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GENERALIZED KOSZUL COMPLEXES

Bogdan Ichim and Udo Vetter

Abstract

This article should be viewed as a survey of generalized Koszul com-
plexes and Koszul bicomplexes with an application to generalized Koszul
complexes in projective dimension one. We shall try to give detailed in-
formation on the basic definitions and a summary of the main results.
Concerning proofs the reader is invited to have a look into [I] or [IV].

Introduction.

We start with the following question: given finite free modules F , G, H

over a noetherian ring R and a complex F
χ
→ G

λ
→ H; in which way does

grade Iλ depend on grade Iχ and on the ranks of F , G, H? Here Iχ is the
ideal of maximal minors of χ, and grade Iχ is the maximal length of a regular
sequence contained in Iχ.

If, for example, rankF = 1, rankG = n, and χ is given by a regular
sequence x1, . . . , xn in R, i.e. χ(1) = (x1, . . . , xn), then one knows that
grade Iλ = n is possible if and only if rankH = 1 and n is even. (The if
part is trivial: Set λ(a1, . . . , an) =

∑n
i=1(−1)i+1aixn−i+1; for the other direc-

tion see [BV2] or Corollary 7 at the end of the article)

Assume that m = rankF ≤ n = rankG. Then it turns out that the prob-
lem just described is closely connected with the homology of the (generalized)
Koszul complex associated with the induced map λ̄ : Cokχ→ H.

1. Classical Koszul complexes. Let G be a module over an arbitrary
commutative ring R, and let ψ : G→ R be a linear form. Define

∂ψ(y1 ∧ . . . ∧ yp) =

p∑

i=1

(−1)i+1ψ(yi)y1 ∧ . . . ŷi . . . ∧ yp
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for y1, . . . , yp ∈ G. The complex

· · ·
∧
pG

∂ψ
→

∧
p−1G→ · · · →

∧1G
ψ
→ R→ 0

is called the (classical) Koszul complex associated with ψ. We view ψ as an
element of G∗ = HomR(G,R). Then the map ∂ψ is the right multiplication
of ψ on

∧
G within the meaning of the following structure of

∧
G as a right∧

G∗-module:

y1 ∧ . . . ∧ yn ↼ y∗1 ∧ . . . ∧ y
∗
p =

∑

σ

ε(σ) det
1≤i,j≤p

(y∗j (yσ(i)))yσ(p+1) ∧ . . . ∧ yσ(n)

for y1, . . . , yn ∈ G and y∗1 , . . . , y
∗
p ∈ G∗, where σ runs through the set Sn,p

of permutations of n elements which are increasing on the intervals [1, p] and
[p+ 1, n].

The notion Koszul complex is also applied to a dual version of the complex
considered above. Let ϕ : R → G be R-linear. The complex we have in mind
is

0→ R
dϕ
→ G→ · · · →

∧
p−1G

dϕ
→

∧
pG→ · · ·

where dϕ is the left multiplication by ϕ on
∧
G: ϕ ⇀ y = ϕ(1) ∧ y for all

y ∈
∧
G.

If G is free of finite rank n, then both variants are equivalent, which means:
there is a (non-canonical) complex isomorphism given by an orientation ν of
G:

0 −−−−→
∧
nG

∂ψ
−−−−→

∧
n−1G · · · −−−−→ G −−−−→ R −−−−→ 0

νn

y νn−1

y ν1

y ν0

y

0 −−−−→ R
dψ∗

−−−−→ G∗ · · · −−−−→
∧
n−1G∗ −−−−→

∧
nG∗ −−−−→ 0

(An orientation ν of G is an isomorphism ν :
∧
nG → R, and νi :

∧
iG →∧

n−iG∗ is defined by νi(x)(y) = ν(x∧ y) for all x ∈
∧
iG and all y ∈

∧
n−iG.)

