An. Şt. Univ. Ovidius Constanta

A REMARK ON THE HILBERT SERIES OF TRANSVERSAL POLYMATROIDS

Alin Ştefan

Abstract

In this note we study when the transversal polymatroids presented by $\mathbf{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$, where all the sets A_{i} have two elements, have the base ring B_{m} Gorenstein. Using Worpitzky identity, we show that the numerator of the Hilbert series has the coefficients Eulerian numbers and, from [1], the Hilbert series is unimodal.

1 Introduction

Let K be an infinite field, n and m be positive integers, A_{i} be some subsets of $[n]$ for $1 \leq i \leq m, \mathbf{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$. Let

$$
B_{m}=K\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{m}}: i_{j} \in A_{j}, 1 \leq j \leq m\right]
$$

and

$$
C=K\left[x_{i} y_{j}: i \in A_{j}, 1 \leq j \leq m\right] .
$$

Obviously $C \subseteq S$, where S is the Segre product of the polynomial rings in n, respectively m, indeterminates,

$$
S:=K\left[x_{1}, x_{2}, \ldots, x_{n}\right] * K\left[y_{1}, y_{2}, \ldots, y_{m}\right]=K\left[x_{i} y_{j}: 1 \leq i \leq n, 1 \leq j \leq m\right] .
$$

We consider the variables $t_{i j}, 1 \leq i \leq n, 1 \leq j \leq m$ and we define

$$
\begin{aligned}
& T=K\left[t_{i j}: 1 \leq i \leq n, 1 \leq j \leq m\right] \\
& T(\mathbf{A})=K\left[t_{i j}: 1 \leq j \leq m, i \in A_{j}\right]
\end{aligned}
$$

Received: March, 2006
and the presentations $\phi: T \longrightarrow S$ and $\phi^{\prime}: T(\mathbf{A}) \longrightarrow C$ defined by $t_{i j} \longrightarrow x_{i} y_{j}$. By [10, Proposition 9.1.2] we know that $\operatorname{ker}(\phi)$ is the ideal $I_{2}(t)$ of the $2-$ minors of the $n \times m$ matrix $t=\left(t_{i j}\right)$ via the map ϕ. The algebras $C, T(\mathbf{A})$, S and T are \mathbf{Z}^{m}-graded by setting $\operatorname{deg}\left(x_{i} y_{j}\right)=\operatorname{deg}\left(t_{i j}\right)=e_{i} \in \mathbf{Z}^{m}$ where e_{i}, $1 \leq i \leq m$ denote the vectors of the canonical basis of \mathbf{R}^{m}.

By [11, Propositions 4.11 and 8.11] or [10, Proposition 8.1.10] we know that the cycles of the complete bipartite graph $K_{n, m}$ give a universal Gröbner basis of $I_{2}(t)$.

A cycle of the complete bipartite graph is described by a pair (I, J) of sequences of integers, say

$$
I=i_{1}, i_{2}, \ldots, i_{s}, \quad J=j_{1}, j_{2}, \ldots, j_{s}
$$

with $2 \leq s \leq \min (m, n), 1 \leq i_{k} \leq m, 1 \leq j_{k} \leq n$ and such that the i_{k} are distinct and the j_{k} are distinct. Associated with any such a pair we have a polynomial $F_{(I, J)}=t_{i_{1} j_{1}} \ldots t_{i_{s} j_{s}}-t_{i_{2} j_{1}} \ldots t_{i_{s} j_{s-1}} t_{i_{1} j_{s}}$ which is in $I_{2}(t)$.

For a \mathbf{Z}^{m}-graded algebra E we denote by E_{Δ} the direct sum of the graded components of degree $(a, a, \ldots, a) \in \mathbf{Z}^{m}$. Similarly, for a \mathbf{Z}^{m}-graded E-module M, we denote by M_{Δ} the direct sum of the graded components of M of degree $(a, a, \ldots, a) \in \mathbf{Z}^{m}$. Clearly E_{Δ} is a \mathbf{Z}-graded algebra and M_{Δ} is a \mathbf{Z}-graded E_{Δ} module. Furthermore $-_{\Delta}$ is exact as a functor on the category of $\mathbf{Z}^{m_{-}}$ graded E-modules with maps of degree 0 . Now C_{Δ} is the K-algebra generated by the elements $x_{i_{1}} y_{1} \ldots x_{i_{m}} y_{m}$ with $i_{j} \in A_{j}$. Therefore B_{m} is isomorphic to the algebra C_{Δ}. Hence we obtain a presentation :

