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Abstract

A complete group presentation is a useful tool for performing computations
with the specified group. Here we give complete presentations for the irreducible
finite Coxeter groups Dn, and prove some of its properties. With this result,
it becomes possible to construct the complete presentation of any finite Coxeter
group.

1 Introduction.

A complete presentation of a group or monoid M is a presentation of M that is
complete when regarded as a string rewriting system. Such a presentation provides a
straightforward solution to the word problem in M in a “syntactical” fashion, since
any word on the generators of M can be rewritten in a unique way as a canonical or
normal form. Thus, deciding whether two words represent the same group element
amounts to comparing their canonical forms.
In general, complete presentations enable us to perform various computations with

groups. In [4], we have shown how to use a complete group presentation for solving
some problems in the given group, such as the discrete logarithm problem, of great
importance in cryptograpy. If a group is to be used in a cryptographic system based
on the complexity of the discrete logarithm problem, it must not be amenable to our
methods. Thus, we have set out to investigate the complexity of the discrete logarithm
problem in several classes of groups for potential cryptographic applications, including
some Coxeter groups, like the class Dn. This has provided the main motivation for the
present paper.
Obtaining a complete presentation for M largely depends on a previously fixed

ordering among the words on the generators of M . One of the most common such
orderings is the ShortLex ordering, which first compares two words by their lengths,
and then breaks ties lexicographically. Once we have fixed a generating set and an
ordering on the words, there exists a unique complete normalized presentation on
those generators, i.e. a presentation with no redundant rules (rules that can be derived
from the others). For all details on the subject of complete rewriting systems, the
reader can consult the classic monograph by Book and Otto [1].
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2 Coxeter Groups

The derivation of complete presentations for Coxeter groups dates back to the
1980s with the work of Philippe le Chenadec [6, 7, 8], which has been pursued by other
researchers in the last decade [10, 2, 9]. Du Cloux’s paper [9] has come closest to giving
a complete presentation for any finite Coxeter group on the standard generators, but
there still remain some gaps to be filled. Du Cloux gives a set of directions that the
reader has to follow in order to get an explicit complete presentation for a specific
group; unfortunately, the method involves an induction step by the reader, who has to
generalize some tables given by the author for particular groups.
In this paper we have set out to make that construction more explicit and rigorous

for one of the families of irreducible finite Coxeter groups: the class Dn. Those groups
defy the Knuth-Bendix completion procedure for string rewriting systems; its execution
time grows very rapidly as n increases, so that the procedure becomes soon impractical.
As a consequence, no explicit formulas for the complete presentation of Dn, based on
the standard generators, had been available so far.
With this result, we can conclude a catalogue of complete presentations for all the

irreducible finite Coxeter groups, which enables us to construct the complete presen-
tation of any finite Coxeter group in way that is more straightforward than that of du
Cloux’s [3, 5].

2 Complete presentation of Dn.

The class of groups Dn (n ≥ 4), of order 2n−1n!, is given by the following (standard)
presentation on the generators x1, x2, ..., xn, denoted SP (n):

x2i = 1 for 1 ≤ i ≤ n,

(x1x3)
3 = 1,

(xixi+1)
3 = 1 for 2 ≤ i ≤ n− 1,

and finally,
(xixj)

2 = 1

for all the other combinations of i and j (i < j) not included above.
In this paper, the complete presentation for the group Dn will be obtained recur-

sively, starting with a complete presentation for D4, and then producing the rules that
need to be added in order to go from Dn−1 to Dn. The complete presentation of D4,
denoted CP (4), consists of the following 16 relations: 1

xi
2 −→ 1, para 1 ≤ i ≤ 4,

x2x1 −→ x1x2, x4x1 −→ x1x4, x4x2 −→ x2x4,

x3x2x3 −→ x2x3x2, x3x1x3 −→ x1x3x1, x4x3x4 −→ x3x4x3,

x3x1x2x3x1 −→ x2x3x1x2x3, x3x1x2x3x2 −→ x1x3x1x2x3,

1This presentation was obtained with the aid of a Knuth-Bendix completion program written by
us in GAP-3 [11].
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x4x3x1x4 −→ x3x4x3x1, x4x3x2x4 −→ x3x4x3x2,

x4x3x1x2x4 −→ x3x4x3x1x2,

x4x3x1x2x3x4x3 −→ x3x4x3x1x2x3x4.

