STUDY OF FUZZY ALGEBRAS AND RELATIONS FROM A GENERAL VIEWPOINT

LÁSZLÓ FILEP

Abstract

We give definitions for fuzzy subalgebras, for fuzzy relations on fuzzy sets, and for fuzzy compatibility, which generalize, improve and correct the existing ones. The unit interval is replaced here by a partially ordered algebra. Then we study their connection with the corresponding crisp concepts through their newly defined Q-cuts.

1. Introduction

As it is well known, in the "classical" fuzzy theory established by L. A. Zadeh [5], a fuzzy set A is defined as a map from A to the real unit interval $I=[0,1]$. The set of all fuzzy sets on A is usually denoted by I^{A}. It is also known that under the natural ordering I^{A} is a complete lattice. The order and the lattices as well as other operations on I can be extended "pointwise" to I^{A}.

In the paper [3] J. A. Goguen replaced I by a complete lattice L in the definition of fuzzy sets introducing the notion of L-fuzzy sets. Later more generalizations were also made using various membership sets and operations.

The definitions given to the concepts of fuzzy substructures, relations and compatibility also involve different membership sets and operations. Now we unify and generalize these definitions recognizing that in each case some kind of an ordered set and an operation having some properties were used. To study the connection between the corresponding crisp and fuzzy concepts the notion of Q-cut introduced by the author in [2] will be used. The theorems proved also highly generalize the existing ones.

2. Results

Let A be a nonvoid set and $P=(P, *, 1, \leq)$ a (2,0)-type ordered algebra, i.e. let

[^0](i) $(P, *)$ be a monoid, where 1 is the unity for $*$;
(ii) (P, \leq) be a (partially) ordered set with 1 as the greatest element;
(iii) $*$ be isotone in both variables.

Further on, P always denotes such a structure.
A map $\mu: A \rightarrow P$ will be called a P-fuzzy subset of A or a P-fuzzy set on A. Denote their family by P^{A}. The order and the operations on P can also be extended pointwise to P^{A}. Recall that a subset Q of an ordered set (P, \leq) is called a right segment or an upper set (P, \leq) iff

$$
\forall q \in Q, \forall p \in P: \quad(q \leq p \Longrightarrow p \in Q)
$$

Clearly any closed interval $[p, 1]$ in P is a right segment of (P, \leq). If P is the unit interval, then only the closed intervals $[\alpha, 1], 0 \leq \alpha \leq 1$ form a right segment. If P is a lattice L, then any filter (dual ideal) in L is a right segment. Conversely, a right segment in L that is closed under * (specially under meet) is a filter. Let Q be a right segment of P. Then by the Q-cut μ_{Q} of some $\mu \in P^{A}$ we mean the following subset of A :

$$
\mu_{Q}=\{x \mid x \in A, \mu(x) \in Q\} .
$$

In case of $P=I$, the Q-cut reduces to the well known α-cut. A fuzzy relation r on A is usually defined as an element of $I^{A \times A}$. Here we will use (and generalize) the concept of fuzzy relation on fuzzy set, introduced by A. Rosenfeld [4] and not frequently studied in literature.

Definition 1. A P-fuzzy subset r of $P^{A \times A}$ is called a P-fuzzy relation on $\mu \in P^{A}$, if it satisfies the following property

$$
\forall x, y: r(x, y) \leq \mu(x) * \mu(y) .
$$

Their family will be denoted by $R(\mu)$.
Definition 2. An $r \in R(\mu)$ is said to be
(i) reflexive, if

$$
\forall x \in A: r(x, y)=\mu(x) * \mu(y) ;
$$

(ii) symmetric, if

$$
\forall x, y \in A: r(x, y)=r(y, x) ;
$$

(iii) transitive, if for any $x, z \in A$

$$
\forall y \in A: r(x, z) \geq r(x, y) * r(y, z) .
$$

A reflexive, symmetric and transitive P-fuzzy relation $r \in R(\mu)$ is called a P-fuzzy similarity (on μ).

If A denotes a (universal) algebra, that is if $A=(A, F)$, where A is a nonvoid set and F a specified set of finitary operations on A, then we can introduce the concept of a fuzzy algebra μ on A, and the concept of a fuzzy compatible relation r on μ.