$$
0 \longrightarrow J \longrightarrow T(\mathbf{A})_{\Delta} \longrightarrow B_{m} \longrightarrow 0
$$

where $J=\left(I_{2}(t) \bigcap T(\mathbf{A})\right)_{\Delta}$.
$T(\mathbf{A})_{\Delta}$ is the K-algebra generated by the monomials $t_{1 i_{1}} t_{2 i_{2}} \ldots t_{m i_{m}}$, with $i_{k} \in A_{k}$, that is, $T(\mathbf{A})_{\Delta}$ is the Segre product $T_{1} * T_{2} * \ldots * T_{m}$ of the polynomial rings $T_{i}=K\left[t_{i j}: j \in A_{i}\right]$. Now we consider the variables s_{α} with $\alpha \in A:=$ $A_{1} \times A_{2} \times \ldots \times A_{m}$ Then we get the presentation of the Segre product $T(\mathbf{A})_{\Delta}$ as a quotient of $K[A]$ by mapping $s_{\left(j_{1}, \ldots, j_{m}\right)}$ to $t_{1 j_{1}} t_{2 j_{2}} \ldots t_{m j_{m}}$.

From [5] the defining ideal of $T(\mathbf{A})_{\Delta}$ is generated by the so-called Hibi relations:

$$
s_{\alpha} s_{\beta}-s_{(\alpha \vee \beta)} s_{\alpha \wedge \beta)}
$$

where

$$
\alpha \vee \beta=\left(\max \left(\alpha_{1}, \beta_{1}\right), \ldots, \max \left(\alpha_{m}, \beta_{m}\right)\right),
$$

and

$$
\alpha \wedge \beta=\left(\min \left(\alpha_{1}, \beta_{1}\right), \ldots, \min \left(\alpha_{m}, \beta_{m}\right)\right)
$$

Example 1.1. Let $n=3$ and

$$
A_{1}=\{1,2\}, A_{2}=\{2,3\}, A_{3}=\{3,4\}
$$

Then C is the quotient of $K\left[t_{11}, t_{12}, t_{22}, t_{23}, t_{33}, t_{34}\right]$ by the zero ideal ($J=0$ because we don't have cycles). Then

$$
B_{3}=K\left[x_{1} x_{2} x_{3}, x_{1} x_{2} x_{4}, x_{1} x_{3}^{2}, x_{1} x_{3} x_{4}, x_{2}^{2} x_{3}, x_{2}^{2} x_{4}, x_{2} x_{3}^{2}, x_{2} x_{3} x_{4}\right]
$$

is the quotient of $K\left[s_{123}, s_{124}, s_{133}, s_{134}, s_{223}, s_{224}, s_{233}, s_{234}\right]$ modulo the ideal generated by the Hibi relations:

$$
\begin{gathered}
s_{123} s_{134}-s_{124} s_{133}, s_{123} s_{224}-s_{124} s_{223} \\
s_{123} s_{234}-s_{124} s_{233}, s_{123} s_{233}-s_{133} s_{223} \\
s_{123} s_{234}-s_{133} s_{224}, s_{123} s_{234}-s_{134} s_{223} \\
s_{124} s_{234}-s_{134} s_{224}, s_{133} s_{234}-s_{134} s_{233} \\
s_{223} s_{234}-s_{224} s_{233}
\end{gathered}
$$

Since $K\left[t_{11}, t_{12}\right] * K\left[t_{22}, t_{23}\right] * K\left[t_{33}, t_{34}\right]$ is a Gorenstein ring ([6, Example 7.4]) then B_{3} is a Gorenstein ring .
Example 1.2. Let $n=3$ and

$$
A_{1}=\{1,2\}, A_{2}=\{2,3\}, A_{3}=\{3,1\} .
$$

Then C is the quotient of $K\left[t_{11}, t_{12}, t_{22}, t_{23}, t_{33}, t_{31}\right]$ modulo the ideal generated by the polynomial $t_{11} t_{22} t_{33}-t_{12} t_{23} t_{31}$ (we have one 6 -cycles). Then

