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A REMARK ON THE HILBERT SERIES OF

TRANSVERSAL POLYMATROIDS

Alin Ştefan

Abstract

In this note we study when the transversal polymatroids presented
by A = {A1, A2, . . . , Am}, where all the sets Ai have two elements, have
the base ring Bm Gorenstein. Using Worpitzky identity, we show that
the numerator of the Hilbert series has the coefficients Eulerian numbers
and, from [1], the Hilbert series is unimodal.

1 Introduction

Let K be an infinite field, n and m be positive integers, Ai be some subsets
of [n] for 1 ≤ i ≤ m, A = {A1, A2, . . . , Am}. Let

Bm = K[xi1xi2 . . . xim
: ij ∈ Aj , 1 ≤ j ≤ m]

and
C = K[xiyj : i ∈ Aj , 1 ≤ j ≤ m].

Obviously C ⊆ S, where S is the Segre product of the polynomial rings in n,
respectively m, indeterminates,

S := K[x1, x2, . . . , xn] ∗K[y1, y2, . . . , ym] = K[xiyj : 1 ≤ i ≤ n, 1 ≤ j ≤ m].

We consider the variables tij , 1 ≤ i ≤ n, 1 ≤ j ≤ m and we define

T = K[tij : 1 ≤ i ≤ n, 1 ≤ j ≤ m],

T (A) = K[tij : 1 ≤ j ≤ m, i ∈ Aj ]
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and the presentations φ : T −→ S and φ
′

: T (A) −→ C defined by tij −→ xiyj .

By [10, Proposition 9.1.2] we know that ker(φ) is the ideal I2(t) of the
2–minors of the n×m matrix t = (tij) via the map φ. The algebras C, T (A),
S and T are Zm –graded by setting deg(xiyj) = deg(tij) = ei ∈ Zm where ei,
1 ≤ i ≤ m denote the vectors of the canonical basis of Rm.

By [11, Propositions 4.11 and 8.11] or [10, Proposition 8.1.10] we know
that the cycles of the complete bipartite graph Kn,m give a universal Gröbner
basis of I2(t).

A cycle of the complete bipartite graph is described by a pair (I, J) of
sequences of integers, say

I = i1, i2, . . . , is, J = j1, j2, . . . , js,

with 2 ≤ s ≤ min(m, n), 1 ≤ ik ≤ m, 1 ≤ jk ≤ n and such that the ik are
distinct and the jk are distinct. Associated with any such a pair we have a
polynomial F(I,J) = ti1j1 . . . tisjs

− ti2j1 . . . tisjs−1
ti1js

which is in I2(t).
For a Zm-graded algebra E we denote by E∆ the direct sum of the graded

components of degree (a, a, . . . , a) ∈ Zm. Similarly, for a Zm–graded E–module
M , we denote by M∆ the direct sum of the graded components of M of degree
(a, a, . . . , a) ∈ Zm. Clearly E∆ is a Z–graded algebra and M∆ is a Z–graded
E∆ module. Furthermore −∆ is exact as a functor on the category of Zm–
graded E–modules with maps of degree 0. Now C∆ is the K-algebra generated
by the elements xi1y1 . . . xim

ym with ij ∈ Aj . Therefore Bm is isomorphic to
the algebra C∆. Hence we obtain a presentation :

0 −→ J −→ T (A)∆ −→ Bm −→ 0,

where J = (I2(t)
⋂

T (A))∆.

T (A)∆ is the K–algebra generated by the monomials t1i1 t2i2 . . . tmim
, with

ik ∈ Ak, that is, T (A)∆ is the Segre product T1∗T2∗ . . .∗Tm of the polynomial
rings Ti = K[tij : j ∈ Ai]. Now we consider the variables sα with α ∈ A :=
A1×A2× . . .×Am Then we get the presentation of the Segre product T (A)∆
as a quotient of K[A] by mapping s(j1,...,jm) to t1j1 t2j2 . . . tmjm

.

From [5] the defining ideal of T (A)∆ is generated by the so-called Hibi
relations:

sαsβ − s(α∨β)sα∧β),

where
α ∨ β = (max(α1, β1), . . . , max(αm, βm)),

and
α ∧ β = (min(α1, β1), . . . , min(αm, βm)).
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Example 1.1. Let n = 3 and

A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 4}.

