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Algorithm for the Gröbner region of a

principal ideal

Alexandru Bobe ∗

Abstract

Gröbner basis theory is a fundamental tool of computational com-
mutative algebra. The theory has been advanced by the introduction of
techniques from combinatorics, polyhedral geometry and computational
geometry. In particular, such techniques were used to create the con-
cept of Gröbner region for an ideal of a polynomial ring. The purpose
of this paper is to present algoritms for computing the Gröbner region
of a principal ideal in two indeterminates, to implement in Singular [1]
and also to visualize this object with Mathematica [2].

Subject Classification: 90C57; 11P21; 62F25; 62G15.

1 Introduction

Let k be a field and let k [X ] = k [X1, ..., Xn] be the polynomial ring in n
variables. Let < be a term ordering and I be an ideal in k[X ].

For f ∈ k[X ] − {0} we denote by:

in<(f) = the initial monomial of f,

that is the leading monomial of f with respect to < and by

in<(I) = (in<(f)|f ∈ I, f �= 0)

the initial ideal of I.
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Definition 1.1. A finite subset G = {g1, ..., gr} ⊂ I is a Gröbner basis for
I with respect to < if in<(I) = (in<(g1), ..., in<(gr)).

Definition 1.2. Let ω ∈ R
n. For any polynomial f =

∑
v∈Nn

avX
v ∈ k[X ] we

define the initial form inω(f) =
∑

v′∈Nn

av′Xv′
, where the vectors v′ maximize

ω · v′ in {v | av �= 0} that is ω · v′ ≥ ω · v for any v with av �= 0.

Definition 1.3. For an ideal I ⊂ k[X ] we define the initial form of the
ideal I: inω(I) = (inω(f) | f ∈ I) .

Example 1.4. Let I be the ideal generated by

f (X1, X2) = 4X6
1X2

2 + 5X5
1X3

2 − X4
1 + 3X2

1X4
2 + X2

1 + X1X2 + X3
2 + 7.

We compute the initial form for ω = (2, 1) and ω = (1, 1). The vectors v
with av �= 0 are: v1 = (6, 2), v2 = (5, 3), v3 = (4, 0), v4 = (2, 4), v5 = (2, 0),
v6 = (1, 1), v7 = (0, 3), v8 = (0, 0).

If ω = (2, 1) then ω · vi = {14, 13, 8, 8, 4, 3, 3, 0}, i = 1, 8 and the maximum
of this list is 14 given by ω · v1. So inω(f) = X6

1X2
2 , thus inω(I) = (X6

1X2
2 ).

This is a monomial ideal.
For ω = (1, 1) then ω · vi = {8, 8, 4, 6, 2, 2, 3, 0}, i = 1, 8 and the maximum

of this list is 8 given by ω · v1 and ω · v2. So inω(f) = 4X6
1X2

2 + 5X5
1X3

2 , and
inω(I) = (4X6

1X2
2 + 5X5

1X3
2 ). This is not a monomial ideal.�

Definition 1.5. Let ω ∈ R
n
+ and < be a term order. We define <ω the term

ordering with respect to the weight vector ω, as follows: for a, b ∈ N
n

we set a <ω b ⇐⇒ ω · a < ω · b or (ω · a = ω · b and a < b).

Lemma 1.6. (Proposition 1.8, [3]). For every ideal I ⊂ k[X ] we have
in<(inω(I)) = in<ω(I).

Proof : See [3].�

Example 1.7. Let I = (f), f from Example 1.4, < be the lexicographical
ordering with X1 > X2 and ω = (1, 1). Then

in<(inω(I)) = in<(4X6
1X2

2 + 5X5
1X3

2 ) = (X6
1X2

2 )

because X6
1X2

2 > X5
1X3

2 . When we compute in<ω(I) like in Definition 1.5 we
obtain in<ω(I) = (X6

1X2
2 ).�
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Corollary 1.8. (Corollary 1.9, [3]). If ω ≥ 0 and G is a Gröbner basis of I
with respect to <ω, then {inω(g) | g ∈ G} is a Gröbner basis for inω(I) with
respect to <.

Proof: Let G = {g1, g2, ..., gr} be a Gröbner basis for I with respect to <ω.
From the definition of Gröbner basis and Lemma 1.6 it results

in<ω(I) = in<(inω(I)) = (in<ω(g1), in<ω(g2), ..., in<ω(gr)) =

= (in<(inω(g1)), in<(inω(g2)), ..., in<(inω(gr))) .