$$
B_{3}=K\left[x_{1} x_{2} x_{3}, x_{1}^{2} x_{2}, x_{1} x_{3}^{2}, x_{1}^{2} x_{3}, x_{2}^{2} x_{3}, x_{1} x_{2}^{2}, x_{2} x_{3}^{2}\right]
$$

is the quotient of $K\left[s_{123}, s_{121}, s_{133}, s_{131}, s_{223}, s_{221}, s_{233}, s_{231}\right]$ modulo the ideal generated by the Hibi relations:

$$
\begin{gathered}
s_{221} s_{233}-s_{223} s_{231}, s_{131} s_{233}-s_{133} s_{231} \\
s_{121} s_{233}-s_{123} s_{231}, s_{131} s_{221}-s_{121} s_{231} \\
s_{133} s_{221}-s_{123} s_{231}, s_{131} s_{223}-s_{123} s_{231} \\
s_{133} s_{223}-s_{233} s_{231}, s_{121} s_{223}-s_{221} s_{231} \\
s_{121} s_{133}-s_{131} s_{231}
\end{gathered}
$$

and by the linear relation

$$
s_{123}-s_{231}
$$

Since $K\left[t_{11}, t_{12}\right] * K\left[t_{22}, t_{23}\right] * K\left[t_{33}, t_{31}\right]$ is a Gorenstein ring and $t_{11} t_{22} t_{33}$ $t_{12} t_{23} t_{31}$ is a regular element in $K\left[t_{11}, t_{12}\right] * K\left[t_{22}, t_{23}\right] * K\left[t_{33}, t_{31}\right]$ then

$$
\frac{K\left[t_{11}, t_{12}\right] * K\left[t_{22}, t_{23}\right] * K\left[t_{33}, t_{31}\right]}{\left(t_{11} t_{22} t_{33}-t_{12} t_{23} t_{31}\right)} \cong B_{3}
$$

is a Gorenstein ring.

Example 1.3. Let $n=3$ and

$$
A_{1}=\{1,2\}, A_{2}=\{1,2,3\}, A_{3}=\{2,3\} .
$$

Then C is the quotient of $K\left[t_{11}, t_{12}, t_{12} t_{22}, t_{23}, t_{23}, t_{33}\right]$ modulo the ideal generated by the polynomials $t_{11} t_{22}-t_{12} t_{21}, t_{22} t_{33}-t_{23} t_{32}, t_{11} t_{23} t_{32}-t_{12} t_{21} t_{33}$ (we have two 4 -cycles and one 6 -cycle),

$$
H_{C}(t)=\frac{1+2 t+t^{2}}{(1-t)^{5}}
$$

and then

$$
B_{3}=K\left[x_{1}^{2} x_{2}, x_{1}^{2} x_{3}, x_{1} x_{2} x_{3}, x_{1} x_{2}^{2}, x_{1} x_{3}^{2}, x_{2}^{3}, x_{2}^{2} x_{3}, x_{2} x_{3}^{2}\right]
$$

is the quotient of $K\left[s_{i j k} \mid(i, j, k) \in\{1,2\} \times\{1,2,3\} \times\{2,3\}\right]$ modulo the ideal generated by the Hibi relations:

$$
\begin{aligned}
& s_{222} s_{233}-s_{232} s_{223}, s_{212} s_{233}-s_{213} s_{232} \\
& s_{212} s_{232}-s_{213} s_{222}, s_{133} s_{232}-s_{213} s_{233} \\
& s_{133} s_{222}-s_{213} s_{232}, s_{133} s_{212}-s_{213} s_{132} \\
& s_{113} s_{233}-s_{133} s_{213}, s_{113} s_{232}-s_{213} s_{123} \\
& s_{113} s_{222}-s_{212} s_{213}, s_{112} s_{233}-s_{213} s_{132} \\
& s_{112} s_{232}-s_{212} s_{213}, s_{112} s_{222}-s_{212} s_{122} \\
& s_{112} s_{213}-s_{113} s_{212}, s_{112} s_{133}-s_{113} s_{213}
\end{aligned}
$$

and by the linear relations $s_{132}-s_{213}, s_{123}-s_{213}, s_{122}-s_{212}, s_{223}-s_{232}$.
Since B_{3} is a domain and the Hilbert series of B_{3} is

$$
H_{B_{3}}(t)=\frac{1+5 t+t^{2}}{(1-t)^{3}}
$$

then B_{3} is a Gorenstein ring .