2. Generalized Koszul Complexes. Let ψ : G → F be a linear
map of R-modules G and F . By S(F ) we denote the symmetric algebra of F .
Consider the S(F )-linear map ψ⊗S(F ) : G⊗S(F ) → S(F ). The complex C(ψ)
associated with ψ is the classical Koszul complex associated with ψ ⊗ S(F ).
As a complex of R-modules it splits into direct summands C(ψ)(t)

0 →
� t

G⊗S0(F )
∂ψ
→

� t−1
G⊗S1(F ) → · · · →

� 1
G⊗St−1(F )

∂ψ
→

� 0
G⊗St(F ) → 0



Generalized Koszul Complexes 63

where we write ∂ψ = ∂ψ⊗S(F ) for simplicity.

Assume in addition that G and F are free of ranks n and m and that
r = n − m ≥ 0. We choose bases y1, . . . , yn for G and f1, . . . , fm for F .
The corresponding dual bases of G∗ and F ∗ are denoted by y∗1 , . . . , y

∗
n and

f∗1 , . . . , f
∗
m.

Let ω :
∧
nG → R, ω̃ :

∧
nG∗ → R be the orientations of G and G∗ given

by ω(y1∧ . . .∧yn) = 1 and ω̃(y∗1 ∧ . . .∧y
∗
n) = 1. Set x∗ = ψ∗(f∗1 )∧ . . .∧ψ∗(f∗m)

and consider the map

ν̃ψ :
∧
n−m−tG∗ → (

∧
tG∗)∗, ν̃ψ(z∗)(y∗) = ω̃(z∗ ∧ y∗ ∧ x∗)

for all z∗ ∈
∧
n−m−tG∗, y∗ ∈

∧
tG∗. One can easily see directly (or use the

first diagram below to see) that ν̃ψ connects the complexes (C(ψ)(r− t))∗ and

C(ψ)(t) to a complex K̃(ψ)(t)

0→ (
∧0G⊗ Sr−t(F ))∗

∂∗ψ
→ · · ·

∂∗ψ
→(

∧
r−tG⊗ S0(F ))∗

�

νψ
→

∧
tG⊗ S0(F )

∂ψ
→ · · ·

∂ψ
→

∧0G⊗ St(F ) → 0.

Remark 1. The complexes just introduced one can find in [E], Chapter A2.6.1

or in [BV3], 2.C. If m = 1, then K̃(ψ)(t) is isomorphic to the classical Koszul
complex (for each t). If m is arbitrary and t = 0 (t = 1), one obtains the
complexes of Eagon-Northcott (Buchsbaum-Rim). In general, there is a (non-
canonical) complex isomorphism

K̃(ψ)(t) ∼=
(
K̃(ψ)(n−m− t)

)∗
(1)

for all t.

Let G be arbitrary and F as above, i.e. equipped with a basis f1, . . . , fm
the dual basis of which is f∗1 , . . . , f

∗
m. From a structural point of view there

is a smoother (and more general) version of K̃(ψ)(t) if one uses the canonical
right

∧
G∗ ⊗ S(F )-module structure of

∧
G⊗ S(F )∗. Here S(F )∗ = ⊕Sp(F )∗

is the so called graded dual of S(F ). We consider the complexes K(ψ)(t)

· · · →
∧
t+m+pG⊗ Sp(F )∗

∂ψ
→ · · ·

∂ψ
→

∧
t+mG⊗ S0(F )∗

νψ
→

∧
tG⊗ S0(F )

∂ψ
→ · · ·

∂ψ
→

∧0G⊗ St(F ) → 0

where

(a) νψ is the right multiplication on
∧
G by x∗ = ψ∗(f∗1 ) ∧ . . . ∧ ψ∗(f∗m),
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(b) the differential ∂ψ on the right of νψ is the right multiplication by ψ ⊗
S(F ) on

∧
G⊗ S(F ) as above,

(c) and the differential ∂ψ on the left of νψ is defined by means of the
right

∧
G∗ ⊗ S(F )-module structure of

∧
G⊗ S(F )∗ as follows: we view

ψ ∈ Hom(G,F ) as an element of G∗ ⊗ F ⊂
∧
G∗ ⊗ S(F ); then ψ =∑

i ψ
∗(f∗i )⊗ fi and

∂ψ(y1 ∧ . . . ∧ yp ⊗ z) = y1 ∧ . . . ∧ yp ⊗ z ↼
∑

i

ψ(f∗i )⊗ fi

=
∑

i

(
y1 ∧ . . . ∧ yp ↼ ψ∗(f∗i )

)
⊗ z · fi.

for all yj ∈ G and z ∈ S(F )∗.

