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MISCELLANEOUS RESULTS AND

CONJECTURES ON THE RING OF

COMMUTING MATRICES

Freyja Hreinsdóttir

Abstract

Let X = (xij) and Y = (yij) be generic n by n matrices and Z =
XY − Y X. Let S = k[x11, . . . , xnn, y11, . . . , ynn], where k is a field, let
I be the ideal generated by the entries of Z and let R = S/I. We give a
survey on results and conjectures on R such as regular sequences in R,
the first syzygies of I, the canonical module of R and non-Gorenstein
locus. For the case n = 4 we give a conjecture on the Betti numbers of
I.

1 Introduction

Throughout this article we let R be the ring defined in the abstract. We
first give a review of known results for this family of rings and then we give
conjectures some of which have not been published before and some that can
be found in [12] and [11].

It was shown by Motzkin and Taussky [16] that the variety of commuting
matrices in Mn(k) is irreducible of dimension n2 + n. Gerstenhaber [8] also
showed that the variety is irreducible. From this it follows that Rad(I) is
prime and that the dimension of R is n2 + n.

It was conjectured by Artin and Hochster that R is Cohen-Macaulay and this
has been shown for n = 3 in [2] and for n = 4 in [10]. In both cases the
computer program Macaulay [1] was used to compute a Gröbner basis. It
has also been conjectured that R is a domain which follows from the ring being
CM (see [21]).
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Simis and Vasconcelos have studied R as the symmetric algebra of the Jacobian
module En with respect to the xij variables. They show that the module E3

has projective dimension 2 and conjecture that this is true for any n, see [19].

In [4] Brennan, Pinto and Vasconcelos show that if the matrices X and Y are
symmetric, then R is a complete intersection and a domain. In [3] it is shown
that R is normal in this case.

For a general discussion on commuting varieties see [20] chapter 9 and the
references cited there.

In [13] we show that for n ≥ 3 the Koszul dual of the ring is the enveloping
algebra of a graded nilpotent Lie-algebra.

Recently, Knutson [14] proved that the off-diagonal elements in XY − Y X
form a regular sequence.

The Cohen-Macaulayness of the ring may be proved in at least two ways, by
finding maximal regular sequences of lenght n2 + n or by finding a minimal
resolution. In this article we give maximal regular sequences that can be
verified by a computer for the cases n = 2, 3 and 4. The resolution can
be computed only in the cases n = 2 and n = 3. To get an idea on the
Betti numbers in other cases we first find the first syzygies and give a general
conjecture for these. These first syzygies can then be used to get a conjecture
on the canonical module. We can use a computer to partially resolve both R
and the canonical module. Splicing together these two and using the Hilbert
series we get a conjecture on the Betti numbers in the 4× 4 case.

2 A minimal generating set

The generators of I are of the form

zij =

n
∑

r=1

(xiryrj − yirxrj) for i = 1 . . . n, j = 1 . . . n.

For i 6= j we see that each monomial occurring in zij only occurs once so none
of these generators can be written as a combination of the others. Among the
diagonal entries (i = j) there is some mixing of monomials. All the monomials
there are of the form xijyji and each one of these occurs exactly twice, that
is, in zii and zjj . Since tr(XY − Y X) = 0 we have that z11 + . . . + znn = 0
so that this part of I can be generated by z11, . . . , zn−1n−1. In each of these
generators we have a monomial that occurs exactly once namely, xinyni only
occurs in zii (since we have thrown znn away). Hence zii can not be written as
a combination of the others. So we see that the ideal is minimally generated
by n2 − n + n− 1 = n2 − 1 generators.
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3 Regular sequences

To prove that R is Cohen-Macaulay it suffices to show that we have a regular
sequence of length n2 + n. In [10] and [2] Macaulay was used to create a
system of parameters using random numbers but it is also possible by extensive
guessing to find regular sequences that can be checked by a computer. Below
we describe two such sequences that work for the small cases.

3.1 Guess 1

In this section we give a maximal regular sequence for n = 2, n = 3 and n = 4.
The ring has dimension n2 + n by [16].