2 Hilbert series

Definition 2.1. Let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a polynomial ring over a field K. If M is a finitely generated \mathbf{N}-graded R-module, the numerical function:

$$
H(M,-): \mathbf{N} \longrightarrow \mathbf{N}
$$

with $H(M, n)=\operatorname{dim}_{K}\left(M_{n}\right)$, for all $n \in \mathbf{N}$, is the Hilbert function and $H_{M}(t)=\sum_{n \in \mathbf{N}} H(M, n) t^{n}$ is the Hilbert series of M.

Let n, m be positive integers, A_{i} be some subsets of $[n]$ such that $\left|A_{i}\right|=l$ for $1 \leq i \leq m, \mathbf{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$.

Let

$$
B_{m}=K\left[x_{i_{1}} x_{i_{2}} \ldots x_{i_{m}}: i_{j} \in A_{j}, 1 \leq j \leq m\right]
$$

and

$$
C=K\left[x_{i} y_{j}: i \in A_{j}, 1 \leq j \leq m\right] .
$$

From Section 1 we know that B_{m} is isomorphic to the algebra C_{Δ} and we have the presentation :

$$
0 \longrightarrow J \longrightarrow T(\mathbf{A})_{\Delta} \longrightarrow B_{m} \longrightarrow 0
$$

where $J=\left(I_{2}(t) \bigcap T(\mathbf{A})\right)_{\Delta}$.
Now we are interested on the case when $J=(0)$.
Remark 2.2. If $J=(0)$ then B_{m} is isomorphic to the algebra $(T(\mathbf{A}))_{\Delta}$.
$J=(0)$ is equivalent with the fact that the bipartite graph presented by \mathbf{A} ($\mathrm{V}_{1}=1,2, \ldots, m, V_{2}=A_{1} \cup A_{2} \cup, \ldots, \cup A_{m}$ and an edge from V_{1} to V_{2} joins $i \in V_{1}$ with $i_{j} \in V_{2}$ if and only if $i_{j} \in A_{i}$) does not have cycles.

If $\left|A_{i}\right|=l$, for $1 \leq i \leq m,\left|A_{i} \bigcap A_{i+1}\right| \leq 1$, and $A_{j} \bigcap A_{i}=\varnothing$, for $2 \leq i \leq m, j<i-1$, then the bipartite graph presented by A does not have cycles, thus the ideal J is zero.

Since $J=(0)$, then B_{m} is the Segre product of m polynomial rings, each of them in l indeterminates, that is, B_{m} is a Gorenstein ring (see [6, Example 7.4]); $\operatorname{dim}_{K}\left(B_{m}\right)_{i}=\left({ }_{i}^{2+l-1}\right)^{m}$.

In the case $m=2$ it is known (see [10, proposition 9.1.3]) that the Hilbert series of B_{2} is

$$
H_{B_{2}}(t)=\frac{\sum_{k=0}^{l-1}\binom{l-1}{k}^{2} t^{k}}{(1-t)^{2 l-1}} ; H\left(B_{2}, i\right)=\operatorname{dim}_{k}\left(B_{2}\right)_{i}=\binom{\imath+l-1}{i}^{2} .
$$

It results that the Krull dimension of B_{2} is $\operatorname{dim}_{k} B_{2}=2 l-1$ and the number of generators of the defining ideal of B_{2} (the number of Hibi-relations of B_{2}) is

$$
\mu=\binom{H\left(B_{2}, 1\right)+1}{2}-H\left(B_{2}, 2\right)=\binom{l^{2}+1}{2}-\binom{l+1}{2}^{2}=\binom{l}{2}^{2}
$$

Remark 2.3. We have the following relation between the Hilbert series of B_{m+1} and B_{m} :

$$
H_{B_{m+1}}(t)=\frac{1}{(l-1)!} \frac{d^{(l-1)}}{d t^{l-1}}\left(t^{l-1} H_{B_{m}}(t)\right) .
$$