Then C is the quotient of K[t11, t12, t22, t23, t33, t34] by the zero ideal (J = 0
because we don’t have cycles). Then

B3 = K[x1x2x3, x1x2x4, x1x
2
3, x1x3x4, x

2
2x3, x

2
2x4, x2x

2
3, x2x3x4]

is the quotient of K[s123, s124, s133, s134, s223, s224, s233, s234] modulo the ideal
generated by the Hibi relations:

s123s134 − s124s133 , s123s224 − s124s223,

s123s234 − s124s233 , s123s233 − s133s223,

s123s234 − s133s224 , s123s234 − s134s223,

s124s234 − s134s224 , s133s234 − s134s233,

s223s234 − s224s233.

Since K[t11, t12]∗K[t22, t23]∗K[t33, t34] is a Gorenstein ring ([6, Example 7.4])
then B3 is a Gorenstein ring .

Example 1.2. Let n = 3 and

A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 1}.

Then C is the quotient of K[t11, t12, t22, t23, t33, t31] modulo the ideal generated
by the polynomial t11t22t33 − t12t23t31 (we have one 6-cycles). Then

B3 = K[x1x2x3, x
2
1x2, x1x

2
3, x

2
1x3, x

2
2x3, x1x

2
2, x2x

2
3]

is the quotient of K[s123, s121, s133, s131, s223, s221, s233, s231] modulo the ideal
generated by the Hibi relations:

s221s233 − s223s231, s131s233 − s133s231,

s121s233 − s123s231, s131s221 − s121s231,

s133s221 − s123s231, s131s223 − s123s231,

s133s223 − s233s231, s121s223 − s221s231,

s121s133 − s131s231.

and by the linear relation
s123 − s231

Since K[t11, t12] ∗K[t22, t23] ∗K[t33, t31] is a Gorenstein ring and t11t22t33 −
t12t23t31 is a regular element in K[t11, t12] ∗K[t22, t23] ∗K[t33, t31] then

K[t11, t12] ∗K[t22, t23] ∗K[t33, t31]

(t11t22t33 − t12t23t31)
∼= B3

is a Gorenstein ring.
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Example 1.3. Let n = 3 and

A1 = {1, 2}, A2 = {1, 2, 3}, A3 = {2, 3}.

Then C is the quotient of K[t11, t12, t12t22, t23, t23, t33] modulo the ideal gen-
erated by the polynomials t11t22 − t12t21, t22t33 − t23t32, t11t23t32 − t12t21t33
(we have two 4-cycles and one 6-cycle),

HC(t) =
1 + 2t + t2

(1− t)5
,

and then

B3 = K[x2
1x2, x

2
1x3, x1x2x3, x1x

2
2, x1x

2
3, x

3
2, x

2
2x3, x2x

2
3]

is the quotient of K[sijk |(i, j, k) ∈ {1, 2} × {1, 2, 3}× {2, 3}] modulo the ideal
generated by the Hibi relations:

s222s233 − s232s223 , s212s233 − s213s232 ,
s212s232 − s213s222 , s133s232 − s213s233 ,
s133s222 − s213s232 , s133s212 − s213s132 ,
s113s233 − s133s213 , s113s232 − s213s123 ,
s113s222 − s212s213 , s112s233 − s213s132 ,
s112s232 − s212s213 , s112s222 − s212s122 ,
s112s213 − s113s212 , s112s133 − s113s213 .

and by the linear relations s132 − s213, s123 − s213, s122 − s212, s223 − s232 .

Since B3 is a domain and the Hilbert series of B3 is

HB3
(t) =

1 + 5t + t2

(1− t)3
,

then B3 is a Gorenstein ring .

2 Hilbert series

Definition 2.1. Let R = K[x1, x2, . . . , xn] be a polynomial ring over a field
K. If M is a finitely generated N-graded R-module, the numerical function:

H(M,−) : N −→ N

with H(M, n) = dimK(Mn), for all n ∈ N, is the Hilbert function and
HM (t) =

∑

n∈N H(M, n)tn is the Hilbert series of M.
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Let n, m be positive integers, Ai be some subsets of [n] such that |Ai| = l

for 1 ≤ i ≤ m, A = {A1, A2, . . . , Am}.
Let

Bm = K[xi1xi2 . . . xim
: ij ∈ Aj , 1 ≤ j ≤ m]

and

C = K[xiyj : i ∈ Aj , 1 ≤ j ≤ m].

From Section 1 we know that Bm is isomorphic to the algebra C∆ and we
have the presentation :

0 −→ J −→ T (A)∆ −→ Bm −→ 0,

where J = (I2(t)
⋂

T (A))∆.