We start by giving the idea for the 3 × 3 case. We write the matrices X
and Y in the following way

X =





x1 x2 x3

x4 x5 x6

x7 x8 x9



 and Y =





y1 y2 y3

y4 y5 y6

y7 y8 y9





By using Macaulay we guessed the following regular sequence of length n2

y1 − x1, y2 − x5, y3 − x9, y4 − x3, y5 − x4, y6 − x8, y7 − x2, y8 − x6, y9 − x7

Dividing out by it amounts to replacing the matrix Y by the matrix

Y ′ =





x1 x5 x9

x3 x4 x8

x2 x6 x7





Note that the columns of Y ′ are the rows of X slightly permuted.
In order to generalise this idea to the cases n = 2 and n = 4 we need a

description of the construction of Y ′:

We have 9 variables x1, . . . , x9. We put x1 in the left upper corner
of the matrix. Then we go to the bottom left corner and put x2

there. Then we continue upwards and put x3 above x2. Now there
is no more room in the first column so we go to the next column
and put x4 to the right of x3. Then continue upwards until there is
no more room. Then start at the bottom and move upwards until
there is no more room in that column. Move to right to the next
column etc.

We have now divided out by a regular sequence of length 9. To get a maximal
regular sequence we divide out by 3 variables, e.g. x9, x8 and x1 will do (this
was found be guessing).
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Now we check if the description for Y ′ will work for n = 2. Here Y ′ becomes:

Y ′ =

[

x1 x4

x2 x3

]

We check using Macaulay that this is a regular sequence and to get a maximal
regular sequence we divide out by x4 and x1.

For n = 4 we get:

Y ′ =









x1 x6 x11 x16

x4 x5 x10 x15

x3 x8 x9 x14

x2 x7 x12 x13









The standard basis of the ideal generated by the entries of XY ′ − Y ′X is too
big to be computed. We need 4 more elements to have a maximal regular
sequence. By guessing we found that if we divide by the variables x1, x9, x15

and x16 we get a zero dimensional ring having the same Hilbert series as our
original ring so we have found a maximal regular sequence.

For 5 × 5 matrices and bigger we cannot calculate the standard basis so we
cannot test if this idea works. It seems however likely that for a general n we
can replace the matrix Y by the matrix

Y ′ =















x1 xn+2 x2n+3 . . . xn2

xn xn+1 x2n+2 . . . xn2
−1

xn−1 x2n x2n+1 . . . xn2
−2

...
...

...
...

...
x2 xn+3 x2n+4 . . . xn2

−n+1















To find a maximal regular sequence we have to guess n more elements.

3.2 Guess 2

By examining the generators of I we see that they are sums of 2 × 2 minors

of the matrix

[

x1 x2 . . . xn2

y1 y2 . . . yn2

]

. Let I2 be the ideal generated by all 2× 2

minors of this matrix. It is known that S/I2 is CM of dimension n2 + 1 and
that there exists a maximal regular sequence that can be decribed by replacing

the original matrix by the matrix

[

x1 x2 . . . xn2
−1 0

0 x1 x2 . . . xn2
−1

]

. Inspired by

this we checked this regular sequence for the ring of commuting matrices.
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For the case n = 3 we get the ring R modulo this sequence by replacing the
matrices X and Y by the matrices





x1 x2 x3

x4 x5 x6

x7 x8 0



 and





0 x1 x2

x3 x4 x5

x6 x7 x8



 .

Forming the commutator of these matrices and calculating the Hilbert series
of the corresponding ideal gives that this is a regular sequence. However,
it is not maximal as we still have 8 variables and the height of the ideal
is 6. We can now find two more nonzerodivisors by testing, e.g. x8 and
x1 + x2 + x3 + x4 + x5 + x6 + x7 will do.

This idea can easily be used in the 2× 2 case, we form the commutator of

[

x1 x2

x3 0

]

and

[

0 x1

x2 x3

]

.

and then mod out by x3 to get a maximal regular sequence.

For n = 4 we have not been able to test this conjecture as the Gröbner basis
of the ideal we get from the conjecture is too big to be computed.

4 First syzygies

We restate here a conjecture on the first syzygies that was first given in [12].
Write I = (f1, . . . , fn2), with f1 = Z11, f2 = Z21, . . . , fn2 = Znn, where

Z = XY − Y X . A syzygy on I is an n2-tuple (a1, . . . , an2) such that

f1a1 + f2a2 + · · ·+ fn2an2 = 0. (1)

This can be rewritten as

tr

























a1 · · · an

an+1 · · ·
...