Proof. Since $H_{B_{m}}(t)=\sum_{i \geq 0}\binom{1+l-1}{i}^{m} t^{i}$, then

$$
\begin{aligned}
& \frac{1}{(l-1)!} \frac{d^{(l-1)}}{d t^{l-1}}\left(t^{l-1} H_{B_{m}}(t)\right)=\frac{1}{(l-1)!} \frac{d^{(l-1)}}{d t^{l-1}}\left(t^{l-1} \sum_{i \geq 0}\binom{i+l-1}{i}^{m} t^{i}\right) \\
& =\frac{1}{(l-1)!} \frac{d^{(l-2)}}{d t^{l-2}}\left(\frac{d}{d t}\left(t^{l-1} \sum_{i \geq 0}\binom{i+l-1}{i}^{m} t^{i}\right)\right) \\
& =\frac{1}{(l-1)!} \frac{d^{(l-2)}}{d t^{l-2}}\left((l-1) t^{l-2} \sum_{i \geq 0}\binom{i+l-1}{i}^{m} t^{i}+t^{l-2} \sum_{i \geq 0} i\binom{i+l-1}{i}^{m} t^{i}\right) \\
& =\frac{1}{(l-1)!} \frac{d^{(l-2)}}{d t^{l-2}}\left(\sum_{i \geq 0}\binom{i+l-1}{i}^{m}(i+l-1) t^{i}\right) \\
& =\frac{1}{(l-1)!} \frac{d^{(l-3)}}{d t^{l-3}}\left(\frac{d}{d t}\left(t^{l-2} \sum_{i \geq 0}\binom{i+l-1}{i}^{m}(i+l-1) t^{i}\right)\right) \\
& =\frac{1}{(l-1)!} \frac{d^{(l-3)}}{d t^{l-3}}\left((l-2) t^{l-3} \sum_{i \geq 0}\binom{i+l-1}{i}^{m}(i+l-1) t^{i}+\right. \\
& \left.\left.+t^{l-3} \sum_{i \geq 0} i\binom{i+l-1}{i}^{m}(i+l-1) t^{i}\right)\right) \\
& =\frac{1}{(l-1)!} \frac{d^{(l-3)}}{d t^{l-3}}\left(t^{l-3} \sum_{i \geq 0}\binom{i+l-1}{i}^{m}(i+l-1)(i+l-2) t^{i}\right)=\cdots \\
& =\frac{1}{(l-1)!} \sum_{i \geq 0}\binom{i+l-1}{i}^{m}(i+l-1)(i+l-2) \cdots(i+2)(i+1) t^{i} \\
& =\sum_{i \geq 0}\binom{i+l-1}{i}^{m+1} t^{i}=H_{B_{m+1}}(t) .
\end{aligned}
$$

Let $A(t):=\sum_{i} a_{i} t^{i}$ and $B(t):=\sum_{i} b_{i} t^{i}$ be two power series in $\mathbf{Z}[[\mathrm{t}]]$. Then we denote by $\operatorname{Had}(A, B):=\sum_{i}\left(a_{i} b_{i}\right) t^{i}$ the Hadamard product of A and B ([8]).

Definition 2.4. ([8]) Let $A(t)$ be the Hilbert series of a standard k-algebra S. $r i(A)$ (or $r i(S)$) is the regularity index of A (or of S), i.e. the first integer r such that for every $s \geq r$ the Hilbert function of S takes the same values as the Hilbert polynomial of S.

Remark 2.5. $\operatorname{ri}(S)=a(S)+1$, where $a(S)$ is the a-invariant of S.
Proposition $2.6([8])$. Let $A(t):=\frac{P(t)}{(1-t)^{a}}$ and $B(t):=\frac{Q(t)}{(1-t)^{b}}$, where $p:=$ $\operatorname{deg}(P), q:=\operatorname{deg}(Q), P(1) \neq 0, Q(1) \neq 0$, and assume that $A(t)$ and $B(t)$ are the Hilbert series of standard k-algebras. Then

1) $\operatorname{ri}(A)=p-a+1$ and $\operatorname{ri}(B)=q-b+1$;
2) $\operatorname{ri}(\operatorname{Had}(A, B)) \leq \max (r i(A), \operatorname{ri}(B))$;
3) $\operatorname{Had}(A, B)=\frac{R(t)}{(1-t)^{a+b-1}}$, with $R(1) \neq 0$;
4) $\operatorname{deg}(R) \leq \max (r i(A), \operatorname{ri}(B))+(a+b-1)-1$;