Definition 3. A P-fuzzy set $\mu \in P^{A}$ is called a P-fuzzy algebra on the algebra A or a P-fuzzy subalgebra of A, if
(i) for any n-ary ($n \geq 1$) operation $f \in F$

$$
\mu\left(f\left(x_{1} \ldots x_{n}\right)\right) \geq \mu\left(x_{1}\right) * \ldots * \mu\left(x_{n}\right), \forall x_{1}, \ldots, x_{n} \in A ;
$$

(ii) for any constant (nullary operation) c

$$
\mu(c) \geq \mu(x), \forall x \in A .
$$

The type of a P-fuzzy algebra on A is given by that of A.
Definition 4. Let A be an algebra and $\mu \in P^{A}$ a P-fuzzy algebra on A. An $r \in R(\mu)$ is called a P-fuzzy compatible relation on μ if
(i) for any n-ary ($n \geq 1$) operation $f \in F$

$$
r\left(f\left(x_{1} \ldots x_{n}\right), f\left(y_{1} \ldots y_{n}\right)\right) \geq r\left(x_{1}, y_{1}\right) * \ldots * r\left(x_{n}, y_{n}\right)
$$

for all $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n} \in A$;
(ii) for any constant (nullary operation)

$$
\forall x, y \in A: r(c, c) \geq r(x, y)
$$

A compatible P-fuzzy similarity is called a P-fuzzy congruence (on the P-fuzzy algebra μ).

When A is a group, (ii) in Definitions 3 and 4 is a consequence of (i), respectively.

In fuzzy theory the following typical special cases used for the general concepts defined in Definitions 1,3,4:

1. $P=I, *=$ minimum ("classical" case);
2. $P=I$, * =some t-norm, e.g. t-fuzzy group [1];
3. $P=L, *=$ meet (L-fuzzy case).

Now we establish the connection between these fuzzy concepts and the corresponding crisp ones through their Q-cuts.

Lemma 1. Let $J=\{1, \ldots, n\}$ and $K=\left\{j_{1}, \ldots, j_{k}\right\} \subseteq J$, where $k \geq 2$ and $j_{1}<j_{2}<\ldots<j_{k}$. Then in (P, \leq)

$$
p_{1} * \cdots * p_{n} \leq p_{j_{1}} * \cdots * p_{j_{k}}(k=2, \ldots, n)
$$

for all $p_{1}, \ldots, p_{n} \in P$.

Proof. Using the isotonity we have

$$
p_{1} * \cdots * p_{n} \leq 1 * \cdots * p_{j_{1}} * \cdots * p_{j_{k}} * \cdots * 1=p_{j_{1}} * \cdots * p_{j_{k}} .
$$

Lemma 2. Let $\mu \in P^{A}$. If $r \in R(\mu)$, then
(i) $\forall x, y \in A: r(x, y) \leq \mu(x), r(x, y) \leq \mu(y)$;
(ii) $r_{Q} \subseteq \mu_{Q} \times \mu_{Q}$, where Q is a right segment of (P, \leq).

Proof. (i) $r(x, y) \leq \mu(x) * \mu(y) \leq \mu(x) * 1=\mu(x)$, $r(x, y) \leq \mu(x) * \mu(y) \leq 1 * \mu(y)$.
(ii) $(x, y) \in r_{Q} \Longrightarrow r(x, y) \in Q$. Thus by (i): $\mu(x) \in Q, \mu(y) \in Q \Longrightarrow x, y \in \mu_{Q} \Longrightarrow(x, y) \in \mu_{Q} \times \mu_{Q}$.

Theorem 1. Let A be an algebra and let $\mu \in P^{A}$. If each non-empty Q-cut μ_{Q} of μ is a subalgebra of A, then μ is a P-fuzzy algebra on A.
Proof. Take any elements x_{1}, \ldots, x_{n} from A and any n-ary ($n \geq 1$) operation f from F, and consider the following right segment of P

$$
Q=\left[\mu\left(x_{1}\right) * \cdots * \mu\left(x_{n}\right), 1\right] .
$$

By Lemma $1 \mu\left(x_{i}\right) \in Q$, therefore $x_{i} \in \mu_{Q}$ for all i. Since μ_{Q} is a subalgebra, hence $f\left(x_{1} \ldots x_{n}\right) \in \mu_{Q}$, that is $\mu\left(f\left(x_{1} \ldots x_{n}\right) \in Q\right.$ is also true, which means that

$$
\mu\left(f\left(x_{1} \ldots x_{n}\right)\right) \geq \mu\left(x_{1}\right) * \cdots * \mu\left(x_{n}\right) .
$$

Now let c be some constant of the algebra A. Then by definition c is an element of all subalgebras of A, specially of any μ_{Q}. Consequently $\mu(c) \geq \mu(x)$ must hold for all $x \in A$. Suppose namely that $\mu(c)<\mu(x)$ for some $x \in A$. Then c does not belong to the Q-cut μ_{Q} of μ, where $Q=[\mu(x), 1]$. This contradiction verifies (ii) of Definition 3, too.
Theorem 2. Let A be an algebra, $\mu \in P^{A}$ a P-fuzzy algebra on A, and Q a right segment of P. If Q is closed under $*$, then μ_{Q} is a subalgebra of A.