So all complex maps in K(ψ)(t) are certain right multiplications, a fact which
facilitates computations in the following.

If G is free of rank n and ω is the orientation of G from above, then we
obtain the following commutative diagram:

0 // (
�

0 ⊗ Sr−t)∗
∂∗ψ // · · ·

∂∗ψ // (
�

r−t)∗

�
νψ

##GG
GG

GG
GG

G

�
t

∂ψ // · · ·
∂ψ // St

// 0

0 // �
n ⊗ S∗r−t

∂ψ

//

±ωn⊗1

OO

· · ·
∂ψ

// �
m+t

±ωm+t

OO

νψ

;;xxxxxxxxx

where Sp = Sp(F ), S∗p = Sp(F )∗,
∧
p =

∧
pG, and r = n −m as above. So,

in particular,
K(ψ)(t) ∼= K̃(ψ)(t)

in this case, and in view of the isomorphism (1) we obtain a complex isomor-
phism

K(ψ)(t) ∼=
(
K(ψ)(n −m− t)

)∗
. (2)

The dual version of the classical Koszul complex has a similar generaliza-
tion. Let ϕ : H → G be R-linear where H is free of rank l (and G is arbitrary).
By D(H) we denote the divided power algebra of H . We view ϕ as an element
of H∗⊗G ⊂ S(H∗)⊗

∧
G and use the canonical structure of D(H)⊗

∧
G as a

left S(H∗) ⊗
∧
G-module. Then we define dϕ to be the left multiplication by

ϕ on D(H)⊗
∧
G (i.e.

ϕ ⇀ x
(k1)
1 . . . x(kp)

p ⊗ y =
∑

j

x
(k1)
1 . . . x

(kj−1)
j . . . x(kp)

p ⊗ ϕ(xj) ∧ y



Generalized Koszul Complexes 65

for xi ∈ H and y ∈
∧
G) and on S(H∗)⊗

∧
G (in an obvious way). We obtain

complexes L(ϕ)(t)

0 → Dt(H)⊗
�

0
G

dϕ
→ · · ·

dϕ
→D0(H) ⊗

�
t
G

νϕ

→ S0(H
∗)⊗

� t+l
G

dϕ
→ · · ·

dϕ
→ Sp(H∗)⊗

� t+l+p
G → · · ·

where the connection map νϕ is the left multiplication on
∧
G by ϕ(h1) ∧

. . .∧ϕ(hl), h1, . . . , hl being a basis of H . It is immediately clear that for l = 1
(and all t) one gets the dual version of the classical Koszul complex.

If G is free of rank n ≥ l and ω is the orientation of G from above, then the
complexes L(ϕ)(t) are via ω isomorphic with the complexes Dt(ϕ) in [BV1].
In fact Dt(ϕ) is built by connecting the complex

0 → Dt(H)⊗
∧0G

dϕ
→ · · ·

dϕ
→ D0(H)⊗

∧
tG→ 0

with the complex

0 → (D0(H)⊗
∧
n−l−tG)∗

d∗ϕ
→ · · ·

d∗ϕ
→ (Dn−l−t(H)⊗

∧0G)∗ → 0

through the map

ν̃ϕ :
∧
tG→ (

∧
n−l−tG)∗, ν̃ϕ(z)(y) = ω(ϕ(h1) ∧ . . . ∧ ϕ(hl) ∧ y ∧ z)

where z ∈
∧
tG, y ∈

∧
n−l−tG, and there is a commutative diagram

� t+l
dϕ //

±ωt+l

��

· · ·
dϕ // S∗s−t ⊗

� n → 0

±1⊗ωn

��

0 // Dt
dϕ // · · ·

dϕ // � t

�
νϕ ##GG

GG
GG

GG
G

νϕ

;;xxxxxxxxx

(
� s−t)∗

d∗ϕ

// · · ·
d∗ϕ

// (Ds−t)∗ ⊗
�

0G→ 0

where Dp = Dp(H), S∗p = Sp(H
∗),

∧
p =

∧
pG, and s = n− l.