Theorem 2.7 ([8]). Let S_{1} and S_{2} be two standard k-algebras with the Hilbert series $H_{S_{1}}, H_{S_{2}}$. Then the Hilbert series of Segre product of S_{1} and S_{2} is

$$
H_{S_{1} * S_{2}}=\operatorname{Had}\left(H_{S_{1}}, H_{S_{2}}\right)
$$

Definition 2.8. Let $R=K\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be a polynomial ring over a field K and M be a finitely generated \mathbf{N}-graded R-module. The difference operator Δ on the set of numerical functions $H(M,-)$ is

$$
(\Delta H(M,-))(n)=H(M, n+1)-H(M, n),
$$

where $H(M,-)$ is the Hilbert function.
The m - times iterated Δ operator (" m - difference of $H(M, n)$ ") will be denoted by Δ^{m}.

Proposition 2.9. If $\left|A_{i}\right|=2$, for $1 \leq i \leq m,\left|A_{i} \bigcap A_{i+1}\right| \leq 1$ and $A_{j} \bigcap A_{i}=$ \varnothing, for $1 \leq i \leq m-1,1 \leq j<i-1$, then the Hilbert series of B_{m} is

$$
H_{B_{m}}(t)=\frac{\sum_{k=0}^{m-1} A(m, k+1) t^{k}}{(1-t)^{m+1}}
$$

where

$$
A(m, k)=k A(m-1, k)+(m-k+1) A(m-1, k-1),
$$

with $A(m, 1)=A(m, m)=1$ and $2 \leq k \leq m-1$.
Remark 2.10. The sequence in $k, A(m, k)$ with $1 \leq k \leq m$ is symmetric for any $m \geq 2$. Indeed, if $m=2$ then $A(2,1)=A(2,2)=1$. If $m>2$ then

$$
\begin{gathered}
A(m, k)=k A(m-1, k)+(m-k+1) A(m-1, k-1)= \\
=k A(m-1, m-k)+(m-k+1) A(m-1, m-k+1)=A(m, m-k+1)
\end{gathered}
$$

Proof. We know that $B_{m}=T_{1} * T_{2} * \ldots * T_{m}$, where $T_{i}=K\left[t_{i j}: j \in A_{i}\right]$ is Segre product of m polynomial rings in two indeterminates and $\operatorname{dim}_{k}\left(B_{m}\right)_{i}=$ $\binom{i+2-1}{i}^{m}=(i+1)^{m}$.
${ }^{i}$ We show that the Krull dimension of B_{m} is $\operatorname{dim} B_{m}=m+1$ and the Hilbert series of $B_{m}, H_{B_{m}}(t)=\frac{R(t)}{(1-t)^{m+1}}$, with $\operatorname{deg}(R) \leq m-1$.

We proceed by induction on m. The case $m=1$ is clear. Suppose $m \geq 2$. For every $1 \leq i \leq m$ we have $\operatorname{ri}\left(H_{T_{i}}\right)=-1$, thus $\operatorname{ri}\left(H_{B_{m}}\right)=-1$. Since $B_{m+1}=B_{m} * T_{m+1}$ we have

$$
\begin{aligned}
& H_{B_{m+1}}(t)=\operatorname{Had}\left(H_{B_{m}}, T_{m+1}\right)=\frac{R(t)}{(1-t)^{(m+1)+2-1}}=\frac{R(t)}{(1-t)^{m+2}} \\
& \operatorname{deg}(R) \leq \max \left(r i\left(H_{B_{m}}\right), r i\left(H_{T_{m+1}}\right)\right)+((m+1)+2-1)-1=m
\end{aligned}
$$

If $R(t):=\sum_{k=0}^{m-1} r_{i} t^{i}$, then we need to find the coefficients $r_{i}^{\prime} s$. We may compute the first m values of $H\left(B_{m}, i\right)$. Then it suffices to take the $(m+1)^{t h}$ difference of these first m values and we get the required $r_{i}^{\prime} s$. For this it suffices to go backward in the algorithm which determines the numerators of the Hilbert series and to obtain $H\left(B_{m}, i\right)=\operatorname{dim}_{k}(B)_{i}$ for all i.