It follows

in<(inω(I)) = (in<(inω(g1)), in<(inω(g2)), ..., in<(inω(gr))) ,

i.e. the initial ideal of inω(I) is generated by the initial monomials of inω(g1), inω(g2), ..., inω(gr)
and this is exactly the definition of a Gröbner basis for inω(I). We can con-
clude that {inω(g) | g ∈ G} is a Groebner basis for inω(I) with respect to
< .�

Corollary 1.9. (Corollary 1.10, [3]). If ω ≥ 0 and inω(I) is a monomial
ideal, then inω(I) = in<ω(I).

We give an example of computing the notions in the above corollaries:

Example 1.10. Let I = (f), f from Example 1.4, and < be the lexicographical
order (X1 > X2). Let ω = (2, 1). Then inω(I) = in<ω(I).

The initial form inω(I) = (X6
1X2

2 ) is a monomial ideal and is the same
with in<ω(I). For ω = (1, 1) the initial form inω(I) = (4X6

1X2
2 + 5X5

1X3
2 ) is

not a monomial ideal and is different from in<ω(I) = (X6
1X2

2 ).�

The following proposition finds, for every term ordering <, a vector ω
which represents the term ordering and it is easier in computations to use this
vector instead of <:

Proposition 1.11. (Proposition 1.11, [3]). For any term ordering < and any
ideal I ⊂ k[X ], there exists a non-negative integer vector ω ∈ N

n such that
inω(I) = in<(I).

Proof : See [3].�

Definition 1.12. Let ω ∈ R
n and < be a term ordering such that inω(I) =

in<(I). ω is called a term ordering for I which represents the term
order <.
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Definition 1.13. Let I ⊂ k[X ] be an ideal. We define the Gröbner region
GR(I) to be the set of all ω ∈ R

n such that inω(I) = inω′(I) for some ω′ ≥ 0.

So we can write

GR(I) = {ω ∈ R
n | inω(I) = inω′(I) for some ω′ ≥ 0} . (1.1)

Remark 1.14. GR(I) contains the non-negative orthant R
n
+.

Example 1.15. For I = (f), f from example 1.4 we compute GR(I).

Each exponent vector vi, with avi �= 0, determines the point Ai in the plane
like in the Figure 1. Their convex hull is a hexagon.
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Figure 1

We are interested in finding those vectors ω ∈ R
2 such that inω(I) =

inω′(I) for some ω′ ∈ R
2
+, that is we want to find all the directions ω =

(ω1, ω2) ∈ R
2 such that they maximize ω · vi and have non-empty intersection

with the first quadrant of R
2.
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1 2 3 4 5−1−2−3
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GR(I) = {(ω1, ω2) : ω1 + ω2 > 0 ∨ 2ω1 + ω2 > 0}

Figure 2

So, we have to find the directions which are between the normal vectors of
d1 and d4. In Figure 2 we have all the possible directions divided in classes.
The Gröbner region is given by the region marked with circular arrow i.e.:

GR(I) =
{
(ω1, ω2) ∈ R

2 | ω1 + ω2 > 0 or 2ω1 + ω2 > 0
}

.

The other regions (unmarked) maximize the product ω · vi, but the inter-
section with the first quadrant is empty.�

2 Geometric interpretations and algorithms

Now we give an algorithm, along with its implementation in Singular and
visualization in Mathematica, for computing the Gröbner region GR(I) for a
principal ideal I = (f), f ∈ k[X, Y ].

Let f = c1X
a1Y b1 + c2X

a2Y b2 + ... + cnXanY bn , c1, c2, ..., cn �= 0. Each
vector vi = (ai, bi) determines the point Ai(ai, bi) in the plane like in the
Figure 1. For computing GR(I) we are interested in finding those vectors
ω ∈ R

2 such that inω(I) = inω′(I) for some ω′ ∈ R
2
+(first qudrant) i.e. we

want to find the union of all sets with ω ∈ R
2 as elements such that fulfill the

condition inω(I) = inω′(I), for some ω′ ∈ R
2
+. From definition of inω(I), the

condition inω(I) = inω′(I) means in fact to find those ω ∈ R
2 such that ωvi

is maximum, i = 1, n.
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Let us consider