Now we define the words ψ
(n)
j , with 0 ≤ j ≤ 2n− 1:

ψ
(n)
0 = 1,

ψ
(n)
1 = xn,

ψ
(n)
2 = xnxn−1,

...

ψ
(n)
n−2 = xnxn−1xn−2 . . . x3,

ψ
(n)
n−1 = xnxn−1xn−2 . . . x3x1,

ψ
(n)
n = xnxn−1xn−2 . . . x3x2,

ψ
(n)
n+1 = xnxn−1xn−2 . . . x3x1x2,

ψ
(n)
n+2 = xnxn−1xn−2 . . . x3x1x2x3,

...

ψ
(n)
2n−1 = xnxn−1xn−2 . . . x3x1x2x3 . . . xn−1xn;

and we consider the following rule classes:
TYPE I: the rule xn

2 −→ 1.
TYPE II: the rules xnxi −→ xixn, for 1 ≤ i ≤ n− 2.
TYPE III: the rules ψ

(n)
j xn −→ xn−1ψ

(n)
j , with 2 ≤ j ≤ 2n− 3.

TYPE IV: the rule ψ
(n)
2n−1xn−1 −→ xn−1ψ

(n)
2n−1.

We let CP (n) be the presentation defined recursively as follows: For n > 4, CP (n)
is obtained from CP (n− 1) by adding the type I, II, III and IV relations just defined.
We can now state the following result:

THEOREM 1. CP (n) is a complete normalized presentation of Dn, for all n ≥ 4.
Let us denote by Irr(CP (n)) the set of words in x1, x2, ..., xn that are irreducible

with respect to the string rewriting system CP (n). The proof of our theorem will
consist of two parts:

1. Proving that CP (n) and SP (n) are algebraically equivalent.

2. Proving that nIrr(CP (n))n = 2n−1n!.

As we shall see, those two facts suffice to conclude that CP (n) is complete.
Let us start with the first part:

LEMMA 1. CP (n) and SP (n) are algebraically equivalent.

PROOF. All the relations in SP (n) are contained in CP (n), thus, we only have to
show that the rules of CP (n) are derivable from the relations in SP (n); in particular,
we only have to do this for the type III rules, except the first one, which is a trivial
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consequence of SP (n), and for the rule of type IV. In the case of the type III rules,

it suffices to follow the process for the rule ψ
(n)
2n−3xn −→ xn−1ψ

(n)
2n−3, because in some

sense, that is the most general situation.
On the right-hand side of each derivation step we give an indication of the rule that

has been used, in the format “type.index”; for example, II.1 refers to the type II rule
xnx1 −→ x1xn. We have

xnxn−1xn−2 . . . x3x1x2x3 . . . xn−3xn−2xn
←→ xnxn−1xn−2 . . . x3x1x2x3 . . . xn−3xnxn−2 (II.n− 2)
←→ xnxn−1xn−2 . . . x3x1x2x3 . . . xnxn−3xn−2 (II.n− 3)

...
←→ xnxn−1xnxn−2 . . . x3x1x2x3 . . . xn−3xn−2 (II.n− 2)
←→ xn−1xnxn−1xn−2 . . . x3x1x2 . . . xn−3xn−2 (III.2).