Now we are interested on the case when J = (0).

Remark 2.2. If J = (0) then Bm is isomorphic to the algebra (T (A))∆.

J = (0) is equivalent with the fact that the bipartite graph presented by A

(V1 = 1, 2, . . . , m, V2 = A1 ∪ A2∪, . . . ,∪Am and an edge from V1 to V2 joins
i ∈ V1 with ij ∈ V2 if and only if ij ∈ Ai) does not have cycles.

If |Ai| = l, for 1 ≤ i ≤ m, |Ai

⋂

Ai+1| ≤ 1, and Aj

⋂

Ai = ∅, for
2 ≤ i ≤ m, j < i− 1, then the bipartite graph presented by A does not have
cycles, thus the ideal J is zero.

Since J = (0), then Bm is the Segre product of m polynomial rings, each
of them in l indeterminates, that is, Bm is a Gorenstein ring (see [6, Example

7.4]); dimK(Bm)i =
(

ı+l−1
i

)m
.

In the case m = 2 it is known (see [10, proposition 9.1.3]) that the Hilbert
series of B2 is

HB2
(t) =

∑l−1
k=0

(

l−1
k

)2
tk

(1− t)2l−1
; H(B2, i) = dimk(B2)i =

(

ı + l − 1

i

)2

.

It results that the Krull dimension of B2 is dimk B2 = 2l− 1 and the number
of generators of the defining ideal of B2 (the number of Hibi-relations of B2)
is

µ =

(

H(B2, 1) + 1

2

)

−H(B2, 2) =

(

l2 + 1

2

)

−

(

l + 1

2

)2

=

(

l

2

)2

.

Remark 2.3. We have the following relation between the Hilbert series of Bm+1

and Bm :

HBm+1
(t) =

1

(l − 1)!

d(l−1)

dtl−1
(tl−1HBm

(t)).
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Proof. Since HBm
(t) =

∑

i≥0

(

ı+l−1
i

)m
ti, then

1

(l − 1)!

d(l−1)

dtl−1
(tl−1HBm

(t)) =
1

(l − 1)!

d(l−1)

dtl−1
(tl−1

∑

i≥0

(

i + l − 1

i

)m

ti)

=
1

(l − 1)!

d(l−2)

dtl−2
(

d

dt
(tl−1

∑

i≥0

(

i + l − 1

i

)m

ti))

=
1

(l − 1)!

d(l−2)

dtl−2
((l − 1)tl−2

∑

i≥0

(

i + l − 1

i

)m

ti + tl−2
∑

i≥0

i

(

i + l − 1

i

)m

ti)

=
1

(l − 1)!

d(l−2)

dtl−2
(
∑

i≥0

(

i + l− 1

i

)m

(i + l− 1)ti)

=
1

(l − 1)!

d(l−3)

dtl−3
(

d

dt
(tl−2

∑

i≥0

(

i + l − 1

i

)m

(i + l − 1)ti))

=
1

(l − 1)!

d(l−3)

dtl−3
((l − 2)tl−3

∑

i≥0

(

i + l − 1

i

)m

(i + l − 1)ti+

+tl−3
∑

i≥0

i

(

i + l − 1

i

)m

(i + l − 1)ti))

=
1

(l − 1)!

d(l−3)

dtl−3
(tl−3

∑

i≥0

(

i + l − 1

i

)m

(i + l − 1)(i + l − 2)ti) = · · ·

=
1

(l − 1)!

∑

i≥0

(

i + l − 1

i

)m

(i + l− 1)(i + l − 2) · · · (i + 2)(i + 1)ti

=
∑

i≥0

(

i + l − 1

i

)m+1

ti = HBm+1
(t).

Let A(t) :=
∑

i ait
i and B(t) :=

∑

i bit
i be two power series in Z[[t]]. Then

we denote by Had(A, B) :=
∑

i(aibi)t
i the Hadamard product of A and B

([8]).

Definition 2.4. ([8]) Let A(t) be the Hilbert series of a standard k−algebra
S. ri(A) (or ri(S)) is the regularity index of A (or of S), i.e. the first integer
r such that for every s ≥ r the Hilbert function of S takes the same values as
the Hilbert polynomial of S.
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Remark 2.5. ri(S) = a(S) + 1, where a(S) is the a−invariant of S.