New(f) = conv({v1, ..., vn}) =

⎧⎨
⎩

n∑
j=1

λjvj | λj ∈ R+ ,

n∑
j=1

λj = 1

⎫⎬
⎭

the Newton polytope for f .
From a theorem of linear programming ([4]) we know that an optimum

value for ωv (a linear function) is obtained on the frontier of New(f) and,
more exactly, in a vertex of the frontier H of New(f). Using this result, our
problem is to find for each vertex of H the directions ω = (ω1, ω2) ∈ R

2 such
that the problem {

max(ω1x + ω2y)
v = (x, y) ∈ New(f)

riches its solution in the considered vertex. In this way we determine in fact
the sets

Sω
j =

{
ω ∈ R

2 | ωv rich its maximum in the point Aj , v ∈ New(f)
}

,

j = 1, m, where m = the number of vertices of the frontier H .
Then we set

GR(I) =
m⋃

j=1

(Sω
j ∩ R

2
+).

Let us compute for example Sω
2 for I = (f), f from example 1.4. The

Newton polytope of f is given by the convex hull of the points Ai, i = 1, 8,
which is the union of the segment lines dj , j = 1, 6 (see Figure 1). As we saw,
Sω

2 means the set of all ω = (ω1, ω2) ∈ R
2 such that ωv rich its maximum in

the point A2. So we have to solve the following problem:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

max(ω1x + ω2y)
y ≥ x − 4

y ≤ −x + 8
y ≤ − 1

3x + 14
3

y ≤ 1
2x + 3

x ≥ 0
y ≥ 0

.

If we consider the straight line d : ω1x + ω2y = t then nd = (ω1, ω2) is
the normal vector of this straight line. So, the normal vector of the sweep
line ω1x + ω2y = t which satisfies the problem is between nd2 = (1, 1) and
nd3 = (1, 3) as we can see in Figure 2.
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As we saw before, the first important object for computing the Gröbner
region is the convex hull of a set of n > 2 points, which is the frontier of
New(f).

The basic idea (Graham, 1972) for finding the convex hull of n points in
two dimensions in O(n log n) time is simple: assume we are given a point
P on the hull. We use as P the lowest point, which is clearly on the hull.
If there are several points with the same minimum y-coordinate, we use the
right most of the lowest as starting point of the sorting. In our example this
point is A3. Now we sort the points by angle, counter-clockwise about the
point P . Collinearities raise an issue, but we suppose we use this rule: if
angle(A) = angle(B), then define A < B if ‖A − P‖ < ‖B − P‖ i.e. closer
points are treated as earlier in the sorting sequence. For our example the sorted
points are labeled: A1, A2, A4, A7, A6, A5, A8. The points are now processed
in their sorted order, and the hull grown incrementally around the set. At
any step, the hull will be correct for the points examined so far, but of course
points encountered later will cause earlier decisions to be reevaluated.

The hull is maintained in a circular list S of points. Initially, the list
containes all the points: S = {A3, A1, ..., A3}. A point Ai is deleted from S if
this point forms a right turn i.e. the determinant formed with Ai−1, Ai,Ai+1

is negative (ex: A6) or zero (ex: A5).
After we delete all the points with this property we obtain the convex hull

S = {A3, A1, A2, A4, A7, A8, A3}.
The algorithm in pseudocod is:

Algorithm Convex hull (see [5])
Input : n > 2 points A1, ..., An.
Output : The convex hull of the points.
1. Find rightmost lowest point: label it P .
2. Sort all other points angulary about P :

2.1. Break ties in favor of closeness to P .
2.2. Label A1, A2, ..., An−1.

3. List S = (P, A1, A2, ..., An−1, P ).
4. i = 1.
While i < n

if Ai forms a right turn with (Ai−1, Ai+1)
then eliminate Ai from S

5. Print S.

Now we want to find the straight lines which give us GR(I). Those straight
lines are determined by the exterior normal vectors of the sides of the convex
hull. For each side AiAi+1 (where Ai = (ai, bi)) of the convex hull, the normal
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vector is ni = (bi+1 − bi, ai − ai+1). If we want to have always the exterior
normal vector we have to verify if ni is oriented to the exterior of the convex
hull i.e. the points Ai, Ai+1 and Ni have negative orientation, where Ni =
(αi, βi) is the translation of ni in Ai:∣∣∣∣∣∣

ai bi 1
ai+1 bi+1 1
αi βi 1

∣∣∣∣∣∣ < 0. (2.1)

So, the normal exterior vector ne
i = ni if the condition (2.1) is fulfilled, and

ne
i = −ni, otherwise.