That is, we use the type II rules for permuting xn with the other generators,
and when the pattern xnxn−1xn appears, we use the rule III.2 to transform it into
xn−1xnxn−1. Hence, we have the equivalence

xnxn−1xn−2 . . . x3x1x2x3 . . . xn−3xn−2xn
∗←→ xn−1xnxn−1xn−2 . . . x3x1x2x3 . . . xn−3xn−2,

and since

xnxn−1 . . . x3x1x2x3 . . . xn−2xn > xn−1xnxn−1 . . . x3x1x2x3 . . . xn−2

in the ShortLex ordering, we can orient the rule as

xnxn−1 . . . x3x1x2x3 . . . xn−2xn −→ xn−1xnxn−1 . . . x3x1x2x3 . . . xn−2.

It is easy to see that the procedure above can be applied to all the other type III
rules. As for the type IV rule, we have:

xnxn−1 · · ·x3x1x2x3 · · ·xn−1xnxn−1
←→ xnxn−1 · · ·x3x1x2x3 · · ·xn−2xnxn−1xn (III.2)
∗←→ xnxn−1xnxn−2 · · ·x3x1x2x3 · · ·xn−1xn (II.i)
←→ xn−1xnxn−1xn−2 · · ·x3x1x2 · · ·xn−1xn, (III.2).

which yields the rule

xnxn−1 · · ·x3x1x2 · · ·xn−1xnxn−1 −→ xn−1xnxn−1xn−2 · · ·x3x1x2 · · ·xn−1xn,
as desired.

Now we turn to the second assertion. Let us start with the following

LEMMA 2. α ∈ Irr(CP (n)) if, and only if α = α1ψ
(n)
j , for some α1 ∈ Irr(CP (n−

1)) and 0 ≤ j ≤ 2n− 1.
PROOF. The “if” part is pretty obvious, so we turn to the “only if” part. In the

trivial case, when α does not contain xn, we have α = αψ
(n)
0 ∈ Irr(CP (n− 1)); so, let
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us assume that α contains xn. Let α = y1 · · · yk, and let i (1 ≤ i ≤ k) be the smallest
index such that yi = xn. Evidently, y1 · · · yi−1 ∈ Irr(CP (n − 1)), hence we only
have to show that yiyi+1 · · · yk coincides with one of the ψ(n)j . If k = i, yiyi+1 · · · yk
coincides with ψ

(n)
1 . Else, let the length of yiyi+1 · · · yk be smaller than n − 1; thus

yi+1 must be xn−1, because otherwise, yi and yi+1 could be swapped. Similarly, if it
exists, yi+2 must be xn−2, and so on, until yi+n−3, which must be equal to x3. Now,
in the case when the length of yiyi+1 · · · yk is at least n− 1, yi+n−2 could be x2 or x1.
If yi+n−2 = x2, there is no possibility for yi+n−1; in the latter case, yi+n−1 must be
x2 (if it exists), yi+n must be x3, and so on, until yi+2n−2, which must be equal to xn
again. The length of yiyi+1 · · · yk cannot exceed 2n− 1, because any symbol appearing
after the final xn will make α reducible.

Now, with the aid of induction, it is very straightforward to establish the following
results.

COROLLARY 1. nIrr(CP (n))n = 2n−1n!.
COROLLARY 2. If α ∈ Irr(CP (n)), then α = ϕψ

(5)
j5
· · ·ψ(n−1)jn−1 ψ

(n)
jn
, where ϕ ∈

Irr(CP (4)), and 1 ≤ jk ≤ 2k − 1.
PROOF OF THEOREM 1. Let X = {x1, x2, ..., xn}, kXl be the free monoid gen-

erated by X, and let kSP (n)l (resp. kCP (n)l) denote the congruence on X generated
by the presentation SP (n) (resp. CP (n)). Since all the rules of CP (n) can be derived
from SP (n) (Lemma 1), we can deduce that kCP (n)l ⊆ kSP (n)l, and hence,

nkXl/kSP (n)ln ≤ nkXl/kCP (n)ln ≤ nIrr(CP (n))n = nDnn.
That is, for each equivalence class modulo CP (n), there exists one, and only one
irreducible element, which means that CP (n) is complete.
The fact that CP (n) is normalized is fairly obvious.
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