...
...

an2+n−1 . . . an2

























f1 · · · fn2
−n+1

f2 · · ·
...

...
...

fn . . . fn2

























= 0 (2)

i.e. as

tr(A(XY − Y X)) = 0. (3)

So solving (3) for A is equivalent to solving (1) for (a1, . . . , an2).

We can guess a number of solutions to (3):
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Degree 0: Here we only have one syzygy A = E (the identity matrix), i.e.
the ideal is minimally generated by n2 − 1 elements.

Degree 1: We have tr(X(XY −Y X)) = tr(X2Y )−tr(XY X) = 0 so A = X is
a solution and similarly we get that A = Y is a solution. The two syzygies
we get are obviously independent over k as they have the bidegrees (1, 0)
and (0, 1). In [13] we proved that these are the only ones of degree 1.

Degree 2: We see that A = X2 and A = Y 2 are solutions. The only other
monomials in X and Y are XY and Y X and neither of those is a solution.
We have

tr((XY + Y X)(XY − Y X))

= tr(XY XY )− tr(XY Y X) + tr(Y XXY )− tr(Y XY X)

= tr(XY XY )− tr(X2Y 2) + tr(X2Y 2)− tr(XY XY )

= 0

so A = XY + Y X gives a syzygy. We thus have syzygies of bidegrees
(2, 0), (1, 1), (0, 2).

Degree 3: Here we get at least the monomial solutions X3, Y 3, XY X , Y XY
and the binomial solutions X2Y + Y X2, XY 2 + Y 2X . Macaulay calcu-
lations indicate that it is enough to take one syzygy of each bidegree i.e.
X3, Y 3,XY X , Y XY will do.

Degree 4: X4, Y 4, X3Y + Y X3, Y 3X + XY 3,X2Y X + XY X2, Y 2XY +
Y XY 2 and XY 2X − Y X2Y .

Degree 5: X5, Y 5, X2Y X2, Y 2XY 2, X4Y +Y X4, XY 4 +Y 4X , XY X2Y +
Y X2Y X , Y XY 2X + XY 2XY .

We can check this for small values of n. For n = 3 we get the following Betti
numbers:

% betti s3

total: 8 33

-----------------

2: 8 2

3: - 31
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As expected we get 2 linear first syzygies. There are 31 first syzygies of degree
2,

(

8
2

)

= 28 of those are the trivial syzygies (Koszul relations) and the 3
nontrivial ones correspond to A = X2, A = Y 2 and A = XY + Y X .
Considering n = 4 and n = 5, 6, 7 (partial computation) we give the conjecture
below on the first Betti numbers. We use the notation of Macaulay 2 to display
the Betti numbers, i.e. the number in column i row j (starting with column
0, row 0) is βi,i+j .

total : 1 n2 − 1
(

n2
−1
2

)

+
(

n+1
2

)

− 1
0 : 1 . .
1 : . n2 − 1 2

2 : . .
(

n2
−1
2

)

+ 3
3 : . . 4
4 : . . 5

. . . .

. . . .

. . . .
n− 1 : . . n

n : . . .

The
(

n2
−1
2

)

syzygies of degree 2 are the Koszul relations and we conjecture
that the other first syzygies are given by polynomials in X and Y , one of each
possible bidegree.

The characteristic polynomial gives us certain information on the first syzygies.
For a generic n×n matrix X we have that the smallest degree of a polynomial
p such that p(X) = 0 is n so that the smallest power of X , that can be
written as a linear combination of smaller powers, is n. Because the syzygies
corresponding to X2, X3, . . . , Xn−1 have y−degree zero they cannot be written
as linear combinations of any syzygies involving y-variables. A similar result
holds for syzygies that are given by powers of Y so we have at least 2 syzygies
of each degree 1, . . . , n− 1.

