A HARDY-LITTLEWOOD-LIKE INEQUALITY ON COMPACT TOTALLY DISCONNECTED SPACES

I. BLAHOTA

ABSTRACT. In this paper we deal with a new system was introduced by Gát (see [Gát1]). This is a common generalization of several well-known systems (see the follows). We prove an inequality of type Hardy-Littlewood with respect to this system.

INTRODUCTION, EXAMPLES

Let $\mathbb{P} = \mathbb{N} \setminus \{0\}$, and let $m := (m_0, m_1, ...)$ denote a sequence of positive integers not less than 2. Denote by G_{m_j} a set, where the number of the elements of G_{m_j} is $m_j (j \in \mathbb{P})$. Define the measure on G_{m_j} as follows

$$\mu_k(\{j\}) := \frac{1}{m_k} \ (j \in G_{m_k}, k \in \mathbb{N}).$$

Define the set G_m as the complete direct product of the sets G_{m_j} , with the product of the topologies and measures (denoted by μ). This product measure is a regular Borel one on G_m with $\mu(G_m) = 1$. If the sequence m is bounded, then G_m is called bounded Vilenkin space, else its name is unbounded one. The elements of G_m can be represented by sequences $x := (x_0, x_1, ...)$ $(x_j \in G_{m_j})$. It easy to give a base the neighborhoods of G_m :

$$I_0(x) := G_m$$

$$I_n(x) := \{ y \in G_m | y_0 = x_0, ..., y_{n-1} = x_{n-1} \}$$

for $x \in G_m$, $n \in \mathbb{N}$. Define $I_n := I_n(0)$ for $n \in \mathbb{P}$. If $M_0 := 1, M_{k+1} := m_k M_k(k \in \mathbb{N})$, then every $n \in \mathbb{N}$ can be uniquely expressed as $n = \sum_{j=0}^{\infty} n_j M_j$, where $n_j \in G_{m_j}$ $(j \in \mathbb{P})$ and only a finite number of n_j 's differ from zero. We use the following notations. Let $|n| := \max\{k \in \mathbb{N} : n_k \neq 0\}$ (that is, $M_{|n|} \leq n < M_{|n|+1}$) and $n^{(k)} = \sum_{j=k}^{\infty} n_k M_k$. Denote by $L^p(G_m)$ the usual Lebesgue spaces $(||.||_p$ the corresponding norms) $(1 \leq p \leq \infty), \mathcal{A}_n$ the σ algebra generated by the sets $I_n(x)$ $(x \in G_m)$ and E_n the conditional expectation operator with respect to \mathcal{A}_n $(n \in \mathbb{N})$.

From now the **bounded** ness of the **Vilenkin space** G_m is supposed.

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). primary: 42C10, secondary: 42C15.

Research supported by the Hungarian National Foundation for Scientific Research (OTKA), grant no. F020334 and by the Hungarian "Művelődési és Közoktatási Minisztérium", grant no. FKFP 0710/1997.

I. BLAHOTA

The concept of the maximal Hardy space $H^1(G_m)$ is defined by the maximal function $f^* := \sup_n |E_n f| \ (f \in L^1(G_m))$, saying that f belongs to the Hardy space $H^1(G_m)$ if $f^* \in L^1(G_m)$. $H^1(G_m)$ is a Banach space with the norm

$$||f||_{H^1} := ||f^*||_1$$

This definiton is suitable if the sequence m is bounded. In this case a good property of the space $H^1(G_m)$ is the atomic structure [SWS].

A function a is said to be atom if a = 1 or $a : G_m \to \mathbb{C}$, $|a(x)| \le |I_n|^{-1}$, supp $a(x) \subset I_n$ and $\int_{I_n} a(x) = 0$. We say that f element is of the Hardy space $H(G_m)$ (or in brief H),

if there exists $\lambda_j \in \mathbb{C}$ $(j \in \mathbb{P})$ that $\sum_{j=1}^{\infty} |\lambda_j| < \infty$, and if exists a_j $(j \in \mathbb{P})$ atoms, that

 $f = \sum_{j=1}^{\infty} \lambda_j a_j$. Moreover, *H* is Banach space with the norm

$$||f||_H := \inf \sum_{i=0}^{\infty} |\lambda_i|,$$

where the infimum is taken over all decompositions $f = \sum_{i=0}^{\infty} \lambda_i a_i \in H$. If the sequence m is bounded (in this paper this is supposed), then $H = H^1$, moreover, the two norms are equivalent. (If the sequence m is not bounded, then the situation changes.)