Having the normal exterior vectors {ne
1, ..., n

e
m}, where m = number of

points in the convex hull, we choose those vectors with positive components:{
ne

i , n
e
i+1..., n

e
j

}
(the normal exterior vectors are consecutive because the sides

of the convex hull are sorted). Then GR(I) is the region between the straight
lines passing through (0, 0) and having as directing vectors ne

i−1 and ne
j+1.

In the case when we have n ≤ 3, the Newton polytope and the Gröbner
region are computed directly, as follows: for n = 1 the Newton polytope is
the point itself and the Gröbner region is the entire R

2; for n = 2 the Newton
polytope is the segment line formed with this two points, and the Gröbner
region can be R

2 or a half plane depending on the position of the exterior
normal vector of the straight line formed with the two points.

Now we can write the algorithm:

Algorithm: Gröbner region
Input : I = (f), f = c1X

a1Y b1 + ... + cnXanY bn , c1, c2, ..., cn �= 0.
Output : GR(I).
1. For each monomial of f do: vi := (ai, bi), i = 1, n.
2. If n < 2 then: GR(I) = R

2; goto step 8.
3. If n = 2 then:
Compute the normal exterior vector ne = (a, b), a > 0. If b > 0 then:

3.1. GR(I) = R
2; goto step 8.

3.2. Else: GR(I) =
{
(ω1, ω2) ∈ R

2 | − bω1 + aω2 > 0
}
; goto step 8.

4. Compute H := Convexhull(v1, ..., vn) = {A1, ..., Am}, m = the number
of vertices in the convex hull.

5. Compute the normal exterior vectors of H : V := {ne
1, ..., n

e
m}.

6. Choose from V the vectors with positive components:
{
ne

i , n
e
i+1..., n

e
j

}
.

7. Let ne
i−1 = (ai−1, bi−1) and ne

j+1 = (aj+1, bj+1) be the directing vectors
of the straight lines which give us GR(I). Then

GR(I) =
{
(ω1, ω2) ∈ R

2 | − bi−1ω1 + ai−1ω2 > 0 or bj+1ω1 − aj+1ω2 > 0
}

8. Print GR(I).
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3 The implementation

We’ll implement in Singular the algorithms we saw before, and we’ll also
construct a string which, pasted in Mathematica, will give us the drawings of
the desired objects.

First of all we discourse the cases when the number of monomials is less
than 3. In this cases we will construct directly the Newton polytope and the
Gröbner region. The procedure showmat prints a given matrix and the pro-
cedure multind computes the exponent vectors and deals with the particular
cases. For this cases the program gives now all the strings that we’ll paste in
Mathematica. We’ll discuss later the meanings of those strings.

LIB "matrix.lib";

proc showmat(intmat a,int n)
{
int i,j;
intmat b[n][2];
for (i=1;i<=n;i++)
{
for (j=1;j<=2;j++)
{
b[i,j]=a[i,j];
}

}
print(b);
}

proc multind(poly f)
{
int m,j;
while (f<>0)
{
m++;
for (j=1;j<=2;j++)
{
a[m,j]=leadexp(f)[j];
}
f=f-lead(f);

}
if (m<2)
{
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print("THE POLYNOMIAL HAS LESS THAN 2 MONOMIALS.");
print("THE NEWTON POLYTOPE is:");
showmat(a,m);
print("THE GROEBNER REGION is: R^2 !");
exit;

}
if (m==2)
{
print("THE NEWTON POLYTOPE is:");
showmat(a,m);
print("");
print("THE GROEBNER REGION is:");
int vnx,vny;
vnx=a[2,2]-a[1,2];
vny=-(a[2,1]-a[1,1]);
if (vnx*vny>0)
{
string s4;
s4="GR(I)={(w1,w2) in R^2 | "+
string(-vny)+"*w1+"+string(vnx)+"*w2>0"+
" or "+
string(vny)+"*w1+"+string(-vnx)+"*w2>0"+
"}";
s4;
string s,s1,sg,s3;
s="{"+string(a[1,1])+","+string(a[1,2])+"}"+
","+"{"+string(a[2,1])+","+string(a[2,2])+"}";
s="{"+s+"}";
s1="Show[Graphics[{
RGBColor[0,0,1],PointSize[.03],Map[Point,"+s+"],
RGBColor[1,0,0],Thickness[.01],Line["+s+"]},
AspectRatio->Automatic,Axes->True]];";
s1;
sg="{"+string(vnx)+","+string(vny)+"}";
sg="{"+sg+"}";
s3="Show[Graphics[{
RGBColor[1,0,0],Thickness[.01],
Map[Line[{{0, 0}, #}] &,"+ sg+"]},
AspectRatio->Automatic,Axes -> True]];";
s3;