We record a result concerning the connection between the generalized
Koszul complex and its dual.

Proposition 2. Let ψ : G → F be a homomorphism of an (arbitrary) R-
module G into a finite free R-module F . Then the canonical map θ :

∧
G∗ →

(
∧
G)∗ induces a natural complex morphism

τ : L(ψ∗)(t) →
(
K(ψ)(t)

)∗

where the connection homomorphisms νψ
∗

and νψ are defined with respect to
the same basis of F . If θ is an isomorphism (for example, if G is finitely
generated and projective), then τ is a complex isomorphism.
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3. Koszul Bicomplexes. Assume now that F,G,H are free of ranks

m,n, l and that H
ϕ
→ G

ψ
→ F is a complex. Then there is a rather simple

associativity formula concerning the various right and left multiplications, we
considered before, which allows us to assemble the complexes K(ψ)(t) and
L(ϕ)(t) to the Koszul bicomplexes B(t):

. . .
. . .

. . .
. . .

��� �

��� �

��� �

��� �

·
·
·
H
⊗

� t
+
m
G
⊗
F
∗
−−
−
−
−
−→

� t
+
m

+
1
G
⊗
F
∗

±
ν
ϕ

−−
−
−
−
−→

� t
+
l
+
m

+
1
G
⊗
F
∗
−−
−
−
−
−→

H
∗
⊗

� t
+
l
+
m

+
2
G
⊗
F
∗
·
·
·

��� �

∂
ψ

��� �

∂
ψ

��� �

��� �

·
·
·
H
⊗

� t
+
m
−

1
G

d
ϕ

−−
−
−
−
−→

� t
+
m
G

±
ν
ϕ

−−
−
−
−
−→

� t
+
l
+
m
G

d
ϕ

−−
−
−
−
−→

H
∗
⊗

� t
+
l
+
m

+
1
G
·
·
·

±
ν
ψ

��� �

±
ν
ψ

��� �

±
ν
ψ

��� �

±
ν
ψ

��� �

·
·
·
H
⊗

� t
−

1
G

d
ϕ

−−
−
−
−
−→

� t
G

±
ν
ϕ

−−
−
−
−
−→

� t
+
l
G

d
ϕ

−−
−
−
−
−→

H
∗
⊗

� t
+
l
+

1
G
·
·
·

��� �

∂
ψ

��� �

∂
ψ

��� �

��� �

·
·
·
H
⊗

� t
−

2
G
⊗
F

−−
−
−
−
−→

� t
−

1
G
⊗
F

±
ν
ϕ

−−
−
−
−
−→

� t
+
l
−

1
G
⊗
F

−−
−
−
−
−→

H
∗
⊗

� t
+
l
G
⊗
F
·
·
·

��� �

��� �

��� �

��� �

. . .
. . .

. . .
. . .

The rows in the upper half arise from L(ϕ)(t+m+j) tensored with S(F )∗,
j = 0, 1, . . ., while the rows below are built from L(ϕ)(t − j) tensored with
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Sj(F ), j = 0, 1, . . .; we abbreviate dϕ ⊗ 1S(F∗) and dϕ ⊗ 1S(F ) to dϕ, and
correspondingly νϕ⊗ 1S(F∗) and νϕ ⊗ 1S(F ) to νϕ. The columns are obtained
analogously: in western direction we have to tensorize Di(H) with K(ψ)(t−i),
i = 0, 1, . . ., while going east we must tensorize Si(H

∗) with K(ψ)(t + l + i),
i = 0, 1, . . .; as before we shorten the complex maps to ∂ψ and νψ. The signs
of νϕ and νψ are determined by the associativity formula. We point out that
for m = (rankF =)1 the bicomplexes B(t) have predecessors in [HM] and in
[BV2], [BV3].