Next we introduce on G_m an orthonormal system (see [Gát1]) we call Vilenkin-like system. The complex valued functions which we call the generalized Rademacher functions $r_k^n: G_m \to \mathbb{C}$ have these properties:

- *i.* r_k^n is \mathcal{A}_{k+1} measurable (i.e. $r_k^n(x)$ depends only on $x_0, ..., x_k$ $(x \in G_m)$), $r_k^0 = 1$ for all $k, n \in \mathbb{N}$.
- *ii.* If M_k is a divisor of n, l and $n^{(k+1)} = l^{(k+1)}$ $(k, l, n \in \mathbb{N})$, then

$$E_k(r_k^n \bar{r}_k^l) = \begin{cases} 1 \text{ if } n_k = l_k, \\ 0 \text{ if } n_k \neq l_k \end{cases}$$

 $(\bar{z} \text{ is the complex conjugate of } z).$

iii. If M_k is a divisor of n (that is, $n = n_k M_k + n_{k+1} M_{k+1} + \ldots + n_{|n|} M_{|n|}$). Then

$$\sum_{n_k=0}^{m_k-1} |r_k^n(x)|^2 = m_k$$

for all $x \in G_m$.

iv. There exists a $\delta > 1$ for which $||r_k^n||_{\infty} \leq \sqrt{m_k/\delta}$.

Define the Vilenkin-like system $\psi := (\psi_n : n \in \mathbb{N})$ as follows.

$$\psi_n := \prod_{k=0}^{\infty} r_k^{n^{(k)}}, \quad n \in \mathbb{N}.$$

(Since $r_k^0 = 1$, then $\psi_n := \prod_{k=0}^{|n|} r_k^{n^{(k)}}$). The Vilenkin-like system ψ is orthonormal (see [Gát2]).

And now let us list some well-known examples to this system.

1. The Vilenkin and the Walsh system. For more on these see e.g. [SWS, AVD]

2. The group of 2-adic (*m*-adic) integers (if $m_k = 2$ for each $k \in \mathbb{N}$ then 2-adic). [HR, SW2, Tai]

3. Noncommutative Vilenkin groups (In this case the group is the cartesian product of common finite groups.) [GT, Gát2]

4. A system in the field of number theory. This system (on Vilenkin groups) was a new tool in order to investigate limit periodic arithmetical functions. [Mau]

5. The UDMD product system (is introduced by F. Schipp on the Walsh-Paley group). [SW2, SW]

6. The universal contractive projections system (UCP) (is introduced by F. Schipp). [Sch4])

For more on these examples and their proves see [Gát1].

Finally, let us introduce the usual definitions of the Fourier-analysis. With notation already adopted for $f \in L^1(G_m)$ we define the Fourier coefficients and partial sums by

$$\widehat{f}(k) := \int_{G_m} f \overline{\psi}_k d\mu \qquad (k \in \mathbb{N})$$
$$S_n f := \sum_{k=0}^{n-1} \widehat{f}(k) \psi_k \qquad (n \in \mathbb{P}, \ S_0 f := 0).$$

The Dirichlet kernels:

$$D_n(y,x) := \sum_{k=0}^{n-1} \psi_k(y) \overline{\psi}_k(x) \qquad (n \in \mathbb{P}, \ D_0 := 0).$$

It is clear that

$$S_n f(x) = \int_{G_m} f(x) D_n(y, x) d\mu(x).$$

Result and Proof

Theorem. There exists a C > 0 absolute constant that if $f \in H(G_m)$, then

$$\sum_{k=1}^{\infty} k^{-1} |\hat{f}(k)| \le C ||f||_{H}.$$

Proof of the theorem. Since $f \in H(G_m)$, let us form $f := \sum_{k=1}^{\infty} \lambda_k a_k(x)$, where $a_k(x)$ are atoms, and $\sum_{k=1}^{\infty} |\lambda_k| < \infty$. $\sum_{k=1}^{\infty} k^{-1} |\hat{f}(k)| = \sum_{k=1}^{\infty} k^{-1} |\sum_{i=1}^{\infty} \lambda_j \hat{a}_i(k)| \le \sum_{i=1}^{\infty} |\lambda_j| \sum_{k=1}^{\infty} k^{-1} |\hat{a}_j(k)|,$ that is why it will be sufficient to show that there exists C > 0 absolute constant that for all a(x) atoms

$$\sum_{k=1}^{\infty} k^{-1} |\hat{a}(k)| \le C.$$

Let $a(x) \in H(G_m)$ be an atom. If $a \equiv 1$ then

$$\hat{a}(k) = \int_{G_m} \overline{\psi}_k = E_0(\overline{\psi}_k) = E_0(\prod_{j=1}^{|k|} \overline{r}_j^{k^{(j)}}) = E_0(E_{|k|}(\prod_{j=1}^{|k|} \overline{r}_j^{k^{(j)}})) = E_0(\prod_{j=1}^{|k|-1} \overline{r}_j^{k^{(j)}} E_{|k|}(r_{|k|}^0 \overline{r}_{|k|}^{k^{(|k|)}})) = 0$$

because $k^{(|k|)} = k_{|k|}M_{|k|} \neq 0$ if $k \in \mathbb{P}$ and $E_k(r_k^n \bar{r}_k^l) = 0$ if $n_k \neq l_k$. In this case the statement of the theorem is trivial.

