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DOUBLE COVERS AND VECTOR

BUNDLES

Vasile Br̂ınzănescu∗

Abstract

Let π : X → Y be a double (ramified) cover of complex manifolds.
The purpose of this note is to study the properties of holomorphic rank-
2 vector bundles on Y arising as push forward of line bundles on X,
extending some results of [S], [Fr] to the non-projective case.

1 Introduction

There are essentially only two methods to construct holomorphic vector bun-
dles over complex manifolds. One of them, the extensions method of Serre
used succesfully in the projective case, gives only filtrable holomorphic vector
bundles in the non-projective case (see, for example [B-F], [B-L], [B]). The
second method, the push forward of line bundles by finite covers, was used in
both cases (see, for example [S], [Fr] in the projective case and [A-B-T], [T]
in the non-projective case). Let π : X → Y be a double cover of complex
manifolds. The purpose of this note is to study the properties of holomorphic
rank-2 vector bundles on Y arising as push forward of line bundles on X. For
any line bundle M ∈ Pic(X) one defines the norm line bundle Nm(M) ∈
Pic(Y ) and one computes the Chern classes of holomorphic rank-2 vector
bundles obtained as push forward of line bundles by the double cover.

2 The norm line bundle

Let Y be a complex manifold, B ⊂ Y a reduced smooth effective divisor on Y

or zero. Suppose we have a line bundle L on Y such that

OY (B) = L⊗2,
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and a section s ∈ Γ(Y,OY (B)) vanishing exactly along B (if B = 0 we take
for s the constant function 1). We denote by L the total space of L and we
let p : L → Y be the bundle projection. If t ∈ Γ(L, p∗L) is the tautological
section, then the zero divisor of p∗s− t2 defines an analytic subspace X in L.
If B 6= 0, since B is reduced and smooth, then also X is smooth and π = p|X
exhibits X as a 2-fold ramified covering of Y with branch-locus B. We call
π : X → Y the 2-cyclic covering (or ramified double cover) of Y branched
along B, determined by L. If B = 0, we take L 6∼= OY ; in this case π : X → Y

is called the 2-cyclic unramified covering (or unramified double cover) of Y

determined by L.
Conversely, given π : X → Y a finite morphism of degree two between

complex manifolds, we can recover B and L as follows. Let τ : X → X be the
sheet interchange involution, i.e. τ 2 = id, π ◦ τ = τ . Then B is the image
under π of the fixed set of τ and π∗OX = OY ⊕ L−1, where the direct sum
decomposition corresponds to taking the +1 and −1 eigenspaces of τ acting
on π∗OX (see, for example [B-P-V], [M], [Fr]).

The morphism π : X → Y induces the natural homomorphism

π∗ : Pic(Y ) → Pic(X).

In the projective case, by using the natural map π∗ : Div(X) → Div(Y )
between the group of divisors on X and similarly on Y , one obtains a homomor-
phism

π∗ : Pic(X) → Pic(Y ).

In the non-projective case, since the group of divisors could be very small, we
have to find some other substitute for the map π∗ by using line bundles.

Let G = {id, τ} be the group of the double cover π : X → Y . Let M ∈
Pic(X) be a line bundle. Since

τ∗(M⊗ τ∗M) ∼= M⊗ τ∗M,

then

M⊗ τ∗M ∈ Pic(X)G.

It follows that π∗(M⊗ τ∗M) is a G-sheaf and, as a rank 2-vector bundle on
Y , splits as a direct sum of line bundles corresponding to taking +1 and −1
eigenspaces of τ . Thus, we have

π∗(M⊗ τ∗M) ∼= (π∗(M⊗ τ∗M))G ⊕ Z,

where the first factor is the invariant part of the G-sheaf π∗(M⊗ τ∗M).
We have
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Definition 1 Let M ∈ Pic(X) be a line bundle. The line bundle

NmM := (π∗(M⊗ τ∗M))G

is called the norm line bundle of M.

Lemma 2 π∗(NmM) ∼= M⊗ τ∗M.

Proof: There exists a natural morphism of line bundles

π∗(π∗(M⊗ τ∗M)G) → M⊗ τ∗M.

For any x ∈ X let y = π(x) ∈ Y and choose a Stein neighbourhood V of
y; then π−1(V ) is a Stein neighbourhood of π−1(y) and one finds a section
s ∈ M(π−1(V )) with s(xi) 6= 0 for all xi ∈ π−1(y). Then s.sτ is a G-invariant
section of M⊗ τ∗M(π−1(V )), which generates M⊗ τ ∗M in a neigbourhood
of π−1(y). It follows that the above natural morphism is an isomorphism.

3 Rank-2 vector bundles

Let π : X → Y be a double cover as above. We have that π∗OX
∼= OY ⊕L−1

is an OY - algebra, which is coherent as an OY -module. Multiplication is given
by

(a, l).(b,m) = (ab + Φ(l ⊗ m), am + bl),

where a, b are (local) sections of OY , l, m are (local) sections of L−1, for
some isomorphism

Φ : L−2 ∼
→ OY (−B) ⊂ OY .