Consider the cokernel of the complex morphism between the first two row
complexes in the diagram which we denote by M(t), that is

M(t) = Cok
(
L(ϕ)(t +m+ 1)

∂ψ
→ L(ϕ)(t +m)

)
.

Similarly we set

N (t) = Ker
(
L(ϕ)(t)

∂ψ
→ L(ϕ)(t − 1)

)
.

Clearly νψ induces a complex map

M(t)
ν
→ N (t).

We shall now establish a connection with the setup in the beginning. Start-
ing from an R-module M which has a presentation

0 −−−−→ F
χ

−−−−→ G −−−−→ M −−−−→ 0

whereF , G are free modules of ranksm and n, we consider anR-homomorphism
λ̄ : M → H into a finite free R-module H of rank l ≤ n. By λ we denote the

corresponding lifted map G → H. Dualizing F
χ
→ G

λ
→ H we are back in the

situation previously studied. So we set F = F∗, G = G∗, H = H∗, ψ = χ∗,
ϕ = λ∗, and consider the complex

H
ϕ
→ G

ψ
→ F.

As above we set s = n− l and r = n−m. In addition let ρ = n−m− l. Using
Proposition 2 and the isomorphism (2), it is an easy exercise in linear algebra
to see that

M(t) ∼= K(λ̄)(ρ− t).

So the map ν from above induces a complex map

K(λ̄)(ρ− t)
µ
→ N (t).

As we shall see in the next section, the map µ enables us in some nice cases to
compute the homology of the complex on the left hand side from the homology
on the right. The following remark is immediately clear.
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Remark 3. If Iχ (= Iψ) = R, then all columns of the bicomplex B(t) are
split exact. Consequently the maps ν and µ are isomorphisms.

4. Grade sensitivity. In the following we shall work with the assump-
tions and the notation of the previous section. Additionally we shall assume
that the ring R is noetherian.

It is well known that the complexes K̃(t) and L̃(t) (s. section 2) are grade

sensitive which means that the homology H i(K̃(t)) (H i(L̃(t))) vanishes for i <
grade Iψ (i < grade Iϕ). We exploit this fact (and the complex isomorphisms
pictured in the diagrams of section 2) to investigate the homology of N (t). It
is not surprising that the most satisfactory results are obtained in the case in
which the grade of Iχ (= Iψ∗) has the greatest possible value r + 1. For the
sake of clarity we shall restrict our report to this case.

Theorem 4. Let t be a non-negative integer. Set C = Cokψ and h = grade Iϕ.
With the assumptions just made, for the homology H̄

.

of N (t) the following
holds:

(a) H̄ i = 0 for i = 0, . . . ,min(2, h− 1);

(b)

H̄ i =

{
Dt− i−1

2

(H)⊗ S i−1

2

(C) if 3 ≤ i < min(h, 2t+ 3), i 6≡ 0 (2),

0 if 3 ≤ i < min(h, 2t+ 3), i ≡ 0 (2);

(c) H̄ i = 0 for 2t+ 3 ≤ i < min(h, 2(t+ 1) + l);

(d)

H̄ i =

{
S i−l

2
−t−1(H)⊗ S i+l

2
−1(C) if 2(t+ 1) + l ≤ i < h, i ≡ l (2),

0 if 2(t+ 1) + l ≤ i < h, i 6≡ l (2).

There are similar statements in case t is a negative integer (s. [I] or [IV]
for details). Via µ : K(λ̄)(ρ − t) → N (t) these results supply information on
the homology of K(λ̄)(t) since one can easily show that

µi is an isomorphism for i > 0 and injective for i = 0.