We define

$$
\begin{aligned}
A_{0}(m, k) & =r_{k}=A(m, k) \\
A_{i}(m, 1)=1, A_{i}(m, k) & =A_{i}(m, k-1)+A_{i-1}(m, k)
\end{aligned}
$$

for $i \geq 1$ and $2 \leq k \leq m$. For $m \geq 2$ and $2 \leq k \leq m$ fixed we want to prove that

$$
A_{t}(m, k)=\sum_{s=1}^{k} A(m, s)\binom{t+k-s-1}{k-s}
$$

for any $t \geq 1$ (with the convention that the binomial coefficient $\binom{m}{n}$ is zero if $m<n$).

We proceed by induction on t.
Case $t=1$.
Since for any $m \geq 2$ and fixed $2 \leq k \leq m$, we have

$$
\begin{aligned}
& A_{1}(m, k)=A_{1}(m, k-1)+A(m, k) \\
& A_{1}(m, k-1)=A_{1}(m, k-2)+A(m, k-1), \\
& A_{1}(m, k-2)=A_{1}(m, k-3)+A(m, k-2) \\
& \ldots \ldots \cdots \cdots \cdots \cdots \cdots \\
& A_{1}(m, 3)=A_{1}(m, 2)+A(m, 3) \\
& A_{1}(m, 2)=A_{1}(m, 1)+A(m, 2) \\
& A_{1}(m, 1)=1=A(m, 1)
\end{aligned}
$$

we obtain:

$$
A_{1}(m, k)=\sum_{s=1}^{k} A(m, s)
$$

Case $t>1$: From

$$
\begin{aligned}
& A_{t}(m, k+1)=A_{t}(m, k)+A_{t-1}(m, k+1), \\
& A_{t-1}(m, k+1)=A_{t-1}(m, k)+A_{t-2}(m, k+1), \\
& A_{t-2}(m, k+1)=A_{t-2}(m, k)+A_{t-3}(m, k+1), \\
& \ldots \ldots \ldots \cdots \cdots \cdots \cdots \cdots \cdots \\
& A_{3}(m, k+1)=A_{3}(m, k)+A_{2}(m, k+1), \\
& A_{2}(m, k+1)=A_{2}(m, k)+A_{1}(m, k+1), \\
& A_{1}(m, k+1)=A_{1}(m, k)+A(m, k+1),
\end{aligned}
$$

we obtain

$$
A_{t}(m, k+1)=\sum_{j=1}^{t} A_{j}(m, k)+A(m, k+1)
$$

For $t>1$,

$$
\begin{aligned}
& A_{t}(m, k+1)=\sum_{j=1}^{t} A_{j}(m, k)+A(m, k+1) \\
& =\sum_{j=1}^{t}\left(\sum_{s=1}^{k} A(m, s)\binom{j+k-s-1}{k-s}\right)+A(m, k+1) \\
& =\sum_{s=1}^{k}\left(\sum_{j=1}^{t}\binom{j+k-s-1}{k-s}\right) A(m, s)+A(m, k+1) \\
& =\sum_{s=1}^{k}\binom{t+k-s}{k-s+1} A(m, s)+A(m, k+1) \\
& =\sum_{s=1}^{k+1} A(m, s)\binom{t+k-s}{k-s+1}
\end{aligned}
$$

since

$$
\sum_{j=1}^{t}\binom{j+k-s-1}{k-s}=\binom{t+k-s}{k-s+1}
$$

Now we want to prove that $A_{m+1}(m, k)=k^{m}$.
From [7] or [12] we mention the Worpitzky identity :

$$
k^{m}=\sum_{s=1}^{m} A(m, s)\binom{k+s-1}{m} .
$$

We know that

$$
A_{m+1}(m, k)=\sum_{s=1}^{k} A(m, s)\binom{m+k-s}{k-s}=\sum_{s=1}^{k} A(m, s)\binom{m+k-s}{m}
$$

Thus

$$
\begin{aligned}
& k^{m}=\sum_{s=1}^{m} A(m, s)\binom{k+s-1}{m}=A(m, m)\binom{k+m-1}{m}+A(m, m-1) \\
& \binom{k+m-1-1}{m}+\ldots+A(m, m-k+2)\binom{m+1}{m}+A(m, m-k+1)\binom{m}{m} \\
& =A(m, 1)\binom{k+m-1}{m}+A(m, 2)\binom{k+m-2}{m}+\ldots \\
& \ldots+A(m, k-1)\binom{k+m-k+1}{m}+A(m, k)\binom{k+m-k}{m} \\
& =\sum_{s=1}^{k} A(m, s)\binom{m+k-s}{m}=A_{m+1}(m, k) .
\end{aligned}
$$

Thus the $r_{k}=A(m, k+1)$ for $0 \leq k \leq m-1$.