}
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else
{
if (vnx<=0)
{
vnx=-vnx;
vny=-vny;

}
string s4;
s4="GR(I)={(w1,w2) in R^2 | "+
string(-vny)+"*w1+"+string(vnx)+"*w2>0"+"}";
s4;
string s,s1,sg,s3;
s="{"+string(a[1,1])+","+string(a[1,2])+"}"+
","+"{"+string(a[2,1])+","+string(a[2,2])+"}";

s="{"+s+"}";
s1="Show[Graphics[{
RGBColor[0,0,1],PointSize[.03],Map[Point,"+s+"],
RGBColor[1,0,0],Thickness[.01],Line["+s+"]},
AspectRatio->Automatic,Axes->True]];";
s1;
sg="{"+string(vnx)+","+string(vny)+"}"+
","+"{"+string(-vnx)+","+string(-vny)+"}";
sg="{"+sg+"}";
s3="Show[Graphics[{
RGBColor[1,0,0],Thickness[.01],
Map[Line[{{0, 0}, #}] &,"+ sg+"]},
AspectRatio->Automatic,Axes -> True]];";
s3;
}
print("");
print("In order to see the Newton polytope and the
Groebner region paste the last 7 output lines into a
Mathematica notebook and then evaluate the cell with
SHIFT RETURN");
exit;

}
print("");
print("The EXPONENT VECTORS are:");
showmat(a,m);
n=m;
}
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Following the algorithm for the convex hull we have to determine the right-
most lowest point and to bring this point in the first position with the proce-
dure interschimb.

proc interschimb(int i,int j)
{
int tempx=a[i,1];
int tempy=a[i,2];
a[i,1]=a[j,1];
a[i,2]=a[j,2];
a[j,1]=tempx;
a[j,2]=tempy;
}

proc rmlowest(int n)
{
print("");
print("The NUMBER of the points is:");
n;
int i,poz;//position of the rightmost lowest point
int ymin=a[1,2];
poz=1;
for (i=1;i<=n;i++)
{
if (a[i,2]<ymin)
{
ymin=a[i,2];
poz=i;

}
else
{
if (a[i,2]==ymin)
{
if (a[i,1]>a[poz,1])
{
poz=i;

}
}

}
}
print("");
print("The RIGHTMOST LOWEST POINT is:");
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printf("(%s,%s)",a[poz,1],a[poz,2]);
interschimb(1,poz);
print("");
print("The MATRIX before the sorting procedure is:");
showmat(a,n);
}

Now we have to sort the points angulary with respect to the rightmost
lowest point determined before. The procedure detpuncte forms a 3 × 3
submatix of the a given one and it computes the determinant.

proc detpuncte(intmat a,int i,int j,int k)
{
intmat b[3][3]=a[i,1],a[i,2],1,

a[j,1],a[j,2],1,
a[k,1],a[k,2],1;

return(det(b));
}

proc sortpoints(int n)
{
int i;
int temp;
int t=0;
while (t==0)
{
t=1;
for (i=2;i<n;i++)
{
if (detpuncte(a,1,i,i+1)<0)
{
interschimb(i,i+1);
t=0;

}
else
{
if ((detpuncte(a,1,i,i+1)==0) and (a[i,2]>a[i+1,2]))
{
interschimb(i,i+1);

}
}
}
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}
print("");
print("The MATRIX with the POINTS SORTED angulary is:");
showmat(a,n);
}

Having the matrix of the sorted point we can construct the circular list:

proc circlist(intmat a,int n)
{
int i,j;
for (i=1;i<=n;i++)
{
for (j=1;j<=2;j++)
{
c[i,j]=a[i,j];

}
}
c[n+1,1]=a[1,1];
c[n+1,2]=a[1,2];
print("");
print("The CIRCULAR LIST of the points is:");
showmat(c,n+1);
}

