalgebra

K[M(Γ)] := k[xu1 , . . . , xur ] ⊂ k[x1, . . . , xn].

The Erhart ring of Γ is the monomial subalgebra:

K[Γ] := k[xut|u ∈ Γ] ⊂ k[x1, . . . , xn, t].

Obviously, K[Γ] is the semigroup ring of the cone over Γ,

C(Γ) = 〈(u1, 1), . . . , (ur, 1)〉 .
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We have a natural epimorphism ϕ : B = k[t1, . . . , tr] → K[M(Γ)], defined
by ϕ(ti) := xui . If we take on B the grading, deg(ti) := deg(mi), where
mi = xui , then ϕ becomes a graded morphism. The kernel Ker(ϕ) := PM(Γ) is
called the toric ideal of K[M(Γ)]. It is well known that PM(Γ) is a graded prime
ideal generated by a finite set of binomials. Of course, the same construction
can be made for the Erhart ring.

It would be of great interest to find combinatorial conditions on Γ such
that the base ring or the Erhart ring are normal, Cohen-Macaulay, Gorenstein
etc. For example, if Γ is shellable, what can we say about k[M(Γ)] or k[Γ]?

6 Dual multicomplexes

Definition 6.1. Let ∆ be a simplicial complex. We called the complementary
complex of ∆, and we denoted it by ∆c, the complex

∆c = 〈[n] \ F |F is a facet of ∆ 〉 .

Obviously, if we think ∆ as a subset of {0, 1}n, then

∆c = 〈(1, 1, . . . , 1)− F |F ∈ ∆ facet〉 .

We can, therefore, give the following generalization.

Definition 6.2. Let Γ ⊂ Nn be a finite simplicial multicomplex with the set
of maximal facets M(Γ) = {u1, . . . , ur}. If u ∈ Nn is an upper bound of Γ
(i.e. u ≥ a, for any a ∈ Γ; or equivalent: Γ ⊂ 〈u〉 ), then the complementary
multicomplex of Γ with respect to u, denoted by Γc

u is the following one:

Γc
u = 〈u− ui|ui ∈M(Γ)〉 .

Γc
u depends on the choice of u ∈ Nn. Of course, the least upper bound of Γ,

which will be denoted by sup(Γ), is sup(Γ) = ∨r
i=1ui, where Γ = 〈u1, . . . , ur〉.

We denote Γc
sup(Γ) by Γc.

Remark 6.3. Let Γ be a simplicial multicomplex and let ∆ = ∆0(Γ) be the
polarized simplicial complex of Γ. Let us consider ∆c the complementary com-
plex of ∆. Then, the multicomplex of ordered faces (see section 1) of ∆c is Γc

itself. The proof is obvious.

Proposition 6.4. If Γ = 〈u1, . . . , ur〉 is a simplicial multicomplex, and u ∈ Nn

is an upper bound of Γ, then u is an upper bound of Γc
u too, and:

(Γc
u)c

u = Γ.
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Proof. If Γ = 〈u1〉 and u ≥ u1, the assertion is obvious, even in the case
u = u1. Let suppose Γ = 〈u1, . . . , ur〉 with r ≥ 2. We claim that the only
thing we have to prove is: if a, b ∈ Nn are two incomparable vectors, and
u ∈ Nn u > a, u > b then u− a,u− b are incomparable. If the claim is true,
then it follows that Γc

u has exactly r maximal facets u − u1, . . . u − ur, (and
it is obvious that each of them is ≤ u) and, therefore, (Γc

u)c
u has the maximal

facets u1, . . . , ur. Thus (Γc
u)c

u = Γ, as required.
The claim is almost clear. Indeed, if u− a ≥ u− b, it follows u(i)− a(i) ≥

u(i) − b(i), for any i = 1, . . . , n, so a(i) ≤ b(i) for any i so a ≤ b, which is a
contradiction.

In monomial language, we can write down the following definition:

Definition 6.5. Let I = (m1, . . . , mr) be a monomial ideal and let Γ = Γ(I) =
〈u1, . . . , ur〉 be the multicomplex of maximal facets of I. Let u ∈ Nn be an upper
bound of Γ. (i.e. lcm(m1, . . . , mr)|xu). The complementary ideal of I, with
respect to xu is the ideal Ic

u := 〈xu/mi|i = 1, . . . , n〉. Ic
u is the ideal of maximal

facets of Γc
u.

Example 6.6. If Γ = 〈(2, 1, 3), (1, 2, 3), (3, 2, 2)〉 and u = (4, 4, 3), then

Γc
u = 〈(2, 3, 0), (3, 2, 0), (1, 2, 1)〉 .

In algebraic language, if I = (x2yz, xy2z3, x3y2z2) and m = x4y4z3, then

Ic
m = (x2y3, x3y2, xy2z).