5 Canonical module

If R is Cohen-Macaulay (which is known for the cases n = 2, 3, 4) then its
canonical module is defined as

ωR := Extd
S(S/I, S)

where d = n2 − n is the height of I . Let J = j1, . . . , jn2−n be the subideal of
I generated by the off-diagonal elements in XY − Y X . The generators of J
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form a regular sequence ( [14]) and we get

Extd
S(S/I, S) ∼= Extd

S/j1(S/I, S/j1) ∼= · · · · · · ∼= HomS/J(S/I, S/J) ∼= (J : I)/J

We can use the first syzygies to compute the ideal quotient (J : I). For the
cases n = 2, 3 everything can be computed using Macaulay but for the case
n = 4 we can not compute the Gröbner basis of J . By studying the structure
of (J : I) for n = 2, 3 we make a conjecture on (J : I) for n = 4. We can
partially check this conjecture by comparing with the Hilbert series.

For n = 3 the nontrivial syzygies on I are given by A ∈ {E, X, Y, X2, Y 2, XY +
Y X}. The ideal I is generated by (f1, . . . , f9) where f1, f5 and f9 are from the
diagonal of XY −Y X and J = (f2, f3, f4, f6, f7, f8). Pick 3 different syzygies,
A, B and C. Then

a1f1 + a5f5 + a9f9 = a2f2 + a3f3 + a4f4 + a6f6 + a7f7 + a8f8

b1f1 + b5f5 + b9f9 = b2f2 + b3f3 + b4f4 + b6f6 + b7f7 + b8f8

c1f1 + c5f5 + c9f9 = c2f2 + c3f3 + c4f4 + c6f6 + c7f7 + c8f8

so

det





a1 b1 c1

a5 b5 c5

a9 b9 c9



 · fi ∈ J for i=1, 5, 9.

Direct calculations using Macaulay give that it suffices to take the generators
of J and the elements given by

(A, B, C) ∈ {(E, X, Y ), (E, X, X2), (E, X, Y 2), (E, Y, Y 2), (E, Y, X2)}

to get a minimal generating set for (J : I). The bidegrees of these additional
generators are (1, 1), (3, 0), (2, 1), (1, 2) and (0, 3) so it seems that it suffices
to use enough triples of syzygies to give one generator of each bidegree.

Similarly we construct J : I for the case n = 4 (for details and a conjecture on
the general case see [11]). Since we cannot compute the standard basis of J
we cannot test whether this conjecture is true. We partially resolve (J : I)/J
using Macaulay and get the following Betti numbers:

% 1% 2% betti cp

total: 14 200 660 3821

--------------------------------

4: 3 - - -

5: 4 110 256 90

6: 7 90 908 3656

7: - - 6 75
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This gives us the Betti numbers of the tail of the resolution of I (see e.g. cor.
3.3.9 in [5]). So we can compare this with the Hilbert series of S/I :

hS/I(t) = (1− 15t2 + 2t3 + 108t4 − 26t5 − 562t6 + 466t7 + 1613t8 − 2742t9

−1078t10 + 5994t11 − 4367t12 − 2262t13 + 5630t14 − 3650t15

+818t16 + 166t17 − 103t18 + 4t19 + 3t20)/(1− t)32

We see that our conjecture fits with the (last 6) coefficients of the polynomial
in the numerator. Partially computing the resolution of I we get the Betti
numbers:

o18 = total: 1 16 115 595 2127 2791 848 60 5

0: 1 . . . . . . . .

1: . 15 2 . . . . . .

2: . . 108 30 3 . . . .

3: . . 4 565 466 45 4 . .

4: . . . . 1658 2746 844 60 5

Splicing together these two Betti tables and using the Hilbert series we get the
following conjecture on the Betti numbers (Table 1), where −d + c = −2262
(from the Hilbert series). The boldfaced numbers are the two earlier Macaulay
computations and the others are based on the Hilbert series.
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Table 1

6 Resolution

By viewing the Betti table above we see that there is a certain multiplicative
pattern on the ”top staircase”, i.e. we have in the second row 15 and 2, the
last 2 numbers in the third row are 30 and 3, the last 2 numbers in the fourth
row are 45 and 4 etc. Checking partial computation for n = 5 and n = 6 we
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get even more Betti numbers that are multiples of previous Betti numbers.

n=5 n=6

o9 = total: 1 25 291 2486 561 72 o14 = total: 1 36 605 6720 1199 105 4

0: 1 . 1 . . . 0: 1 . 1 . . . .

1: . 25 2 . . . 1: . 36 2 . . . .

2: . . 279 48 3 . 2: . . 598 70 3 . .