Proof. Consider a right segment Q satisfying the given condition. Then for any elements $x_{1}, \ldots, x_{n} \in \mu_{Q}$

$$
\mu\left(x_{1}\right) * \cdots * \mu\left(x_{n}\right) \in Q
$$

holds, since $\mu\left(x_{i}\right) \in Q(i=1, \ldots, n)$ and Q is closed under $*$. From here by Definition 3 we get

$$
\mu\left(f\left(x_{1} \ldots x_{n}\right)\right) \in Q \text { and } f\left(x_{1} \ldots x_{n}\right) \in \mu_{Q},
$$

which means that μ_{Q} is closed under f.

Since by (ii) of Definition $3 \mu(c) \geq \mu(x)$ for any constant c and for all $x \in A$, hence $c \in \mu_{Q}$ for all nonempty μ_{Q}. Thus μ_{Q} is closed under nullary operations, too, completing the proof.

Theorem 3. Let $r \in R(\mu)$, where $\mu \in P^{A}$. If each Q-cut r_{Q} is an equivalence relation on μ_{Q} for any right segment Q of P, then r is a P-fuzzy similarity on μ.

Proof. Let x be an arbitrary element of A. Take $Q=[\mu(x) * \mu(x), 1]$. Then $\mu(x) \in Q$, that is $x \in \mu_{Q}$ by Lemma 1 . Since r_{Q} is reflexive on μ_{Q}, so $x \in \mu_{Q}$ implies $(x, x) \in r_{Q}$. This means by definition that $r(x, x) \geq \mu(x) * \mu(x)$.

On the other hand, by definition of P-fuzzy relation on μ (Definition 1) $r(x, x) \leq \mu(x) * \mu(x)$. These two inequalities together prove the reflexivity of r.

Now, let x, y be arbitrary elements of A. If $x, y \in r_{Q}$ for some right segment Q, then by Lemma $2 x, y \in \mu_{Q}$. Take $Q=[r(x, y), 1]$. Obviously $r(x, y) \in Q$, that is $(x, y) \in r_{Q}$. Since r_{Q} is symmetric, it follows that $(y, x) \in r_{Q}$ or $r(y, x) \in Q$. Thus $r(y, x) \geq r(x, y)$ holds. Interchanging the role of x and y we similarly get: $r(y, x) \geq r(x, y)$. Consequently $r(x, y)=r(y, x)$ for all $x, y \in A$, verifying the symmetry of r.

To prove the transitivity of r, consider the arbitrary elements x, y, z of A, and choose the following right segment Q of $P: Q=[r(x, y) *$ $r(y, z), 1]$. Then by Lemma $1 r(x, y) \in Q$ and $r(y, z) \in Q$, that is equivalently $(x, y) \in r_{Q}$ and $(y, z) \in r_{Q}$. From here $x, y, z \in \mu_{Q}$ follows by Lemma 2. Further, since r_{Q} is transitive on μ_{Q}, we have $(x, z) \in r_{Q}$, i.e. $r(x, z) \in Q$. Thus $r(x, z) \geq r(x, y) * r(y, z)$, what we wanted to prove.

Now we consider the inverse of Theorem 3.
Theorem 4. Let r be a P-fuzzy similarity on $\mu \in P^{A}$ and let Q be a right segment of P. If Q is closed under $*$, then r_{Q} is an equivalence relation on μ_{Q}.

Proof. Assume that Q is closed under $*$ and let $x \in \mu_{Q}$. Then $\mu(x) \in Q$. Since r is reflexive, we have $r(x, x)=\mu(x) * \mu(x) \in Q$, which implies that $(x, x) \in r_{Q}$ so that r_{Q} is reflexive on μ_{Q}. Let $(x, y) \in r_{Q}$. Then $r(x, y) \in Q$. Using the symmetry of r, we get $r(y, x) \in Q$ or $(y, x) \in r_{Q}$. This proves that r_{Q} is symmetric.

To prove transitivity, let $(x, y) \in r_{Q}$ and $(y, z) \in r_{Q}$. Then $r(x, y) \in$ Q and $r(y, z) \in Q$, which imply that $r(x, y) * r(y, z) \in Q$ because Q is closed under $*$. Since r is transitive, we have $r(x, z) \geq r(x, y) * r(y, z)$.

Using the fact that Q is a right segment of P, we conclude that $r(x, z) \in$ Q or $(x, z) \in r_{Q}$. This completes the proof.
Theorem 5. Let A be an algebra, $\mu \in P^{A}$, and $r \in R(\mu)$. If for all non-empty right segment Q of $P \mu_{Q}$ is a subalgebra and r_{Q} is congruence on μ_{Q}, then r is P-fuzzy congruence on μ.