Example 2.11. We compute the Hilbert series for

$$
\begin{aligned}
& \mathbf{A}=\left\{A_{1}=\{1,2\}, A_{2}=\{2,3\}, A_{3}=\{3,4\}, A_{4}=\{4,5\}\right\} . \\
& \\
& k
\end{aligned}
$$

The last row of the table contains the coefficients of the numerator of $H_{B_{4}}(t)$. Thus the Hilbert series of B_{4} is

$$
H_{B_{4}}(t)=\frac{1+11 t+11 t^{2}+t^{3}}{(1-t)^{5}} .
$$

Corollary 2.12. The number of generators of the defining ideal of B_{m} (the number of Hibi-relations of B_{m}) is

$$
\mu=\binom{H\left(B_{m}, 1\right)+1}{2}-H\left(B_{m}, 2\right)=\binom{2^{m}+1}{2}-3^{m}=2^{2 m-1}+2^{m-1}-3^{m}
$$

Corollary 2.13. The h-vector of the Hilbert series associated to the transversal polymatroid presented by $\mathbf{A}=\left\{A_{1}, A_{2}, \ldots, A_{m}\right\}$, such that $\left|A_{i}\right|=2$, for $1 \leq i \leq m,\left|A_{i} \cap A_{i+1}\right| \leq 1$ and $A_{j} \bigcap A_{i}=\varnothing$, for $1 \leq i \leq m-1,1 \leq j<i-1$, is unimodal.

Proof. From [1], we know that $A(m, k)$ is log-concave sequence in k, for all m, thus is unimodal.

Acknowledgments. I would like to thank for financial support to University of Genova and CNCSIS program during one month visit to University of Genova. I am grateful to Professor Aldo Conca for helpful discussions and hospitality. Also I wish to express my thanks to Professor Dorin Popescu for support, helpful discussions and hints. This work was also partially supported by the CEEX Program of the Romanian Ministry of Education and Research, contract CEx05-D11-11/2005.

References

[1] M.Bona, R.Ehrenborg, Combinatorial Proof of the Log-Concavity of the Numbers of Permutations with k Runs, Journal of Combinatorial Theory, Series A 90, 293-303, (2000)
[2] W. Bruns, J. Herzog, Cohen-Macaulay rings, Revised Edition, Cambridge, 1996
[3] Aldo Conca, Linear Spaces, Transversal Polymatroids and ASL Domains, arXiv:math.AC/0504111
[4] G.-M.Greuel, G.Pfister, and H.Schönemann.SINGULAR 2.0. A Computer Algebra System for Polynomial Computations.Centre for Computer Algebra, University of Kaiserslautern(2001).http://www.singular.uni-kl.de.
[5] T. Hibi, Algebraic Combinatorics on Convex Polytopes, Carslaw Publications, Glebe, N.S.W., Australia,1992.
[6] J. Herzog, T. Hibi, Discrete Polymatroids, arXiv:math.AC/0307236
[7] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, rev. enl. ed. Dordrecht, Netherlands: Reidel, 1974.
[8] L. Robbiano, G. Valla, Hilbert-Poincare Series of Bigraded Algebra, Bollettino U.M.I.(8) 1998,521-540
[9] V.Reiner and V.Welker , On the Charney-Davis and Neggers-Stanley conjectures. Avaible at www.math.umn.edu/ reiner.
[10] R. Villarreal, Monomial Algebras, Marcel Dekker, 2001
[11] B. Sturmfels, Gröbner bases and convex polytopes, Amer. Math. Soc., 1996
[12] L. Worpitzky, Studien über die Bernoullischen und Eulerischen Zahlen, J. reine angew. Math. 94, 203-232, 1883.

University of Ploieşti, Department of Mathematics
Bd. Bucureşti, 39, Ploieşti, Romania
E-mail: nastefan@mail.upg-ploiesti.ro