Example 6.7. If Γ is a multicomplex and v ≥ u ≥ sup(Γ) are two vectors in
Nn, then one easily sees that Γc

v = 〈v − u〉 ∗ Γc
u.

Proposition 6.8. Let Γ be a pure multicomplex and u ≥ sup(Γ). Then Γ is
shellable if and only if Γc

u is co-shellable.

Proof. The case Γ = 〈u〉 is trivial. Since Γ is shellable, there exists an ordering
of the maximal facets of Γ, u1, . . . , ur such that: for any j < i, there exists m
and k < i such that: ui(m) > uj(m), ui(m) = uk(m) + 1, and ui(s) ≤ uk(s),
for s 6= m. We claim that Γc

u is co-shellable with the ordering of the maximal
facets: u − u1, . . . , u − ur. Indeed, if we take m and k < i as above, it is
obvious that (u− ui)(m) = u(m)− ui(m) < (u−uj)(m) = u(m)−uj(m) and
(u− ui)(m) = (u − uk)(m) − 1 and (u− ui)(s) ≥ (u − uk)(s) for any s 6= m,
as required.

We will focuse now on the very important notion of Alexander duality.
First of all, let us see what is the Alexander dual for a simplicial complex and
how we can extend this concept in the case of multicomplexes.
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Definition 6.9. Let ∆ be a simplicial complex. The Alexander dual of ∆, is
the complex

∆∨ = {[n] \ F |F /∈ ∆}.

Thinking ∆ as a subset of {0, 1}n, we note that ∆∨ = {(1, . . . , 1) − F | F ∈
{0, 1}n \∆}. This gives us the idea of the following generalization:

Definition 6.10. Let Γ be a simplicial multicomplex and let u ∈ Nn be an
upper bound of Γ. The Alexander dual of Γ w.r.t. u is the following multi-
complex:

Γ∨u = {u− v|v ≤ u si v /∈ Γ}.

If u = sup(Γ), we denote Γ∨u =: Γ∨.

Let us recall some results on the Alexander dual (in the case of simplicial
complexes) which will be generalized in the case of multicomplexes. See [6]
for details.

Proposition 6.11. Let ∆ be a simplicial complex on the set of vertices [n].
Let I∆ be the Stanley-Reisner ideal of ∆ and I(∆) be the ideal of facets of ∆.
Then:

1. (∆∨)∨ = ∆.

2. I∆∨ = I(∆c).

3. ∆ is shellable if and only if I∆∨ has linear quotients.

In the case of multicomplexes we have the following:

Proposition 6.12. If Γ is a multicomplex and u ∈ Nn is an upper bound for
Γ, then (Γ∨u )∨u = Γ.

Proof. Let us first note that we have an anti-monotone bijection between Γ∨u
and the set {v ∈ Nn|v ≤ u and v /∈ Γ}. That means that we have a bijection
between (Γ∨u )∨u and {v ∈ Nn|v ≤ u and v /∈ Γ∨u}. But this last set is obvious
in bijection with Γ. Thus (Γ∨u )∨u = Γ, as required.

Proposition 6.13. If Γ is a multicomplex and u ∈ Nn is un upper bound for Γ
then IΓ = I(Γ∨u )c

u, where u = sup(Γ) + (1, . . . , 1). In particular, IΓ∨u = I(Γc
u).

Proof. Let us notice that Γ∨u is generated by u− v, where v is a minimal non-
face of Γ. But the minimal non-faces of Γ are exactly the minimal generators
of the ideal IΓ. Writing this facts in algebraic language, we get:

IΓ = 〈xv|v is a minimal non-face of Γ〉 .
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Also,
I(Γ∨u ) =

〈
xu−v |v is a minimal non-face of Γ

〉
,

and, therefore, IΓ = I(Γ∨u )c
u, as required.

The last identity is clear when we replace Γ by Γ∨u .

Example 6.14. If Γ = 〈(1, 3), (4, 2)〉 and u = (5, 4) = sup(Γ) + (1, 1), then

Γ∨(5,4) = 〈(5, 0), (0, 4), (3, 1)〉 .

(This is easy to compute if we figure Γ and Γ∨(5,4) on the same picture.) Also,

(Γ∨(5,4))
c
(5,4) = 〈(5, 0), (0, 4), (2, 3)〉 .

IΓ = (x5, y4, x2y3). Obvious, I(Γ∨(5,4))
c
(5,4)) = IΓ.

Corollary 6.15. Let Γ be a multicomplex. Then Γ is shellable if and only if
IΓ∨u has linear quotients, where u = sup(Γ) + (1, . . . , 1).

Proof. If is obvious from Proposition 6.8 and Proposition 6.13.
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