So, assume that $a \not\equiv 1$. In this case let I_n be an interval for which $|a(x)| \leq |I_n|^{-1}$, supp $a(x) \subset I_n$ and $\int_{I_n} a(x) = 0$.

Since supp $a(x) \subset I_n$ than

$$\hat{a}(k) = \int_{G_m} a(x)\overline{\psi_k(x)} = \int_{I_n} a(x)\overline{\psi_k(x)}.$$

If $k = 0, ..., M_n - 1$ than $\psi_k(x)$ depend only on the first *n* coordinate of *x*, hence the function $\psi_k(x)$ on the set I_n is invariable

$$\begin{split} \hat{a}(k) &= \int\limits_{I_n} a(x) \overline{\psi_k(x)} = c \int\limits_{I_n} a(x) = 0 \\ \Longrightarrow \sum_{k=1}^{\infty} k^{-1} |\hat{a}(k)| = \sum_{k=M_n}^{\infty} k^{-1} |\hat{a}(k)|. \end{split}$$

Using the Cauchy–Buniakovski–Schwarz inequality

$$\sum_{k=M_n}^{\infty} k^{-1} |\hat{a}(k)| \le \sqrt{\sum_{k=M_n}^{\infty} |\hat{a}(k)|^2} \sqrt{\sum_{k=M_n}^{\infty} k^{-2}},$$

and from Bessel's inequality

$$\sqrt{\sum_{k=M_n}^{\infty} |\hat{a}(k)|^2} \le ||a(x)||_2,$$

and estimate the approximate sum of the Riemann integral of function $\frac{1}{r^2}$

$$\sqrt{\sum_{k=M_n}^{\infty} k^{-2}} \le \frac{C}{\sqrt{M_n}}.$$

These gives

$$\sum_{k=M_n}^{\infty} k^{-1} |\hat{a}(k)| \le C,$$

by

$$||a(x)||_{2}^{2} = \int_{I_{n}} |a|^{2} \le |I_{n}|^{-2} |I_{n}| = |I_{n}|^{-1} \le M_{n+1} = m_{n+1}M_{n} \le CM_{n}.$$

because of the boundedness of the sequence m.

This completes the proof of Theorem.

Acknowledgement

I would like to thank Professor G. Gát for setting the problem.

References

- [FS] S. Fridli, P. Simon, On the Dirichlet kernels and a Hardy space with respect to the Vilenkin system, Acta Mathematica Hungarica 45 (1-2) (1985), 223-234.
- [AVD] Agaev, G.H., Vilenkin, N.Ja., Dzhafarli, G.M., Rubinstein, A.I., Multiplicative systems of functions and harmonic analysis on 0-dimensional groups (in Russaian), Izd. ("ELM"), Baku, 1981.
- [Gát1] Gát, G., On(C, 1) summability of integrable functions on compact totally disconnected spaces, Studia Math. (submitted).
- [Gát2] Gát,G., Pointwise convergence of Fejér means on compact totally disconnected groups, Acta Sci. Math. (Szeged) 60 (1995), 311-319.
- [GT] Gát, G., Toledo, R., L^p-norm convergence of series in compact totally disconnected groups, Analysis Math. 22 (1996), 13-24.
- [HR] Hewitt, E., Ross, K., Abstract Harmonic Analysis, Springer-Verlag, Heidelberg, 1963.
- [Mau] Mauclaire, J.L., Intégration et théorie des nombres, Hermann, Paris, 1986.
- [Sch4] Schipp, F., Universal conctractive projections and a.e. convergence, Probability Theory and Applications, Essays to the Memory of József Mogyoródi, Eds.: J. Galambos, I. Kátai, Kluwer Academic Publishers, Dordrecht, Boston, London (1992), 47-75.
- [SW] Schipp,F., Wade,W.R., Norm convergence and summability of Fourier series with respect to certain product systems in Pure and Appl. Math. Approx. Theory, vol. 138, Marcel Dekker, New York-Basel--Hong Kong, 1992, pp. 437-452.
- [SW2] Schipp,F., Wade,W.R., Transforms on normed fields, Janus Pannonius Tudományegyetem, Pécs, 1995.
- [SWS] Schipp, F., Wade, W.R., Simon, P., Pál, J., Walsh series: an introduction to dyadic harmonic analysis, Adam Hilger, Bristol and New York, 1990.
- [Tai] Taibleson, M.H., Fourier Analysis on Local Fields, Princeton Univ. Press., Princeton , N.J., 1975.
- [Vil] Vilenkin, N.Ja., On a class of complete orthonormal systems (in Russian), Izv. Akad. Nauk. SSSR, Ser. Math. 11 (1947), 363-400.

BESSENYEI COLLEGE, DEPT. OF MATH., NYÍREGYHÁZA, P.O.BOX 166., H-4400, HUNGARY *E-mail*: blahota@ny1.bgytf.hu