3: . . 4 2096 558 72 3: . . 4 6650 1196 105 4

4: . . 5 342

So up to a certain row (probably row n − 1) the generators and the first
syzygies seem to generate everything (and the ”multiplication” is nonzero).
Our conjecture is that we have the following Betti numbers for a general n
(for the sake of space the first Betti number given is β1,2): see Table 2, where
p means products of earlier entries. The numbers M , s and k are based on
a conjecture on the canonical module in the general case which can be found
in [11].

It is known that the Koszul dual of a ring A is the enveloping algebra of a Lie-
algebra, called the Lie algebra associated to A. In [13] we proved for R that
this Lie-algebra is nilpotent of index 3. We also showed that the dimension
of the Lie algebra in degree 3 is 2 which gives (by [15]) that the number of
independent linear first syzygies is 2. Fröberg and Löfwall give in [7] a theorem
relating kernels of multiplication on Koszul homology and the associated Lie
algebra. In this case we get that we always have at least the boldfaced Betti
numbers in the table.
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7 The not-Gorenstein and not-complete intersection loci

In this section we consider the above loci for the cases n = 2, n = 3 and
n = 4. We can see by looking at the Hilbert series that R is not Gorenstein.
The not-Gorenstein locus of R is defined as

{p ∈ Spec(R) |Rp is not Gorenstein}.

Since we know that R is Cohen-Macaulay the not-Gorenstein locus is given
by (see [18])

{p ∈ Spec(R) | µ((Exth
S(R, S))p) > 1} = V (F1(Exth

S(R, S)))

where µ(M) is the minimal number of generators of M , h = ht(I) and
Exth

S(R, S) is the canonical module of R. The ith Fitting invariant of a mod-

ule M is computed from its presentation i.e. suppose sm N
→ sn → M → 0 is a

presentation of M then Fi(M) is the ideal generated by the (n− i) minors of
N .

For n = 2 we get that the not-Gorenstein locus is V (ng) where ng is the ideal
generated by x1−x4, x2, x3, y1−y4, y2, y3. This ideal contains I and has height
4 in R = S/I .

For n = 3 the presentation of the canonical module is given by a 5 × 32
matrix, the ideal of its 4×4 minors is minimally generated by 4332 generators
of degrees 2 and 3. This ideal has height 4 in R.

For the case n = 4 the resolution is not possible to compute. From our
conjecture on the canonical module we get a presentation given by a 14× 200
matrix of which we need to compute 13× 13 minors. This is not possible so
we can not compute the not-Gorenstein locus in this case.

For the cases n = 2, 3 we see that Rp is Gorenstein for any p ∈ Spec(R) with
ht(p) ≤ 3 so it seems plausible that this is true in general.

The not complete intersection locus is defined as

{p ∈ Spec(R) | Rp is not c.i.}.

Since R is Cohen-Macaulay the not complete intersection locus becomes V (nc)
where nc is the ideal generated by the n − 1 minors of the module of first
syzygies of I (see [18]).

We can calculate the ideal nc for n = 2 and n = 3 and we get that Rp is a
complete intersection for any p ∈ Spec(R) with ht(p) ≤ 3.
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8 Poincare series

In [17] a conjecture on the Poincare series is given for the case n = 3. The
conjecture says that

PR(x, y)−1 = (1 + 1/x)/A(xy)−HR(−xy)/x

where A(xy) is the Hilbert series of the Koszul dual.

For the case n = 2 the ideal has a quadratic Gröbner basis and hence is a
Koszul algebra so we have PR(xy) = A(xy) = 1/HR(−xy). In this case we
get that the formula is trivially true.

From [13] we have that A(xy) = (1+xy)2n
2

(1+x3y3)2

(1−x2y2)n
2
−1

for any n ≥ 3 and for

n = 4 we can compute the Gröbner basis (see [10]) and thus the Hilbert series
and part of the resolution of the field k over the quotient ring S/I . A partial
computation gives the Betti numbers

% 1% 2% betti p

total: 1 32 511 5449 43680+

--------------------------------------

0: 1 32 511 5442 43584

1: - - - 3 96

2: - - - 4 ?

If we compute the right hand side in the formula above using the series we
have and compare the result with the Betti table above we see that it does not
give the Poincare series for the case n = 4 as there is no term corresponding
to the 4 in the table. It seems however plausible that the formula might be
adapted to the 4× 4 case.
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