Proposition 2.6 ([8]). Let A(t) := P (t)
(1−t)a and B(t) := Q(t)

(1−t)b , where p :=

deg(P ), q := deg(Q), P (1) 6= 0, Q(1) 6= 0, and assume that A(t) and B(t) are
the Hilbert series of standard k−algebras. Then

1) ri(A) = p− a + 1 and ri(B) = q − b + 1;

2) ri(Had(A, B)) ≤ max(ri(A), ri(B));

3) Had(A, B) = R(t)
(1−t)a+b−1 , with R(1) 6= 0;

4) deg(R) ≤ max(ri(A), ri(B)) + (a + b− 1)− 1;

Theorem 2.7 ([8]). Let S1 and S2 be two standard k−algebras with the Hilbert
series HS1

, HS2
. Then the Hilbert series of Segre product of S1 and S2 is

HS1∗S2
= Had(HS1

, HS2
).

Definition 2.8. Let R = K[x1, x2, . . . , xn] be a polynomial ring over a field K

and M be a finitely generated N-graded R-module. The difference operator ∆
on the set of numerical functions H(M,−) is

(∆H(M,−))(n) = H(M, n + 1)−H(M, n),

where H(M,−) is the Hilbert function.
The m− times iterated ∆ operator (”m− difference of H(M, n)”) will

be denoted by ∆m.

Proposition 2.9. If |Ai| = 2, for 1 ≤ i ≤ m, |Ai

⋂

Ai+1| ≤ 1 and Aj

⋂

Ai =
∅, for 1 ≤ i ≤ m− 1, 1 ≤ j < i− 1, then the Hilbert series of Bm is

HBm
(t) =

∑m−1
k=0 A(m, k + 1)tk

(1− t)m+1
,

where
A(m, k) = kA(m− 1, k) + (m− k + 1)A(m− 1, k − 1),

with A(m, 1) = A(m, m) = 1 and 2 ≤ k ≤ m− 1.

Remark 2.10. The sequence in k , A(m, k) with 1 ≤ k ≤ m is symmetric for
any m ≥ 2. Indeed, if m = 2 then A(2, 1)=A(2, 2)=1. If m > 2 then

A(m, k) = k A(m− 1, k) + (m− k + 1) A(m− 1, k − 1) =

= kA(m− 1, m− k) + (m− k + 1)A(m− 1, m− k + 1) = A(m, m− k + 1).
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Proof. We know that Bm = T1 ∗ T2 ∗ . . . ∗ Tm, where Ti = K[tij : j ∈ Ai] is
Segre product of m polynomial rings in two indeterminates and dimk(Bm)i =
(

i+2−1
i

)m
= (i + 1)m.

We show that the Krull dimension of Bm is dim Bm = m + 1 and the
Hilbert series of Bm, HBm

(t) = R(t)
(1−t)m+1 , with deg(R) ≤ m− 1.

We proceed by induction on m. The case m = 1 is clear. Suppose m ≥ 2.
For every 1 ≤ i ≤ m we have ri(HTi

) = −1, thus ri(HBm
) = −1. Since

Bm+1 = Bm ∗ Tm+1 we have

HBm+1
(t) = Had(HBm

, Tm+1) =
R(t)

(1− t)(m+1)+2−1
=

R(t)

(1− t)m+2
;

deg(R) ≤ max(ri(HBm
), ri(HTm+1

)) + ((m + 1) + 2− 1)− 1 = m.

If R(t) :=
∑m−1

k=0 rit
i, then we need to find the coefficients r′is. We may

compute the first m values of H(Bm, i). Then it suffices to take the (m + 1)th

difference of these first m values and we get the required r′is. For this it
suffices to go backward in the algorithm which determines the numerators of
the Hilbert series and to obtain H(Bm, i) = dimk(B)i for all i.

We define
A0(m, k) = rk = A(m, k),

Ai(m, 1) = 1, Ai(m, k) = Ai(m, k − 1) + Ai−1(m, k),

for i ≥ 1 and 2 ≤ k ≤ m. For m ≥ 2 and 2 ≤ k ≤ m fixed we want to prove
that

At(m, k) =

k
∑

s=1

A(m, s)

(

t + k − s− 1

k − s

)

for any t ≥ 1 (with the convention that the binomial coefficient
(

m

n

)

is zero if
m < n).

We proceed by induction on t.
Case t = 1.
Since for any m ≥ 2 and fixed 2 ≤ k ≤ m, we have

A1(m, k) = A1(m, k − 1) + A(m, k),

A1(m, k − 1) = A1(m, k − 2) + A(m, k − 1),

A1(m, k − 2) = A1(m, k − 3) + A(m, k − 2),

. . . . . . . . . . . . . . . . . . . . . . . .