Proof. By Theorem 1μ is a P-fuzzy algebra on A, so the statement is not meaningless. Moreover, by Theorem $3 r$ is a P-fuzzy similarity on μ. Thus it is enough to show that r is a P-fuzzy compatible relation by Definition 4. Consider the elements $x_{i}, y_{i}(i=1, \ldots, n)$ from A, and the n-ary $(n \geq 1)$ operation $f \in F$. If $\left(x_{i}, y_{i}\right) \in r_{Q}$ for some right segment Q and $i=1, \ldots, n$, then by Lemma $2 x_{i}, y_{i} \in \mu_{Q}$. Take the foolowing right segment:

$$
Q=\left[p_{1} * \cdots * p_{n}, 1\right],
$$

where $p_{i}=r\left(x_{i}, y_{i}\right), i=1, \ldots, n$. Then by Lemma $1 r\left(x_{i}, y_{i}\right) \in Q$, and consequently $\left(x_{i}, y_{i}\right) \in r_{Q}$ for all i. Since r_{Q} is a compatible relation on the subalgebra μ_{Q}, therefore $\left(x_{i}, y_{i}\right) \in r_{Q}(i=1, \ldots, n)$ implies that

$$
\left(f\left(x_{1} \ldots x_{n}\right), f\left(y_{1} \ldots y_{n}\right)\right) \in r_{Q}
$$

and consequently

$$
r\left(f\left(x_{1} \ldots x_{n}\right), f\left(y_{1} \ldots y_{n}\right) \in Q\right.
$$

which means that

$$
r\left(f\left(x_{1} \ldots x_{n}\right), f\left(y_{1} \ldots y_{n}\right)\right) \geq p_{1} * \cdots * p_{n}
$$

proving the fulfilment of (i) in Definition 4 for r.
Now, let c be a constant in A. Since μ is a P-fuzzy algebra, so by definition $\mu(c) \geq \mu(x)$ for all $x \in A$. Since r is a P-fuzzy similarity on μ, hence

$$
r(c, c)=\mu(c) * \mu(c) \geq \mu(x) * \mu(y) \geq r(x, y) .
$$

Thus (ii) of Definition 4 also holds for r.
Theorem 6. Let A be an algebra, μ a P-fuzzy algebra on A, and r a P-fuzzy congruence on μ. If a right segment Q of P is closed under *, then r_{Q} is congruence on μ_{Q}.

Proof. Because of Theorems 2 and 4 it is enough to prove that r_{Q} is a compatible relation on μ_{Q}, where Q is some right segment satisfying the given condition.

If $\left(x_{i}, y_{i}\right) \in r_{Q}$, that is $r\left(x_{i}, y_{i}\right) \in Q$, where $x_{i}, y_{i}(i=1, \ldots, n)$ are arbitrary elements of A, then

$$
r\left(x_{1}, y_{1}\right) * \cdots * r\left(x_{n}, y_{n}\right) \in Q
$$

is also true because Q is closed under *. Since r is a P-fuzzy congruence, therefore

$$
r\left(f\left(x_{1} \ldots x_{n}\right), f\left(y_{1} \ldots y_{n}\right)\right) \in Q
$$

that is

$$
\left(f\left(x_{1} \ldots x_{n}\right), f\left(y_{1} \ldots y_{n}\right)\right) \in r_{Q}
$$

follows from here for any n-ary $(n \geq 1)$ operation $f \in F$.
Further by Lemma 2, $\left(x_{i}, y_{i}\right) \in r_{Q}$ implies $x_{i}, y_{i} \in \mu_{Q}$. Thus r_{Q} is compatible on μ_{Q} with any n-ary ($n \geq 1$) operation f.

If c is an arbitrary constant in A, then by definition $\mu(c) \geq \mu(x)$ for all $x \in A$. Thus $c \in \mu_{Q}$ for any non-empty μ_{Q}. But since r is reflexive, $c \in \mu_{Q}$ if and only if $(c, c) \in r_{Q}$. This completes the proof of the theorem.

References

[1] I. M. Anthony and H. Sherwood. Fuzzy groups redefined. Journal Math. Anal. Appl., 69:124-130, 1979.
[2] L. Filep. Fundamentals of a general theory of fuzzy relations and algebras. In Proc. 4th IFSA World Congress, pages 70-74, Brussels, 1991.
[3] J. A. Goguen. L-fuzzy sets. Journal Math. Anal. Appl., 18:145-1741, 1967.
[4] A. Rosenfeld. Fuzzy graphs. In Fuzzy sets and their applications to cognitive and decision processes., pages 77-95. Academic Press, 1975.
[5] L. A. Zadeh. Fuzzy sets. Information Control, 8:338-353, 1965.
Department of Mathematics,
Bessenyei College of Education, Nyíregyháza, Pf. 166, H-4401, Hungary

[^0]: 1991 Mathematics Subject Classification. 04A72, 03E72, 20 N25.
 Key words and phrases. Fuzzy subalgebra, fuzzy congruence, partially ordered set, Q-cut.