The procedure elimin has the role to eliminate a given point from the
circular list before. Using this procedure we can compute the Newton polytope
for f like in the algorithm given in section 2:

proc elimin(int i)
{
int k;
for (k=i;i<m;i++)
{
c[i,1]=c[i+1,1];
c[i,2]=c[i+1,2];

}
m=m-1;
}

proc newtonpoly()
{
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print("");
int i=1;
while (i<m-1)
{
if (detpuncte(c,i,i+1,i+2)>0)
{
i=i+1;
}
else
{
print("ELIMINATE the POINT");
printf("(%s,%s)",a[i+1,1],a[i+1,2]);
elimin(i+1);
if (i<>1)
{
i=i-1;

}
}

}
print("");
print("THE NEWTON POLYTOPE is:");
showmat(c,m);
}

Following the algorithm from section 2 we have to compute the exterior
normal vectors. The procedure deterv computes the determinant of a choosen
3 × 3 matrix.

proc deterv(int j,int vx,int vy)
{
intmat b[3][3]=c[j,1],c[j,2],1,c[j+1,1],c[j+1,2],1,vx,vy,1;
return(det(b));
}

proc envectors(int m)
{
int i;
print("");
print("THE EXTERIOR NORMAL VECTORS are:");
int vx,vy;
for (i=1;i<m;i++)
{
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v[i,1]=c[i+1,2]-c[i,2];
v[i,2]=-(c[i+1,1]-c[i,1]);
vx=c[i+1,2]-c[i,2]+c[i,1];
vy=c[i,1]-c[i+1,1]+c[i,2];
if (deterv(i,vx,vy)>0)
{
v[i,1]=-v[i,1];
v[i,2]=-v[i,2];

}
}
showmat(v,m-1);
}

Now we have all the elements to implement the algorithm for the Gröbner
region for any polynomial in two indeterminates. The variables right and
left indicates the positions of the frontier half lines of the Gröbner region.

proc groebnerregion(intmat v,int m)
{
int i=1;
while (i<m)
{
if ((v[i,1]>0) and (v[i,2]>0))
{
right=i;
i++;
while ((v[i,1]>0) and (v[i,2]>0))
{
i++;
}
left=i;
i++;

}
else
{
i++;

}
}
right--;
print("");
print("The DIRECTING VECTORS of the FRONTIER HALF LINES
of the Groebner region are:");
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if (right==0)
{
right=m-1;

}
printf("(%s,%s)",v[right,1],v[right,2]);
printf("(%s,%s)",v[left,1],v[left,2]);
}

We can construct strings in Singular that will permit us to visualize the
Newton polytope and the Gröbner region. This strings also containes some
instructions for handling the input in Mathematica.

proc mathstrings(intmat v,int m)
{
int i;
print("");
print("THE GROEBNER REGION is:");
string s4;
s4="GR(I)={(w1,w2) in R^2 | "+
string(-v[right,2])+"*w1+"+string(v[right,1])+"*w2>0"+
" or "+
string(v[left,2])+"*w1+"+string(-v[left,1])+"*w2>0"+
"}";

s4;
print("");
string s,s1,s2,sg,s3;
s="{"+string(c[1,1])+","+string(c[1,2])+"}";
for (i=2;i<=m;i++)
{
s=s+","+"{"+string(c[i,1])+","+string(c[i,2])+"}";

}
s="{"+s+"}";
s2="{"+string(a[1,1])+","+string(a[1,2])+"}";
for (i=2;i<=n;i++)
{
s2=s2+","+"{"+string(a[i,1])+","+string(a[i,2])+"}";

}
s2="{"+s2+"}";
s1="Show[Graphics[{
RGBColor[0,1,0],PointSize[.03],Map[Point,"+s2+"],
RGBColor[0,0,1],Map[Point,"+s+"],
RGBColor[1,0,0],Thickness[.01],Line["+s+"]},
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AspectRatio->Automatic,Axes->True]];";
s1;
sg="{"+string(v[1,1])+","+string(v[1,2])+"}";
for (i=2;i<m;i++)
{
sg=sg+","+"{"+string(v[i,1])+","+string(v[i,2])+"}";

}
sg="{"+sg+"}";
s3="Show[Graphics[{
RGBColor[0,0,1],Thickness[.01],Map[Line[{{0, 0}, #}] &,
"+ sg+"],
RGBColor[1,0,0],Thickness[.01],Line[{{0,0},
{"+string(v[right,1])+","+string(v[right,2])+"}}],
Line[{{0,0},{"+string(v[left,1])+","+string(v[left,2])+"}}]},
AspectRatio->Automatic,Axes -> True]];";

s3;
print("");
print("In order to see the Newton polytope and the
GROEBNER REGION
paste the last 10 output lines into a Mathematica
notebook and then evaluate the cell with SHIFT RETURN
The NEWTON POLYTOPE is the polygon in red.