A1(m, 3) = A1(m, 2) + A(m, 3),

A1(m, 2) = A1(m, 1) + A(m, 2),

A1(m, 1) = 1 = A(m, 1),
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we obtain:

A1(m, k) =

k
∑

s=1

A(m, s).

Case t > 1 : From

At(m, k + 1) = At(m, k) + At−1(m, k + 1),

At−1(m, k + 1) = At−1(m, k) + At−2(m, k + 1),

At−2(m, k + 1) = At−2(m, k) + At−3(m, k + 1),

. . . . . . . . . . . . . . . . . . . . . . . . . . .

A3(m, k + 1) = A3(m, k) + A2(m, k + 1),

A2(m, k + 1) = A2(m, k) + A1(m, k + 1),

A1(m, k + 1) = A1(m, k) + A(m, k + 1),

we obtain

At(m, k + 1) =
t

∑

j=1

Aj(m, k) + A(m, k + 1).

For t > 1,

At(m, k + 1) =
t

∑

j=1

Aj(m, k) + A(m, k + 1)

=
t

∑

j=1

(
k

∑

s=1

A(m, s)

(

j + k − s− 1

k − s

)

) + A(m, k + 1)

=

k
∑

s=1

(

t
∑

j=1

(

j + k − s− 1

k − s

)

)A(m, s) + A(m, k + 1)

=

k
∑

s=1

(

t + k − s

k − s + 1

)

A(m, s) + A(m, k + 1)

=

k+1
∑

s=1

A(m, s)

(

t + k − s

k − s + 1

)

,

since
t

∑

j=1

(

j + k − s− 1

k − s

)

=

(

t + k − s

k − s + 1

)

.
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Now we want to prove that Am+1(m, k) = km.

From [7] or [12] we mention the Worpitzky identity :

km =
m

∑

s=1

A(m, s)

(

k + s− 1

m

)

.

We know that

Am+1(m, k) =
k

∑

s=1

A(m, s)

(

m + k − s

k − s

)

=
k

∑

s=1

A(m, s)

(

m + k − s

m

)

.

Thus

km =

m
∑

s=1

A(m, s)

(

k + s− 1

m

)

= A(m, m)

(

k + m− 1

m

)

+ A(m, m− 1)

(

k + m− 1− 1

m

)

+ . . . + A(m, m− k + 2)

(

m + 1

m

)

+ A(m, m− k + 1)

(

m

m

)

= A(m, 1)

(

k + m− 1

m

)

+ A(m, 2)

(

k + m− 2

m

)

+ . . .

. . . + A(m, k − 1)

(

k + m− k + 1

m

)

+ A(m, k)

(

k + m− k

m

)

=

k
∑

s=1

A(m, s)

(

m + k − s

m

)

= Am+1(m, k).

Thus the rk = A(m, k + 1) for 0 ≤ k ≤ m− 1.

Example 2.11. We compute the Hilbert series for

A = {A1 = {1, 2}, A2 = {2, 3}, A3 = {3, 4}, A4 = {4, 5}}.

k 1 2 3 4
k4 = A5(4, k) 1 16 81 256
A4(4, k) 1 15 65 175
A3(4, k) 1 14 50 110
A2(4, k) 1 13 36 60
A1(4, k) 1 12 23 24
A0(4, k) 1 11 11 1
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The last row of the table contains the coefficients of the numerator of
HB4

(t). Thus the Hilbert series of B4 is

HB4
(t) =

1 + 11t + 11t2 + t3

(1− t)5
.

Corollary 2.12. The number of generators of the defining ideal of Bm (the
number of Hibi-relations of Bm) is

µ =

(

H(Bm, 1) + 1

2

)

−H(Bm, 2) =

(

2m + 1

2

)

− 3m = 22m−1 + 2m−1 − 3m.

Corollary 2.13. The h-vector of the Hilbert series associated to the transver-
sal polymatroid presented by A = {A1, A2, . . . , Am}, such that |Ai| = 2, for
1 ≤ i ≤ m, |Ai∩Ai+1| ≤ 1 and Aj

⋂

Ai = ∅, for 1 ≤ i ≤ m−1, 1 ≤ j < i−1,

is unimodal .

Proof. From [1], we know that A(m, k) is log-concave sequence in k, for all m,
thus is unimodal.
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