In fact, X = Specan(A), where A = π∗OX is a sheaf of OY -algebras and for
any OX -module F the OY -module π∗F is an A-module (see [Fi]).

Let M ∈ Pic(X) be a line bundle. For the rank-2 vector bundle π∗M we
have the following result:

Theorem 3 det(π∗M) ∼= NmM⊗L−1.

Proof: Since π : X → Y is a finite morphism we have the isomorphism:

H1(X,O∗

X)
∼
→ H1(Y, (π∗OX)∗). (1)

(see [H], [M]). By choosing a suitable open covering U = (Ui) of Y we can
suppose that all the vector bundles L, π∗OX and π∗M have local trivializa-
tions with respect to this open covering. If (fij) is an 1-cocycle of the covering
U with coefficients in O∗

Y , which defines the line bundle L, then the rank-2
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vector bundle A = π∗OX
∼= OY ⊕L−1 is defined with respect to this covering

by the 1-cocycle
(

1 0
0 f−1

ij

)

In fact, we have the local trivializations

OUi

ϕi
→ L−1|Ui

and the isomorphisms composition

OUi∩Uj

ϕj

→ L−1|Ui∩Uj

ϕ
−1

i→ OUi∩Uj
,

such that f−1
ij = (ϕ−1

i ◦ ϕj)(1). Then, we get the isomorphisms composition

O2
Ui∩Uj

→ A|Ui∩Uj
→ O2

Ui∩Uj
,

given by the above matrix.
The morphism Φ : L−2 → OY gives the morphisms

Φij : O⊗2
Ui∩Uj

→ L−2|Ui∩Uj
→ OUi∩Uj

,

where Φij(l ⊗ m) = lmtij , tij ∈ O(Ui ∩ Uj).
The line bundle M ∈ Pic(X) ∼= H1(X,O∗

X) defines by the isomorphism
(1) an 1-cocycle (γ̃ij), γ̃ij ∈ A∗(Ui ∩ Uj). Let γij be the composition

O2(Ui ∩ Uj)
1⊕ϕj

→ A(Ui ∩ Uj)
γ̃ij

→ A(Ui ∩ Uj)
1⊕ϕ

−1

i→ O2(Ui ∩ Uj);

then (γij) is an 1-cocycle which defines the rank-2 vector bundle π∗M. If we
write γij = (c′ij , c

′′
ij), for any (α, β) ∈ O2(Ui ∩ Uj), we get

γij(α, β) = (c′ijα + c′′ijtijβ, f−1
ij (c′ijβ + c′′ijα)).

It follows that an 1-cocycle which defines the rank-2 vector bundle π∗M is
given by the following matrix

(

c′ij c′′ijtij
f−1

ij c′′ij c′ij

)

Then, the line bundle det(π∗M) is given by the 1-cocycle

f−1
ij ((c′ij)

2 − tij(c
′′

ij)
2).
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In the direct sum decomposition π∗OX = OY ⊕ L−1, the second factor
corresponds to the −1 eigenvalue of τ . It follows that an 1-cocycle defined by
the line bundle M⊗ τ∗M in H1(Y, (π∗OX)∗) is given by

γij .τ
∗γij = (c′ij , c

′′

ij).(c
′

ij ,−c′′ij) = ((c′ij)
2 − tij(c

′′

ij)
2, 0).

For the rank-2 vector bundle π∗(M⊗ τ∗M) we get the 1-cocycle given by the
following matrix

(

(c′ij)
2 − tij(c

′′
ij)

2 0

0 f−1
ij ((c′ij)

2 − tij(c
′′
ij)

2)

)

It follows that the G-invariant part of π∗(M⊗ τ∗M), i.e. NmM is given
by an 1-cocycle (c′ij)

2 − tij(c
′′
ij)

2. Finally, we get

det(π∗M) ∼= NmM⊗L−1.

Lemma 4 We have the exact sequence of vector bundles on X:

0 → τ∗M⊗ π∗(L−1) → π∗(π∗M) → M → 0.

Proof: (see [Fr]) The natural morphism

π∗(π∗M) → M

is surjective; then the kernel is the line bundle

det(π∗(π∗M)) ⊗M−1 = π∗(det(π∗M)) ⊗M−1.

By applying Theorem 3 and Lemma 2 we get the desired result.

Corollary 5

c2(π∗M) =
1

2
(c2

1(NmM) − π∗(c
2
1(M)) − π∗(c1(M)).c1(L)).

Proof: (see [Fr]) By applying all the results above and the projection formula
one gets the conclusion.

Remark By using push forward of line bundles by finite covers in [A-B-T] one
obtained the complete answer to the existence problem of holomorphic vector
bundles of any rank over primary Kodaira surfaces.
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[A-B-T] Aprodu,M., Br̂ınzǎnescu,V., Toma,M., Holomorphic vector bundles on primary

Kodaira surfaces, Math.Z. (2001), (DOI) 10.1007/s002090100307
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[B] Br̂ınzǎnescu, V., Holomorphic Vector Bundles over Compact Complex Surfaces,
Lect. Notes Math., 1624, Springer-Verlag, 1996
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