Theorem 5. With notation as in Theorem 4 set S0(C) = R/Iχ. Equip
K(λ̄)(t) with the graduation induced by the complex morphism µ : K(λ̄)(t) →
N (ρ− t). Then for the homology H

.

of K(λ̄)(t) the following holds:
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(a) in case t ≤ ρ
2 ,

H
i =

�� � D
ρ−t−

i−1
2

(H∗)⊗ S i−1
2

(C) if 0 ≤ i < h, i 6≡ 0 (2),

0 if 0 ≤ i < h, i ≡ 0 (2);

(b) in case
ρ
2
< t ≤ ρ,

H
i

=

����� ����
D
ρ−t−

i−1
2

(H∗)⊗ S i−1
2

(C) if 0 ≤ i < min(h, 2(ρ − t+ 1)), i 6≡ 0 (2),

S i−l
2
−ρ+t−1

(H)⊗ S i+l
2
−1

(C) if 2(ρ − t+ 1) + l ≤ i < h, i − l ≡ 0 (2),

0 otherwise if 0 ≤ i < h;

(c) in case ρ < t < r,

H
i

=

�� � S i−r+t−1
2

(H)⊗ S i+r−t−1
2

(C) if r − t+ 1 ≤ i < h, i + r − t 6≡ 0 (2),

0 otherwise if 0 ≤ i < h;

(d) in case r ≤ t,

H
i =

�� � S i−1
2

+t−r
(H)⊗ S i−1

2

(C) if 0 ≤ i < h, i 6≡ 0 (2),

0 if 0 ≤ i < h, i ≡ 0 (2).

From 5 (or directly from 4) one can derive some partial answers to the
question asked in the beginning. To make it plausible we look at the complex
K(λ̄)(t):

· · · →
∧
rM ⊗ Sρ−t(H)∗

∂λ̄→ · · ·
∂λ̄→

∧
t+lM

νλ̄→
∧
tM

∂λ̄→ · · ·
∂λ̄→ St(H) → 0.

Let t ≤ ρ
2 . Then H0 is the homology of K(λ̄)(t) at

∧
rM ⊗ Sρ−t(H)∗. If we

take t = −l − 1, then Hr+1 = 0 since Hr+1 is the homology of K(λ̄)(−l − 1)
at

∧
−1M = 0. On the other hand, if r were even, and grade Iλ ≥ r + 1, then

some playing with the homology of the bicomplex B(t) would yield an exact
sequence

0 → S r
2
(C)⊗ S r

2
+1(H)∗ → Hr+1

which is obviously impossible. The proof of the following theorem works with
similar arguments.

Theorem 6. Suppose that grade Iχ = r+ 1. Then Iλ ⊂ Iχ, and in particular
grade Iλ ≤ r + 1. Set ρ = r − l.

(a) If there is a λ̄ such that grade Iλ > | ρ |+ 1, then l = 1 and r is odd.

(b) Suppose in addition that χ is minimal. Then the following are equivalent:
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(1) There is a λ̄ such that grade Iλ > | ρ |+ 1;

(2) l = 1 and (i) r = 1 or (ii) m = 1 and r ≥ 3 is odd.

(c) The following conditions are equivalent:

(1’) grade Iλ > | ρ |+ 1;

(2’) Iλ = Iχ.

Corollary 7. Suppose that grade Iχ = r + 1. Then the following conditions
are equivalent:

(1) there is a λ̄ with grade Iλ = n− l + 1;

(2) l = 1, m = 1 and r ≥ 1 is odd.

To avoid misunderstanding: a homomorphism of finite free R-modules is
called minimal if the entries of a representing matrix generate a proper ideal
of R.

For the implication (2) ⇒ (1) we refer to the example in the beginning. To
give at least one complete proof we will show (1) ⇒ (2) now.

Since we assumed that n− l ≥ 0, we have grade Iλ ≥ 1. So λ∗ is injective
and rank Imλ∗ = l. In the same way n−m ≥ 0 and grade Iχ ≥ 1 imply that
Kerχ∗ = (Cokχ)∗ has rank n − m = r. From Imλ∗ ⊂ Kerχ∗ we conclude
r − l ≥ 0. By assumption grade Iλ = n − l + 1 > r − l + 1 = ρ + 1, and by
Theorem 6,(c) we obtain Iλ = Iχ, in particular n− l = r = n−m, so l = m.
Part (a) in the same Theorem yields that l = 1 and r ≥ 1 is odd.
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