The GROEBNER REGION is the sector which contains the first
quadrant between the two red half lines.");
}

The main program begins with the initialisation of the polynomial for
which we want to compute the Newton polytope and the Gröbner region, and
then we call the procedures discussed before, like in the algorithm from section
2.

int n;
ring r=0,(x,y),Dp;
intmat a[100][2];
poly f=4x6y2+5x5y3-x4+3x2y4+x2+xy+y3+7;
multind(f);
rmlowest(n);
sortpoints(n);
intmat c[n+1][2];
circlist(a,n);
int m=n+1;
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newtonpoly();
intmat v[m][2];
envectors(m);
int right,left;
groebnerregion(v,m);
mathstrings(v,m);

Let us see now how this program works for the polynomial given at the
beginning of the main program. Following the algorithm, the output gives us
the results of each procedure and illustrates the important steps:

The EXPONENT VECTORS are:
6 2
5 3
2 4
4 0
0 3
2 0
1 1
0 0

The NUMBER of the points is:
8

The RIGHTMOST LOWEST POINT is:
(4,0)

The MATRIX before the sorting procedure is:
4 0
5 3
2 4
6 2
0 3
2 0
1 1
0 0

The MATRIX with the POINTS SORTED angulary is:
4 0
6 2
5 3
2 4
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0 3
1 1
2 0
0 0

The CIRCULAR LIST of the points is:
4 0
6 2
5 3
2 4
0 3
1 1
2 0
0 0
4 0

ELIMINATE the POINT
(2,0)
ELIMINATE the POINT
(1,1)

THE NEWTON POLYTOPE is:
4 0
6 2
5 3
2 4
0 3
0 0
4 0

THE EXTERIOR NORMAL VECTORS are:
2 -2
1 1
1 3

-1 2
-3 0
0 -4

The DIRECTING VECTORS of the FRONTIER HALF LINES
of the Groebner region are:

(2,-2)
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(-1,2)

THE GROEBNER REGION is:
GR(I)={(w1,w2) in R^2 | 2*w1+2*w2>0 or 2*w1+1*w2>0}

We can observe that the Gröbner region computed with this program is
exactly the same with the one deduced theoreticaly in section 1.

The output gives us also the strings in Mathematica language. If we follow
the instructions given in the last rows of the output, we copy the last rows
written in Mathematica:

Show[Graphics[{
RGBColor[0,1,0],PointSize[.03],Map[Point,
{{4,0},{6,2},{5,3},{2,4},{0,3},{1,1},{2,0},{0,0}}],
RGBColor[0,0,1],Map[Point,
{{4,0},{6,2},{5,3},{2,4},{0,3},{0,0},{4,0}}],
RGBColor[1,0,0],Thickness[.01],
Line[{{4,0},{6,2},{5,3},{2,4},{0,3},{0,0},{4,0}}]},
AspectRatio->Automatic,Axes->True]];

Show[Graphics[{
RGBColor[0,0,1],Thickness[.01],Map[Line[{{0, 0}, #}]
&,{{2,-2},{1,1},{1,3},{-1,2},{-3,0},{0,-4}}],
RGBColor[1,0,0],Thickness[.01],Line[{{0,0},{2,-2}}],
Line[{{0,0},{-1,2}}]},
AspectRatio->Automatic,Axes -> True]];

in a Mathematica notebook, and we’ll have the drawings of the desired objects,
like in the Figure 1 and Figure 2 from the first section. The Newton polytope
and all the initial points computed with Mathematica are given in the figure
below:

We can also see the Gröbner region computed with Mathematica, which is
exactly the same as we deduced in section 1. As we said before, the Gröbner
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region is the sector which contains the first quadrant, between the half line
from the fourth quadrant and the half line from the second quadrant:
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